
A Fuzzy Scheduling Mechanism for a Self-Adaptive Web Services 
Architecture 

Anderson Francisco Talon1,2 and Edmundo Roberto Mauro Madeira1 
1Institute of Computing, University of Campinas (UNICAMP), Av. Albert Einstein 1251, Campinas, SP, Brazil 

2Information Systems, Faculty FGP (FGP), Rua Prof. Massud José Nachef 2855, Pederneiras, SP, Brazil 
 

Keywords: Fuzzy Monitoring, Self-Adaptive Monitoring, pro-Active Monitoring, Web-Service Monitoring, e-Contract 
Violation. 

Abstract: The rise of web services have become increasingly more visible. Monitoring these services ensures Quality 
of Service and it is the basis for verifying and potentially predicting e-contract violations. This paper 
proposes a fuzzy scheduling mechanism that attempts to predict a possible e-contract violation based on 
historical data of the provider’s services. Consequently, there is a self-configuration on the architecture that 
changes service priority, making the provider processes the high priority services before low priority 
services. This prediction can also helps the self-optimization of the architecture. A decrease of e-contract 
violations can be observed. Though it is not always possible to predict a failure, the architecture is capable 
of self-healing by using recovery actions. Comparing the fuzzy scheduling with others known in the 
literature, an improvement of 31.52% in the e-contracts accomplishment is observed, and a decrease of 
35.59% in average response time was achieved. Furthermore, by using the fuzzy scheduling, the overload of 
the provider was better balanced, varying at most 8.43%, while the variation in other scheduling 
mechanisms reached 41.15%. The results show that the fuzzy scheduling mechanism is promising. 

1 INTRODUCTION 

Service-Oriented Computing (SOC) can help the 
integration of heterogeneous platforms and the 
construction of complex applications by combining 
simple services. However, these integrations and 
compositions can create some functional problems, 
such as: (i) services can change in the provider; (ii) 
services can stop working in the provider; and/or, 
(iii) services can run completely different than 
expected, due to a functional programming error. 

Furthermore, maintaining non-functional 
properties, such as response time, availability, 
reliability, and security can become a difficult 
problem to solve. 

Because of those problems, it is essential to 
monitor the web service compositions. For the 
consumers, it is important to know if the provider is 
respecting the established electronic contract (e-
contract). For the providers, it is important to know 
if they are satisfying functional and non-functional 
features as required by their consumers. 

The main contribution of this paper is to propose 
a fuzzy scheduling mechanism to predict if the 

provider may cause an e-contract violation. Based 
on this early prediction, some actions can be taken, 
such as: (i) the consumer can select another provider 
which would be able to attend its needs; (ii) the 
provider can increase its processing capability to be 
able to accomplish all e-contracts; and/or, (iii) both 
parts can renegotiate the e-contract changing QoS 
(Quality of Service) values. 

This research is based on a previous architecture 
(Fantinato et al., 2010). The researchers presented a 
monitor that examines service executions to verify if 
QoS levels are satisfied. The main difference 
between our proposed architecture is the monitor, 
which predicts e-contract violations before they 
actually happen. Three modules were added to the 
architecture: analyzer, optimizer, and recovery. 

The analyzer module uses a fuzzy system to 
predict e-contracts violations. All analyses to predict 
e-contract violation are made in parallel with the 
service execution. The optimizer module changes the 
service priority based on the analysis results. A 
priority queue is adapted according to the analysis 
results. If an e-contract violation happened, the 

Talon, A. and Madeira, E.
A Fuzzy Scheduling Mechanism for a Self-Adaptive Web Services Architecture.
DOI: 10.5220/0006321705290536
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 529-536
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

529



recovery module will try to fix it. Only the analyzer 
module uses an artificial intelligence technique. 

The proposed mechanism improves e-contract 
accomplishment. A fuzzy system was used to 
change the service priority, processing higher-level 
services first. With this priority queue, the service 
average response time was decreased and the service 
availability was increased. 

When analysing the results, an improvement can 
be observed in the system’s performance. 
Comparing the fuzzy scheduling mechanism with 
the queue, random, shorter duedate, shorter response 
time, and shorter processing time scheduling 
mechanisms, there was an increase in the e-contract 
accomplishment and a decrease in the average 
response time. 

2 FUNDAMENTALS 

The use of web service technology can decrease the 
implementation time of new services, because of the 
reusability and integration of the system in distinct 
platforms. 

A contract is an agreement between two or more 
parties to establish mutual relationships in business 
or legal obligations. The e-contracts are used to 
describe agreements between organizations of 
electronic business on the internet. They may 
include QoS attributes agreed between the parties 
involved. 

The service monitoring has the task of following 
process/service execution and taking actions when 
certain requirements of QoS are not being met 
(Papazoglou et al., 2008). 

Autonomic Computing is an approach to design 
self-managing computing systems that have a 
minimal human interference. The self-managing 
system can be divided into four properties: self-
configuration, self-optimization, self-healing, and 
self-protection. Self-Adaptive Systems have 
contained some elements of these properties for 
some time. The terms autonomic computing, self-
managing systems, and self-adaptive systems can be 
used synonymously (Huebscher and McCann, 2008). 

A fuzzy system has mechanisms based on fuzzy 
sets and/or fuzzy logic for the treatment of 
imprecision. This imprecision can be expressed by 
variables whose values are represented by fuzzy 
sets. These codification of these variables allows the 
generalization of information associated with 
imprecision (Yager and Filev, 1994). 

3 PROPOSED ARCHITECTURE 
AND MECHANISM 

The proposed architecture is based on the work of 
(Fantinato et al., 2010) for business process 
execution. A business process is a composition of 
web services. In their work, they presented a 
monitor that follows up services execution to verify 
if the QoS levels are met. The main difference from 
the original architecture and the one presented in this 
paper is the addition of the analyzer, optimizer, and 
recovery modules, developed for monitoring 
purposes, which have the ability to predict e-contract 
violations before they happen. 

The proposed architecture and fuzzy scheduling 
mechanism were presented in (Talon and Madeira, 
2015b). In the current paper, comparisons between 
the fuzzy scheduling mechanism and other 
traditional scheduling mechanisms are shown. The 
other scheduling mechanisms are: (i) Queue: first 
incoming request will be the first to be answered 
(FIFO – first in, first out); (ii) Random: a random 
number is assigned to each request and the provider 
answers the requests according to the order; (iii) 
Shorter Duedate: the request that has the closest 
time to a violation will be answered first by the 
provider; (iv) Shorter Response Time: the provider 
answers the services with the shortest response time 
first; and, (v) Shorter Processing Time: the 
provider answers the services with the shortest 
processing time first. 

The architecture is composed of four entities 
(provider, consumer, monitor, and negotiator) and 
involves five phases for business process execution 
(negotiation, monitoring, optimization, recovery, 
and renegotiation). Each entity is composed of 
repository(ies) and module(s). The Service-Oriented 
Computing (SOC) is responsible for the 
communication between services that are stored on a 
Service Repository (SR). 

The negotiator entity is responsible for the 
phases of (re)negotiation. It is composed of a 
negotiator module and an e-Contract Repository 
(ECR). The negotiation phase is responsible for the 
creation of the e-contract and its QoS parameters. 
The renegotiation phase is responsible for the 
modification of the e-contract and its QoS 
parameters. Both phases, (re)negotiation, will not 
be treated in this paper. For the purpose of this 
paper, it is assumed that e-contracts exist and all 
entities have them. The e-contracts are stored on the 
ECR. 

The proposed architecture with its entities and 
modules can be observed in Figure 1. 

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

530



 

Figure 1: Proposed Architecture. 

The monitor in the proposed architecture can be 
classified as soft-intrusive and asynchronous. It is 
soft-intrusive because a little change in consumer 
and provider are necessary. Both of them need to 
add a new message to the monitor into their code. It 
is asynchronous because all analyses to predict e-
contract violation are made in parallel with the 
service execution. The architecture monitors two 
features: response time and availability. In this 
paper, the monitor is considered light-weight (where 
the monitor handles only one web service feature), 
but the architecture also supports heavy-weight 
monitoring (where only one monitor handles 
different features of the web service). The two 
monitors work together, where the first one controls 
the response time and the second one the 
availability, both for the same e-contract QoS. 

The monitor module intercepts all messages 
between the provider and the consumer. These 
messages, and their response time and process time, 
are stored into the Data Repository (DR). 

The analyzer module uses the data from the DR 
to estimate the possibility of an e-contract violation, 
which is determined by a fuzzy system. The fuzzy 
system is used because it is a technique that treats 
imprecision, and in this case, it is not possible to 
guarantee when there will be an e-contract violation. 

The optimizer module uses information 
regarding the analysis in order to change the service 
priority. The main idea about the priority queue is: if 
a service is more probable to violate the e-contract, 
it should have a higher priority over other services. 
The service should run before by the provider. 

The analyzer and optimizer modules have the 
task of trying to accomplish e-contracts. However, a 
contract break can still happen. Faced a contract 
break, the recovery module tries to fix it by 
increasing the service priority. The priorities of the 
recovery module are greater than the priorities of the 
optimizer module. In other words, if there was a 
contract break, this service would run before others. 

3.1 Priority Queue 

The priority queue was set with ten priority levels. 
Services can receive a value ranging between 0 and 
9. The provider should run services with higher 
priority before services with lower priority. 

The priority levels are divided into four groups. 
The first group represents no possibility of violation. 
The second one represents the possibility of 
violation, where these levels are determined by a 
fuzzy system. The architecture uses 5 fuzzy levels 
because of the combination between the linguistic 
terms of the fuzzy sets. The third group corresponds 
to an e-contract violation, according to the response 
time. Lastly, the fourth group represents an e-
contract violation, according to the availability. The 
availability feature has higher priority than the 
response time feature because it will not respond at 
the agreed time if the service is unavailable. 

More details are given as it follows: 
 Level 0 / Group 1: All services start at this 

level. Their execution will not result in 
contract violation. 

 Level 1, 2, 3, 4, and 5 / Group 2: Execution of 
services at this level may result in contract 
violation. The analyzer module determines the 
possibility of violation from the historical data 
and sends this information to the optimizer 
module. Level 1 represents very-low 
possibility of violation; Level 2, low 
possibility; Level 3, medium possibility; Level 
4, high possibility; and, Level 5, very-high 
possibility of violation. 

 Level 6 / Group 3: Execution of services at 
this level violated the required response time 
on the consumer side only. In this case, the 
provider processes the request in time, but the 
response does not arrive at the consumer in 
time. The monitor detects it and informs the 
recovery module. 

 Level 7 / Group 3: Execution of services at 
this level violated the required response time 
on the provider side (and on the consumer side 
as well). In this case, the provider is not 
processing the request in time. The monitor 
detects it and informs the recovery module. 

 Level 8 / Group 4: Execution of services at 
this level represents a small availability 
violation, which means violations up to a set 
acceptable rate of violation. For example, if 
the availability is set to 95%, the rate of 
violation is 5%. Therefore, a small availability 
violation is greater than or equal to 90%, and 
smaller than 95%. 

A Fuzzy Scheduling Mechanism for a Self-Adaptive Web Services Architecture

531



 Level 9 / Group 4: Execution of services at 
this level represents a big availability 
violation, which means violations are greater 
than an acceptable rate of violation. For 
example, if the availability is set to 95%, the 
rate of violation is 5%. Therefore, a big 
availability violation is smaller than 90%. 

3.2 Fuzzy System Definitions 

The architecture and the fuzzy scheduling 
mechanism use a fuzzy system to determine the 
priority of each service. By using two monitors (one 
controlling the response time and other the 
availability), the possibility of e-contract violation 
could differ between themselves. This means that 
the service can have different priority levels. To fix 
the conflict, the optimizer module uses the higher 
priority level as the service priority level. 

Four linguistic variables are used to generate the 
system’s fuzzy rules: inclination, maximum, order, 
and minimum. The description of the variables is as 
follows. Inclination variable: if the delay in 
responding to a service is increasing, the service 
should start earlier. Maximum variable: if the time to 
respond to a service is close to the maximum value 
of the e-contract response time, the service should 
start earlier. Order variable: a service with a faster 
processing time should run before services with a 
slower processing time. Minimum variable: if a 
service is close to the minimum e-contract 
availability value, this service should start earlier. 

The inclination variable is determined by the 
inclination of a straight line. This line is calculated 
by an interpolation of historical data. On a growing 
line, the inclination of first-degree equations is 
between 0 (zero) and 90 (ninety) degrees. The 
linguistic terms and the fuzzy sets are represented in 
Figure 2. 

 

Figure 2: Inclination Variable. 

The relation between the current response times 
and the maximum response time set on the e-
contract determines the maximum variable. The 
current response times are determined by historical 
data. The maximum variable quantifies how much 
time is required for the current response times to 

reach the maximum response time. This variable has 
a domain between 0 (zero) and 1 (one). The 
linguistic terms and the fuzzy sets are represented in 
Figure 3. 

 

Figure 3: Maximum Variable. 

The order variable is determined by the 
processing time. If a service has a faster processing 
time, it should run before services with slower 
processing time. The processing time is obtained 
from the historical data. This variable has a domain 
between 0 (zero) and 1 (one), where zero represents 
the fastest service processing time and one the 
slowest. By running the service with the shortest 
processing time first, the architecture decreases the 
global average waiting time for all services. The 
linguistic terms and the fuzzy sets are represented in 
Figure 4. 

 

Figure 4: Order Variable. 

The relation between the current and the 
minimum availabilities of the e-contract determines 
the minimum variable. The current availability is 
determined by historical data. The minimum variable 
determines how much the current availability needs 
to decrease in order to reach the minimum 
availability. This variable has a domain between 0 
(zero) and 1 (one). The linguistic terms and the 
fuzzy sets are represented in Figure 5. 

 

Figure 5: Minimum Variable. 

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

532



The foundation of fuzzy system is composed of 
twenty-four rules. The rules were created from the 
combination between linguistic variables and fuzzy 
sets. The very-high and the very-low sets have high 
priority because of the large possibility of violation. 
The rules were determined empirically. The rules 
are: 

IF inclination IS very-high THEN priority IS 5 
IF maximum IS very-low THEN priority IS 5 
IF minimum IS very-low THEN priority IS 5 
IF order IS first AND minimum IS low THEN priority IS 5 
IF order IS first AND minimum IS medium THEN priority IS 4 
IF order IS first AND minimum IS high THEN priority IS 3 
IF inclination IS high AND maximum IS low THEN priority IS 5 
IF inclination IS high AND maximum IS medium THEN priority IS 4 
IF inclination IS high AND maximum IS high THEN priority IS 2 
IF order IS second AND minimum IS low THEN priority IS 4 
IF order IS second AND minimum IS medium THEN priority IS 3 
IF order IS second AND minimum IS high THEN priority IS 2 
IF inclination IS medium AND maximum IS low THEN priority IS 4 
IF inclination IS medium AND maximum IS medium THEN priority IS 2 
IF inclination IS medium AND maximum IS high THEN priority IS 1 
IF order IS next-to-the-last AND minimum IS low THEN priority IS 3 
IF order IS next-to-the-last AND minimum IS medium THEN priority IS 2 
IF order IS next-to-the-last AND minimum IS high THEN priority IS 1 
IF inclination IS low AND maximum IS low THEN priority IS 2 
IF inclination IS low AND maximum IS medium THEN priority IS 1 
IF inclination IS low AND maximum IS high THEN priority IS 0 
IF order IS last AND minimum IS low THEN priority IS 2 
IF order IS last AND minimum IS medium THEN priority IS 1 
IF order IS last AND minimum IS high THEN priority IS 0 

 
The inference method determines the priority of 

each service, with the use of all the rules. Priority is 
determined by the rule that has the maximum 
relevance rate. 

The proposed architecture and mechanism are 
completely flexible. They allow the use of other 
linguistic terms. The fuzzy sets can be defined by 
other functions, and their limits can be different. The 
rule base and the number of rules may be different 
as well. The fuzzy system definitions presented in 
this paper, chosen empirically, were used for the test 
scenario. The initial assessment was necessary to 
determine if the fuzzy theory was appropriate in 
solve the problem of improving e-contract 
accomplishment. 

4 RESULTS 

Initially, the test scenario is presented. Subsequently, 
some previous results are showed. Then, the new 
results of the comparison between the fuzzy 
scheduling mechanism against others are presented. 

4.1 Scenario 

To validate the proposed architecture and 
mechanism, a real scenario was created with two 
providers (PA, and PB), each one offers with two 
services (SA, and SB), and eight consumers (CA, 

CB, CC, CD, CE, CF, CG, and CH). Tests were 
performed in a Local Area Network (LAN) with 
average latency of 6ms. The LAN is a real network 
with real traffic. 

To simulate a web service composition, 
consumers could use one service from the provider, 
both services from the same provider, or services 
from different providers. The entire management of 
the compositions was done by twelve e-contracts 
(ECA, ECB, ECC, ECD, ECE, ECF, ECG, ECH, 
ECI, ECJ, ECK, and ECL). The scenario with the 
services composition can be observed in Figure 6. 

 

Figure 6: Test Environment. 

The consumers, providers, and services involved 
in the twelve e-contracts used in the test 
environment can be seen in Table 1. Each e-contract 
has QoS values for the maximum acceptable value 
of response time and the minimum acceptable value 
of availability for each service. Two monitors (MA, 
and MB) are responsible for the QoS. MA is 
responsible for the non-functional feature response 
time and MB is responsible for the non-functional 
feature availability. For all e-contracts, the 
maximum agreed response time was 1.25 seconds, 
and the minimum agreed availability was 95%. 

Table 1: e-Contracts. 

 
 

The e-contracts were chosen to simulate requests 
to one provider only, two services from one 
provider, and two services from different providers, 
in order to simulate different situations. 

The information stored in the e-contract was: 
agreed service, the consumer using the service, the 
provider offering the service, the monitor that 
monitors the QoS, the non-functional feature of the 
QoS, and the maximum/minimum value of the non-
functional feature monitored. 

For the tests, different machines were used. The 
machines were physically separated and no 
virtualization was used. Two hosts (Host A, and 
Host B) were used for the tests. Providers and 

A Fuzzy Scheduling Mechanism for a Self-Adaptive Web Services Architecture

533



Monitors were in Host A and Consumers were in 
Host B. 

The results presented in this paper used Poisson 
distribution to determine when consumers would 
make the requests, without external interference. 
The distribution was parameterized with an average 
of 7 (seven) requests per minute for all e-contracts, 
during 30-40 minutes. 

4.2 Previous Results 

The intelligent architecture/mechanism using fuzzy 
system aims to prevent a possible e-contract 
violation by increasing the e-contract 
accomplishment. This proposal was proved to be 
very promising in previous works. 

When monitoring only the response time, there 
was an increase of 8.95% in e-contracts 
accomplishment and a decrease of 31.32% in 
average response time (Talon et al., 2014). When 
monitoring only the availability, there was an 
increase of 18.98% in e-contracts accomplishment. 
Moreover, in the architecture with two light-weight 
monitors, there was an increase of 40.41% in e-
contracts accomplishment and a decrease of 42.64% 
in average response time (Talon and Madeira, 
2015a). A comparison between light-weight and 
heavy-weight monitoring was done too. A better 
performance with the heavy-weight monitoring was 
observed (Talon and Madeira, 2015b). 

4.3 Comparing Scheduling 
Mechanisms 

Various scheduling mechanisms were used to 
compare the performance of the proposed fuzzy 
mechanism. The fuzzy scheduling mechanism was 
compared with queue, random, shorter duedate, 
shorter response time, and shorter processing time 
scheduling mechanisms. Details about the 
mechanisms are described in section 3. 

These results can be seen in Tables 2, 3, 4, 5, and 
6. In all tables, the first line shows the results of the 
e-contracts accomplishment according to the 
availability. The second line shows the results of the 
e-contracts accomplishment according to the 
consumer's side response time. The third line shows 
the results of the e-contracts accomplishment 
according to the provider’s side response time. The 
penultimate line shows the average response time 
according to consumer's side. The last line shows the 
average response time according to provider's side. 

Table 2 shows the comparison between the fuzzy 
scheduling and the traditional queue scheduling 
(first in first out). 

Table 2: Fuzzy and Queue comparison. 

 
 

Table 3 exhibits the comparison between the 
fuzzy scheduling and a random scheduling. For each 
request a random number is assigned and the 
provider responds according to the order of the 
numbers. 

Table 3: Fuzzy and Random comparison. 

 

Table 4 shows the comparison between the fuzzy 
scheduling and the shorter duedate to reach the limit 
in the e-contract, meaning that the request with the 
closest time to violation will be responded first by 
the provider. 

Table 4: Fuzzy and Shorter Duedate comparison. 

 

Table 5 represents the comparison between the 
fuzzy scheduling and the shorter response time 
scheduling. 

Table 5: Fuzzy and Shorter Response Time comparison. 

 

Table 6 shows the comparison between the fuzzy 
scheduling and the shorter processing time 
scheduling. 

In all the comparisons, the fuzzy system is better 
than others scheduling. Though, the results of the 

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

534



shorter duedate, shorter response time, and shorter 
process time schedules were close to the results of 
the fuzzy scheduling. This outcome was expected 
because the fuzzy system uses the same reasoning as 
their fuzzy variables. 

Table 6: Fuzzy and Shorter Processing Time comparison. 

 
 

Even though the results are close, especially 
between the fuzzy scheduling and the shorter 
processing time scheduling, the proposed approach 
displayed better load balancing in the providers. 
When using fuzzy scheduling, all e-contracts were 
treated similarly, with little variation amongst them. 
With others scheduling, some e-contracts were 
accomplished at 100% of the time, while other e-
contracts had high rates of violation. Table 7 shows 
the variation between the highest and lowest values. 
The columns related to “e-contract accomplishment” 
represent the number of contracts that were 
accomplished compared to the total number of 
executed contracts (accomplished contracts plus 
violated contracts) and the columns related to 
“average response time” represent the response time 
in seconds. 

Table 7: Variation – Best and Worst Results. 

 
 
Table 7 shows that the highest variation of e-

contract accomplishment using fuzzy scheduling 
was 8.43%. The scheduling with the lowest variation 
of e-contract accomplishment was the shorter 
duedate with 14.2%, which represents an increase of 
68.44% in the variation. The highest variation of 
average response time using fuzzy scheduling was 
0.155 seconds. The scheduling with the lowest 
average variation of response time was the queue 
with 0.45 seconds, which a consequent increase of 
190.32% in the variation. 

5 RELATED WORKS 

Related works that deal with one or more topics 
relevant to our research are presented in this section. 

With respect to monitoring, it is possible to list a 
few works. A soft-intrusive monitoring can be found 
in (Michlmayr et al., 2009), while an asynchronous 
monitoring can be found in (Wetzstein et al., 2009). 
The monitor proposed in this paper has three distinct 
aspects combined: soft-intrusive, asynchronous, and 
light-weight/heavy-weight monitoring. The current 
monitor can handle both the light-weight and the 
heavy-weight monitoring. One difference between 
the researches with asynchronous monitoring and 
ours is that others discovered a failure after process 
execution while ours attempted to predict it during 
process execution (in parallel). 

Some authors use one or more autonomic 
properties in their work. The self-configuration 
property can be found in (Mannava and Ramesh, 
2012), the self-optimization property can be found in 
(Gounaris et al., 2008), and the self-healing property 
can be found in (Angarita et al., 2016). In (Alférez et 
al., 2014) a self-adaptive system is presented. The 
architecture proposed in this paper has three 
autonomic properties combined: self-configuration, 
self-optimization, and self-healing. 

Other authors have used fuzzy theory in web 
service environments: (Shafiq et al., 2014) and 
(Chouiref et al., 2016). However, none use fuzzy 
theory to optimize the e-contracts accomplishments 
in web services. The vast majority of works are 
related to the discovery or selection of services. 

The work of (Pernici and Siadat, 2011) is similar 
to ours in terms of environment phases (formation, 
execution, monitoring, and adaptation) and fuzzy 
base rules. However, their architecture defines 
actions to replace or negotiate services and ours 
defines actions to improve current services. 

6 CONCLUSIONS 

The main goal of this work was to propose a fuzzy 
scheduling mechanism to predict possible e-contract 
violations based on services historical data. With the 
prediction, this work tries to increase e-contract 
accomplishment (consequently decrease e-contract 
violation) using the fuzzy theory. 

The proposed architecture can be classified as 
self-adaptive because it shows three self-* 
properties: (i) Self-Configuration Property: Based on 
a fuzzy system, the analyzer module changes 

A Fuzzy Scheduling Mechanism for a Self-Adaptive Web Services Architecture

535



services priority. The provider processes services 
with high e-contract violation possibility first; (ii) 
Self-Optimization Property: The optimizer module 
uses all analysis made from historical data to take 
pro-active actions in order to decrease the average 
response time of services and to increase the average 
services availability; and, (iii) Self-Healing 
Property: As soon as the monitor detects an e-
contract violation, the recovery module is 
responsible for fixing the violation. 

Comparing the fuzzy scheduling mechanism 
with other scheduling mechanisms, an improvement 
of 31.52% is observed in the e-contracts 
accomplishment and a decrease of 35.59% in 
average response time. Furthermore, using the fuzzy 
scheduling mechanism, the overload of the provider 
was better balanced varying at most 8.43%, while 
for the other scheduling mechanisms the variation 
reached 41.15%. In all comparisons, when the fuzzy 
system determines the order of the services, the 
results are better than other scheduling mechanisms. 

In further work, experiments will be run with 
more services in each providers, to test the impact of 
the fuzzy system. Tests will also be performed to 
compare the proposed approach with other methods 
(statistical regression, machine learning, neural 
networks, etc.). In addition, the use of genetic 
algorithms to optimize the mechanism will be 
investigated. 

ACKNOWLEDGEMENTS 

We would like to thank FAPESP and CNPq for the 
financial support. 

REFERENCES 

Alférez, G. H., Pelechano, V., Mazo, R., Salinesi, C., 
Diaz, D., 2014. Dynamic adaptation of service 
compositions with variability models. Journal of 
Systems and Software. Volume 91, Pages 24-47, ISSN 
0164-1212, May. 

Angarita, R., Rukoz, M., Cardinale, Y., 2016. Modeling 
dynamic recovery strategy for composite web services 
execution. World Wide Web 19, 1 (January 2016), 89-
109. 

Chouiref, Z., Belkhir, A., Benouaret, K., Hadjali, A., 
2016. A fuzzy framework for efficient user-centric 
Web service selection. Appl. Soft Comput. 41, C (April 
2016), 51-65. 

Fantinato, M., Gimenes, I. M. S., Toledo, M. B. F., 2010. 
Product Line in the Business Process Management 
Domain. In: Kyo C. Kang, Vijayan Sugumaran, 
Sooyong Park. (Org.), Applied Software Product Line 

Engineering, 1st ed. Boca Raton, FL: Auerbach 
Publications, pp. 497-530. 

Gounaris, A., Yfoulis, C., Sakellariou, R., Dikaiakos, M. 
D., 2008. A control theoretical approach to self-
optimizing block transfer in Web service grids. ACM 
Trans. Auton. Adapt. Syst. 3, 2, Article 6 (May 2008), 
30 pages. 

Huebscher, M. C., McCann, J. A., 2008. A survey of 
autonomic computing—degrees, models, and 
applications. ACM Comput. Surv. 40, 3, Article 7 
(August 2008), 28 pages. 

Mannava, V., Ramesh, T., 2012. Multimodal pattern-
oriented software architecture for self-configuration 
and self-healing in autonomic computing systems. In 
Proceedings of the Second International Conference 
on Computational Science, Engineering and 
Information Technology (CCSEIT '12). ACM, New 
York, NY, USA, 382-389. 

Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S., 
2009. Comprehensive QoS monitoring of Web 
services and event-based SLA violation detection. In 
Proceedings of the 4th International Workshop on 
Middleware for Service Oriented Computing 
(MWSOC '09). ACM, New York, NY, USA, 1-6. 

Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F., 
2008. Service-Oriented Computing: A Research 
Roadmap. International Journal of Cooperative 
Information Systems, Vol 17 No. 2, 233-255. 

Pernici, B., Siadat, S. H., 2011. Selection of Service 
Adaptation Strategies Based on Fuzzy Logic. In 
Proceedings of the 2011 IEEE World Congress on 
Services (SERVICES '11). IEEE Computer Society, 
Washington, DC, USA, 99-106. 

Shafiq, O., Alhajj, R., Rokne, J., 2014. Log based business 
process engineering using fuzzy web service 
discovery. Knowledge-Based Systems. Volume 60, 
Pages 1-9, ISSN 0950-7051, April. 

Talon, A. F., Madeira, E. R. M., Toledo, M. B. F., 2014. 
Self-Adaptive Fuzzy Architecture to Predict and 
Decrease e-Contract Violations. Intelligent Systems 
(BRACIS), 2014 Brazilian Conference on, Sao Paulo, 
pp. 294-299. 

Talon, A. F., Madeira, E. R. M., 2015a. Improvement of 
E-Contracts Accomplishments by Self-Adaptive 
Fuzzy Architecture. Services Computing (SCC), 2015 
IEEE International Conference on, New York, NY, pp. 
507-514. 

Talon, A. F., Madeira, E. R. M., 2015b. Comparison 
between Light-Weight and Heavy-Weight Monitoring 
in a Web Services Fuzzy Architecture. In Procedia 
Computer Science, Vol. 64, pp. 862-869. 

Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., 
Dustdar, S., Leymann, F., 2009. Monitoring and 
Analyzing Influential Factors of Business Process 
Performance. In Proceedings of the 2009 IEEE 
International Enterprise Distributed Object 
Computing Conference (edoc 2009) (EDOC '09). 
IEEE Computer Society, Washington, DC, USA, 141-
150, 2009. 

Yager, R. R., Filev, D. P., 1994. “Essentials of Fuzzy 
Modeling and Control”. Wiley-Interscience, New 
York, NY, USA. 

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

536


