
Experimental Evaluation of Automatic Tests Cases in Data Analytics
Applications Loading Procedures

Igor Peterson Oliveira Santos1, Juli Kelle Góis Costa1, Methanias Colaço Júnior 1,2

and André Vinícius R. P. Nascimento2

1Postgraduate Program in Computer Science – PROCC, Federal University of Sergipe- UFS, São Cristóvão-SE, Brazil
2Competitive Intelligence Research and Practice Group – NUPIC, Information Systems Departament – DSI,

Federal University of Sergipe - UFS, Itabaiana-SE, Brazil

Keywords: Business Intelligence, Data Warehouse, Software Testing, Data Quality, Experimental Software
Engineering, DbUnit.

Abstract: Business Intelligence (BI) relies on Data Warehouse (DW), a historical data repository designed to support
the decision making process. Despite the potential benefits of a DW, data quality issues prevent users from
realizing the benefits of a BI environment and Data Analytics. Problems related to data quality can arise in
any stage of the ETL (Extract, Transform and Load) process, especially in the loading phase. This Paper
presents an approach to automate the selection and execution of previously identified test cases for loading
procedures in BI environments based on DW. To verify and validate the approach, a unit tests framework
was developed. The overall goal is achieve efficiency improvement. The specific aim is reduce test effort
and, consequently, promote test activities in data warehousing process. A controlled experiment evaluation
in the industry carried out to investigate the adequacy of the proposed method against a generic framework
for DW procedures development. Constructed specifically for database application tests, DbUnit was the
generic framework chosen for the experiment by convenience of the programmers. The experiment's results
show that our approach clearly reduces test effort when compared with execution of test cases using a
generic framework.

1 INTRODUCTION

Information represents a crucial factor for
companies in improving processes and decision-
making. To assist the strategic areas of the
organizations business intelligence (BI)
environments presented as sets of technologies that
support the analysis of data and key performance
indicators (Colaço, 2004).

A central component of BI systems is a Data
Warehouse (DW), a central repository of historical
data. The idea behind this approach is to select,
integrate and organize data from the operational
systems and external sources, so they can be
accessed more efficiently and represent a single
view of enterprise data (Colaço, 2004; Kimball,
2008; Inmon, 2005).

Despite the potential benefits of a DW, data
quality issues prevent users from realizing the
benefits of a business intelligence environment.
Problems related to data quality can arise in any

stage of the ETL (Extract, Transform and Load)
process, especially in the loading phase. The main
causes that contribute to poor data quality in data
warehousing identified in (Ranjit and Kawaljeet,
2010).

The lack of availability of automated unit testing
facility in ETL tools is also appointed as cause for
the poor data quality (Ranjit and Kawaljeet,
2010).The low adoption of testing activities in DW
environment is credited to the differences between
the architecture of this environment and
architectures of the generic software systems. These
differences mean that the testing techniques used by
the latter need to be adjusted for a DW environment
(Deshpande, 2013; Elgamal et al., 2013).

Tests of ETL procedures considered the most
critical and complex test phase in DW environment
because it directly affects data quality (Golfarelli
and Rizzi, 2009). ETL procedures, more precisely
the loading routines, exhibit the same behavior as
database applications. They operate on initial
database state and generate a final consistent

304
Santos, I., Costa, J., Júnior, M. and Nascimento, A.
Experimental Evaluation of Automatic Tests Cases in Data Analytics Applications Loading Procedures.
DOI: 10.5220/0006337503040311
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 304-311
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

database state. So, a black-box approach, which
combines the unit and application behavior of
loading procedures, is proposed. In this approach,
the concern is with the application interface, and not
with the internal behavior and program structure
(Myers, 2012; Pressman, 2011; Sommerville, 2011).
This approach to ETL routines, in some
environments, may be the only option, since the use
of ETL tools in DW environment produces codes or
packages whose internal structure is not known.

Previous studies was presented an
experimentation with the proposal of using a unit
testing framework (FTUnit) for loading routines in a
BI environment based on Data Warehouse (Santos et
al, 2016). The motivation for adopting this approach
meets the problems pointed out in (Singh and Singh,
2010), as the main causes for the poor quality of data
in a DW environment. Through a set of metadata
that defines the characteristics of the routines, the
framework selects test cases to applied, generates
the initial states of the database, executes the
routines, performs test cases, analyzes the final state
of the database and generates a report with the errors
encountered during the execution of each test case.
With good results, the use of the framework presents
important contributions to increasing the
productivity and quality in software engineering for
loading routines of DWs.

This paper aims to show the results of an
experiment to verify the best performance using the
test framework (FTUnit) against a generic database
application test framework (DbUnit, 2016). The
performance results of FTUnit already presented in
(Santos et al, 2016) shows the framework can
accelerate and improve the quality of ETL process
tests based on SQL. Now to compare with this study,
the same use case was used for run the test cases at
DbUnit in BI environment, once this framework had
been constructed specifically for database
application tests.

Thus, considering an industrial environment, this
work aims address the following research question:
“in a load context for DW, test cases perform better
using the test framework compared with a generic
framework?” To answer, our experimental
evaluation analyzed a real context. The results
showed numbers that indicate effort reduction using
the Testing framework.

The remainder of this paper is structured as
follows. Section 2 presents the test framework and
DbUnit. Section 3 describes the experiment
definition and planning. Section 4 presents the
operation of the experiment. Section 5 reports the
results of the experiment. In Section 6, related works
are presented. Finally, section 7 contains the
conclusion and future works.

2 TESTING FRAMEWORK AND
DBUNIT

2.1 Testing Framework

Unit testing framework (FTUnit) is used to perform
unit tests in loading procedures of a DW
environment. It has been developed in C#. It is
available for download at
<http://ftunit.wordpress.com/>. This tool resembles
a framework for performing procedures on test cases
in T-SQL (Transact-SQL) language. Therefore, it
can be expanded to other SQL languages.

This framework will be used to perform tests
under the black-box approach. The code and the
internal structure of the routines will not be
examined. The test cases previously implemented,
will be selected according to the characteristics of
the routine being tested. Each routine, in order to be
covered by the framework, must have a set of
metadata registered. This set of metadata was
defined from the schema presented in (Costa et al,
2015).

This paper will not detail the process of
implementing the framework for reasons of lack of
space.

2.2 DbUnit

DbUnit is a JUnit extension targeted at database-
driven projects that puts the database into a known
state between test runs. This can avoid the myriad of
problems that occurs when one test case corrupts the
database and causes subsequent tests to fail or
exacerbate the damage (DbUnit, 2016).

Created to implement database operations tests in
Java, DbUnit can work with large datasets when
used in streaming mode and verify data matches an
expected set of values. Using a XML based
mechanism for loading test data, DbUnit can export
existing test data into the XML format for
subsequent use in automated tests. This method
compares data, between database tables, flat files
and queries (DbUnit, 2016).

This paper will not detail the process of
implementing the test cases at DbUnit for reasons of
lack of space.

Experimental Evaluation of Automatic Tests Cases in Data Analytics Applications Loading Procedures

305

3 EXPERIMENT DEFINITION
AND PLANNING

Our work is presented here as an experimental
process. It follows the guidelines by Wohlin et al.
(2000). In this section, we start introducing the
experiment definition and planning. The following
sections, will direct to the experiment execution and
data analysis.

3.1 Goal definition

Our main goal is to evaluate the best performance
using the test framework against a generic database
application test framework in a Data Warehouse
environment.

The experiment will target developers of ETL
processes for BI environments with at least 2 years
of experience in the market and one year of
experience in ETL programming. The goal was
formalized using the GQM model proposed by
Basili and Weiss (Basili, 1984):
 Analyze the use of a DW unit testing

framework
 With the purpose of evaluate (against a

generic database application test framework)
 With respect to the efficiency of the process

of executing test cases
 From the point of view of developers and

decision support managers
 In the context of programmers in a BI

company.

3.2 Planning

3.2.1 Hypothesis Formulation

The research question for the experiment that needs
to be answered is this: “in a load context for DW,
test cases perform better using the test framework
compared with a generic framework?”

To evaluate this question, it will be used a
measure: Average time for Testing Framework and
Generic Framework. Having the purpose and
measures defined, it will be considered the
hypothesis:

H0time: the execution of test cases for the testing
framework and the generic framework has the same
efficiency. (μGenericFrameworkTime = μTstingFrameworkTime).

H1time: the execution of test cases for the testing
framework is more efficient than running on generic
framework. (μGenericFrameworkTime > μTstingFrameworkTime).

Figure 1: Dependent and Independent variables of the
experiment.

Formally, the hypothesis we are trying to reject
is H0time. To ascertain which of the hypotheses is
rejected, will be considered the dependent and
independent variables that are in Figure 1.

3.2.2 Independent Variables

Next, the independent variables of the experiment
are described.

Description of Test Cases Used in the
Experiment: The loading routines for the DW
environment are quite discussed in (Colaço, 2004;
Kimball, 2002; Kimball, 2004; Kimball, 2008).
Alternative approaches to the loading of dimensions
can be found in (Santos, 2011). Algorithms for
loading routines for the various types of dimensions
can be found in (Santos et al, 2012). Test Cases
categories for ETL routines are pointed in (Elgamal
et al., 2013; Cooper and Arbuckle, 2002). This
material, together with the extensive experience of
the authors in DW projects in the public and private
sectors, provided the basis for the elaboration of
categories and test cases to be considered by the
framework. The following categories are
contemplated by the framework: a) Unit tests and
relationship; b) Number of records between source
and destination; c) Transformations between source
and destination; d) Processing of incorrect or
rejected data; e) Null values processing; f) Behavior
Type 1 and Type 2 for dimensions attributes; g)
Hybrid approaches for the treatment of historical
dimensions.

Description of the Use Case Used in the
Experiment: the characteristics of the use case
chosen for the validation study were based on
practical situations reported by the selected
programmers.

For the use case of the experiment, the goal was
to generate procedure to perform loads of Staging
Area, from employee table to the employee
dimension. At this time, the dimension has an
historical storage, Type 2 for some attributes. The
other attributes are Type 1.

Table 1 shows the characteristics of the
employee dimension in DW environment. For the
Type 2 treatment in dimensions, new attributes are
used for the historical storage. They are the start
date, which represents the date on which the record
was recorded; the end date which is the date when

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

306

the record is no longer current; and finally, the
attribute that identifies whether it is or not a current
record. These are respectively shown in Table 1,
with the names of: dt_initial; dt_end and fl_current.

Tests in the ETL Process: The ETL tests used in
this work, have two types of treatments for
performing the experiment: 1) Generic Framework:
test cases execution using DbUnit for loading data
based on use case already presented earlier in a DW
environment; 2) Testing Framework: execution of
tests based on test case, in the SQL code for the
same use case, using the proposed tool of this work,
FTUnit.

Table 1: Features of the dimension dbo.dim_employee and
its attributes regarding the historical storage.

Dimension Name: dbo.dim_employee
Treatment

historical Type:
Type 1 and 2

Attribute
Historical

Type
Attribute

Paper
id_employee Surrogate Key

cod_registration Primary Key
name 1
cpf 1
title 2
job 2

salary 2
sector 2

department 2
dt_initial Initial Date
dt_end End Date

fl_current Current Flag

DbUnit was select to this experiment first to

have a framework proposal that is closest to the
Testing Framework. Second, for convenience the
experiment's programmers are already familiar with
JUnit, so would be easier and efficient its use.

3.2.3 Dependent Variables

It were used a measure as a dependent variable:
Average time, for testing framework and generic
framework, measured using a stopwatch,
considering the average time spent on testing in the
procedures.

3.2.4 Participants Selection

The selection process of the participants will be
done for convenience, making the type of sampling
per share in which will be preserved the same
characteristics of interest present in the population as
a whole. The contributor to be chosen will be
Qualycred (www.qualycred.com), a company that

provides consulting in BI solutions for industry. This
company will provide for the execution of the
experiment, eight programmers with four years of
experience in other areas and one year of experience
working specifically with ETL for DW, in SGBD
SQL SERVER.

3.2.5 Experiment Project

The experiment was projected in a paired context, in
which a group will evaluate both approaches:
Testing Framework and Generic Framework
execution. For understanding the execution of the
test to be done, ten test cases and one use case (seen
in Independent Variables section) were elaborated,
which will be presented in a well detailed way to the
programmers.

The experiment will be separated into two
groups of participants. Will be drawn 5
programmers to start the tests to the rules presented
in the Employee Use Case, with the execution of
Testing Framework and, shortly after, the execution
of Generic Framework. The other participants in
parallel, will make the tests made to rules presented
in same use case, with the implementation of the
Generic Framework and, shortly after, with the
execution of the Testing Framework. Thus, the
randomness will be enhanced, not prioritizing the
manual or automated learning.

3.2.6 Instrumentation

The instrumentation process initially proceeded with
the environment setup for the experiment and
planning the data collect. It was conducted in a
computer lab at Federal University of Sergipe - UFS.
The Participants of the experiment had the same
working conditions. The computers were adjusted to
possess same settings. Listed below are the
technology, the installed tools and artifacts used.

SQL Server 2008. It served as a basis for the
storage of the identified metadata, and consequently,
has been used to store the metadata of FTUnit,
described in section 2.

Unit Testing Framework in Sql Code (FTUnit).
The FTUnit was described section 2 of this paper.
The version to be used in the experiment, due to the
participants, runs Unit Testing Cases for charging
procedures in SQL code, T-SQL language (Transact-
SQL), involving behaviors of Types 1 and 2 for the
treatment of historical dimensions.

DbUnit. Using XML files to run test cases in
DbUnit, this framework has been prepared to run
tests case in ETL procedures to load data to
dimensions involving behaviors of Type 1 and 2. At
solution the programmers developed methods that
could perform test cases for the Employee Use Case,

Experimental Evaluation of Automatic Tests Cases in Data Analytics Applications Loading Procedures

307

by means of an XML file with characteristics of
employee auxiliary table. To compare the results
after loading the data, it was compared with other
XML file containing the expected characteristics of
the employee dimension, thus confirm whether or
not if the data were properly loaded for the
dimension.

Environment Created and Produced Artifacts.
Some of the tables that make up the DW
environment used in the experiments were the
following: a) auxiliary employee table; b) dimension
of employee with attributes Types 1 and 2. These are
described below.

Figure 2 contains the representation of a load
data from TB_Aux_Employee (auxiliary table of
employees) to the DIM_Employee (dimension of
employees) that represents a dimension of Types 1
and 2. To this dimension, the attributes that match
the Type 1 are name and CPF. The attributes of
Type 2 are title, job, salary, sector and department.

Figure 2: Charge for a dimension of employees with
behaviors of Types 1 and 2.

4 EXPERIMENT OPERATION

4.1 The preparation

The following are listed the preparation steps for the
execution of the experiment.

1) DW environment Creation: in this phase was
defined and created the DW environment with the
dimensional schemes and staging area. These
artifacts served as the basis for the entire
experiment.
2) Definition of Test Cases for loading routines:
were defined test cases to be followed by the
developers of the experiment. These test cases
were applied to a loading routine previously
created.
3) Review of basic concepts of loading routines
for the programmers: a review of the loading
routines, for DW environments with the selected
developers, was performed.

4) Training in Testing Framework (FTUnit): a
training with the programmers was realized to
become familiar with the tool.
5) Training in Generic Framework (DbUnit): a
training with developers was conducted for tool
learning in the context of charges for DW
environments.

In short, all computers were prepared with the
same settings, so programmers were on the same
working conditions. Moreover, it was presented to
each programmer, a printed document containing a
detailed description of Use Case and test cases that
would be used by them, in case of any doubts.

4.2 Execution

At the end of the previous steps, the experiment was
initiated, it occurred according to the plan described
in section 3.

The evaluation of Testing Framework at the end
of the experiment, made by the professionals, was
positive, since they have commented that the use of
this tool have contributed to the reduction of time in
the test procedures.

1) Data Collection
Average time for Testing Framework and Generic
Framework.

It was calculated the time spent by each
developer for Testing Framework and Generic
Framework tests, of all test cases for the Employee
Use Case, taking into account the time for testing
and all necessary settings in FTUnit. Under
supervision, each programmer reported the
completion and was recorded the time on a timer,
used for this purpose. The result of these collected
data will be presented in section 5 of this paper.

4.3 Data Validation

In order to perform the experiment, one factor was
considered, Test of the ETL Process, and two
treatments, execution of tests case using the FTUnit
tool and DbUnit tool. Facing this context, the
average of testing time was computed.

As an aid to analysis, interpretation and
validation, we used two types of statistical tests,
Shapiro-Wilk Test and the T Test. Shapiro-Wilk test
was used to verify normality of the samples. The T
test was used to compare the average of the two
paired samples (Wohlin et al., 2000). All statistical
tests were performed using the SPSS tool (SPSS,
1968).

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

308

5 RESULTS

5.1 Analysis and Data Interpretation

To answer the question of research, the following
dependent variable was analyzed: average time spent
on testing in the procedures.

5.1.1 Time Spent in Testing Process

Table 2 displays the results related to the testing
time by each participant for the Employee Use Case.
The results show that the average time of the
developers for Testing Framework was 23.13
minutes, and 166.38 minutes for the Generic one.

These results suggest that the Testing
Framework execution have, on average, shorter
testing time, as compared with the same test
procedure performed in Generic Framework by
programmers with experience in the area. Thus,
from this preliminary analysis of the data, it is
assumed that the answer to the Research Question
would be "yes". The execution of test cases using the
FTunit can increase the productivity of developers
during the testing process in a DW compared with
DbUnit, since this tool obtained a difference of
approximately 143.25 minutes. However, is not
possible to make such a claim without sufficiently
conclusive statistical evidence.

Thus, first, we established an apriority
significance level of 0.05. The Shapiro-Wilk test
ensured that the sample was normally distributed. As
seen in Table 3, we found p-values of 0.672 and
0.523 for the use of testing framework and generic
framework, respectively. As the p-value is the
lowest possible significance with which it is possible
to reject the null hypothesis, and they are larger than
0.05, we cannot reject the hypothesis that the data is
normally distributed.

Finally, as the samples are dependent, the
hypothesis test applied in this context was the T-
Test, characterized as parametric for paired samples,
which only requires normality of the samples. In
Table 4, we obtained the p-value of 0.000. This
means the p-value found is less than 0.0001, so we
have more than 99% certainty for the valued context.
Thus, it was confirmed the evidence of a difference
between the averages of 143.25. As the significance
test is lower than 0.05, it is possible to reject the null
hypothesis. Consequently, we cannot reject the
alternative hypothesis that the execution of test cases
for the testing framework is more efficient than
running on generic framework.

Table 2: Average Time (in minutes) to Execute The Tests
of the use cases.

 Employee Use Case
 Testing

Framework
(minutes)

Generic
Framework

(minutes)
Programmer 1 23 141
Programmer 2 27 154
Programmer 3 19 82
Programmer 4 20 161
Programmer 5 28 209
Programmer 6 21 182
Programmer 7 22 186
Programmer 8 25 216

Table 3: Shapiro-Wilk Test. (SOURCE: SPSS TOOL –
IBM (SPSS, 1968)).

 Statistic df Sig.
FTUnit ,946 8 ,672
DbUnit ,931 8 ,523

Table 4: T-Test Versus Time of the Tests. (Source: SPSS
Tool – IBM (SPSS, 1968)).

Paired Differences

t d
f

S
ig

(2
-t

ai
le

d
)

M
ea

n

S
td

.
D

ev
ia

ti
on

S
td

. E
rr

or

M
ea

n

95%
Confidence
Interval of

the
Difference

L
ow

er

U
pp

er

P
ar

 1

D
b

U
n

it
-

F
T

U
ni

t

14
3,

25

41
,0

53

14
,5

14

10
8,

92
9

17
7,

57
1

9,
86

9
7 ,0
0

5.2 Threats to Validity

In spite of having achieved statistical significance in
the study, the following threats to the validity must
be considered.
Threats to internal validity: the limited availability
of programmers to make new use cases can be
considered a threat to validity for having
implemented a simple use case. In addition, although
participants have been trained to use both
frameworks, they do not use it daily. This lack of
constant contact with it may have affected the
results, which could be even better, pro-tool.
Frameworks training were conducted at the
beginning of the experiment, considering a
phenomenon studied by psychology called Demand
Characterization - which considers that an

Experimental Evaluation of Automatic Tests Cases in Data Analytics Applications Loading Procedures

309

experimental artifact may have an interpretation of
the purpose of the experiment by the participants.
This can lead to change of unconscious behavior, to
adapt to this interpretation (Orne, 1962). According
to this concept, this training could be harmed the
progress of the experiment, but to mitigate this
factor, can be said that had been used at least two
different approaches: The More the Merrier and
Unobtrusive Manipulations and Measures (Orne,
1962). Respectively, the first, to avoid bias with a
single experimenter, the experiment had another
researcher to conduct the experiment and an
instructor for the tool, not involved with the
research. The second guided us not to say which
factors and metrics would be assessed, so that the
participants had no clues about the research
hypothesis.
Threats to external validity: The low number of
participants can be a threat, since it can negatively
influence the results of the experiment.
Threats to the construction validity: The
Specifications for the use case and test cases may
not have been very clear to the understanding of
some programmers. This threat was mitigated with
the prior reading and analysis of the understanding,
made by four ETL developers.

6 RELATED WORK

Through literature reviews, with systematic
approaches, were not found strongly related work
for automated unit tests in ETL tools. Consequently,
the absence of ETL tools with these characteristics
may contribute to a lower integrity and a lower
quality of data, essential in large banks of decision
support data.

Some moderately related works also seek
solutions for the automatic execution of Test Cases
in DW environments. In (Elgamal; Elbastawissy;
Galol-edeen, 2013) it is presented a directed models
approach for automatic generation and execution of
test cases based in formal models of systems. The
formal model adopted is based on the UML
language. The approach also depends on creating an
extension of UML language that can capture the
transformations used in a Data Warehousing
process.

Once the Testing Framework generates test cases
based on characteristics of the loads procedures
being implemented, it can be extended and used to
test load routines created for any ETL tools. So far
was not found in literature any similar approach, so
we could make a comparison.

It is possible find in (Krawatzeck et al., 2015) an
evaluation of unit testing tools suitable for data

warehouse testing. The following open source tools
were select based on tools that could perform test
cases in a BI environment: AnyDbTest, BI.Quality,
DbFit, DbUnit, NDbUnit, SQLUnit, TSQLUnit, and
utPLSQL. The more similar tool to the proposed
work is the DBUnit framework (DbUnit, 2016).
However, this one represents a generic framework
for database applications and has no particularity
regarding to loading routines for a Data Warehouse
environment.

7 CONCLUSIONS

Identifying and attempting to solve data quality
problems in a Data Warehouse environment is one
of the major obstacles faced by large enterprises in
the use of Decision Support Systems. Among the
many factors that contribute to poor data quality are
manual data-loading routines. After delimiting some
research questions, the hypothesis was raised that
the tests made with Testing Framework support can
contribute to quality improvement through the
impact on variables such as productivity and coding
errors.

To accept or reject the hypotheses presented, we
presented the proposal of using a Unit Testing
Framework and a Generic Framework for loading
routines in a BI environment based on Data
Warehouse. The experimentation’s results show the
use of FTUnit was more efficient than the use of
DbUnit. The motivation for adopting this approach
meets the problems pointed in (Elgamal et al., 2013;
Golfarelli and Rizzi, 2009; Myers et al., 2012) is the
need to adopt different strategies, considering the
differences between traditional environments and
DW environments, which can contribute to the
adoption of testing processes.

In this context, this work presents important
contributions to increasing the productivity and
quality in software engineering for loading routines
of DWs, and encourages experimentation in an
industrial environment. The Testing Framework
encapsulates a method to accelerate and improve the
quality of ETL process tests based on SQL. It is
noteworthy that the safe and efficient execution of
procedures in SQL directly in the database is an
option considered by much of the industry, requiring
tools to support tests in this type of approach in
software engineering.

Although this study did not show satisfactory
results in the experiment for the use of DbUnit, a
new approach has been set to perform test cases in
DW environment. Therefore, it becomes something
new in the area, since were not found any work
containing the applicable implementing testing

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

310

procedures in a BI environment for a generic
framework as DbUnit.

The proposed framework (FTUnit) presents test
cases previously defined which cover the main
categories of tests applied to loading routines.
Through a set of metadata that defines the
characteristics of the routines, the framework selects
test cases to be applied, generates the initial states of
the database, executes the routines, performs test
cases, analyzes the final state of the database and
generates a report with the errors encountered during
the execution of each test case.

By virtue of what we have seen above and the
framework innovation, the presentation of this
experiment will support the adoption of the same or
the creation of a similar approach for companies that
use this type of strategy. Other contributions
obtained were: a) Approach to implementing
software testing in BI environments based on DWs;
b) Test cases defined for data loading routines in BI
environments; c) Testing Framework to meet the
execution of unit tests in a BI environment; d) Use
of DBUnit for running unit tests in BI environments
based on DW; e) Experiments show the benefits of
automated testing in BI environments.

As future work, it aims to extend the approach to
various SQL languages, as the experiments carried
out so far have been only for the T-SQL.

REFERENCES

Basili, V. and Weiss, D. (1984), A Methodology for
Collecting Valid Software Engineering Data, In: IEEE
Transactions On Software Engineering, v.10 (3): 728-
738, November.

Colaço Jr. (2004), Projetando sistemas de apoio à decisão
baseados em Data Warehouse, 1st ed., Rio de Janeiro:
Axcel Books.

Cooper, R. and Arbuckle, S. (2002), How to thoroughly
test a Data Warehouse, Proceedings of STAREAST,
Orlando.

Costa, J. K. G., Santos, I. P. O., Nascimento, A. V. R. P.,
Colaço Jr, M (2015), Experimentação na Indústria
para Aumento da Efetividade da Construção de
Procedimentos ETL em um Ambiente de Business
Intelligence. SBSI 2015, May 26–29, Goiânia, Goiás,
Brazil.

DbUnit, (2016), http://DbUnit.sourceforge.net/
Deshpande, K. (2013), Model Based Testing of Data

Warehouse, IJCSI International Journal of Computer
Science Issues, Vol. 10, Issue 2, No 3.

Elgamal, N., Elbastawissy, A. and Galol-edeen, G. (2013),
Data Warehouse Testing, EDBT/ICDT ’13, Genoa,
Italy.

Golfarelli, M. and Rizzi, S. A. (2009), Comprehensive
Approach to Data Warehouse Testing, ACM 12th

International Workshop on Data Warehousing and
OLAP (DOLAP ’09), Hong Kong, China.

Inmon, W. H. (2005), Building the Data Warehouse. 4th
ed., Indianapolis, Indiana: Wiley Publishing Inc.

Kimball, R. (2004), The Data Warehouse ETL Toolkit. 1st
ed., Wiley India (P) Ltd.

Kimball, R. and Ross, M. (2002), The Data Warehouse
toolkit: The complete Guide to Dimensional Modeling,
2nd ed., John Wiley and Sons, Inc.

Kimball, R., Ross, R. M. and Thomthwaite, W. (2008),
The Data Warehouse lifecycle toolkit, 2nd. ed.,
Indianapolis, Indiana: Wiley Publishing Inc.

Krawatzeck, R.; Tetzner, A. and Dinter, B. (2015), An
Evaluation Of Open Source Unit Testing Tools
Suitable For Data Warehouse Testing, The 19th
Pacific Asia Conference on Information Systems
(PACIS).

Myers, G. J., Badgett, T. and Sandler, C. (2012), The Art
Of Software Testing, 3rd ed., New Jersey: Wiley.

Orne, M. T. (1962), Sobre a psicologia social da
experiência psicológica: Com referência particular
para exigir características e suas implicações.

Pressman, R. S. (2011), Engenharia de software: Uma
abordagem profissional, 7th ed., São Paulo: AMGH
Editora Ltda.

Ranjit S. and Kawaljeet, S. (2010), A Descriptive
Classification of Causes of Data Quality Problems in
Data Warehousing, 7 v. IJCSI International Journal Of
Computer Science Issues.

Santos, I. P. O., Costa, J. K. G., Nascimento, A. V. R. P.,
Colaço Jr, M., (2012), Desevolvimento e Avaliação de
uma Ferramenta de Geração Automática de Código
para Ambientes de Apoio à Decisão. In: XII WTICG,
XII ERBASE (2012).

Santos, I. P. O., Nascimento, A. V. R. P., Costa, J. K. G.,
Colaço Jr., M., Pereira, W. P. (2016), Experimentation
in the Industry for Automation of Unit Testing in a
Business Intelligence Environment. SEKE the 28th
International Conference on Software Engineering and
Knowledge Engineering. California, USA.

Santos, V. and Belo, O. (2011), No Need to Type Slowly
Changing Dimensions, IADIS International
Conference Information Systems.

Singh, R. and Singh, K. (2010), A Descriptive
Classification of Causes of Data Quality Problems in
Data Warehouse. IJCSI International Journal of
Computer Science Issues, Vol. 7, Issue 3, No 2.

Sommerville, I. (2011), Engenharia de Software. 9th ed.,
São Paulo: Pearson.

SPSS, IBM Software, (1968), Statistical Package for the
Social Sciences, http://goo.gl/eXfcT3.

Wohlin, C., et al. (2000), Experimentation in Software
Engineering: An introduction. USA: Kluwer
Academic Publishers.

Experimental Evaluation of Automatic Tests Cases in Data Analytics Applications Loading Procedures

311

