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Abstract: Automated vehicles are becoming gradually available in restricted environments and are planned to be 
available for more challenging situations in the near future. Fully automated vehicles (FAVs) will have no 
drivers and still need to cooperate and interact with other road users outside the vehicle. In this work we 
propose an interaction framework, which makes it possible for external users to interfere with the FAV 
guidance in an abstract level via communicating a desired maneuver. The external user can be assumed as a 
road participant, who shares drivable areas with the FAV, or an operating person such as delivery person, who 
wants to guide a delivery vehicle remotely. The application area of this framework is the low velocity range, 
which can be also assumed as semi-stationary environments. The proposed framework explores the percepted 
static environment and identifies all possible paths with respect to vehicle dynamics, safety and comfort 
parameters. These paths are processed in order to build a set of meaningful candidates for the further steps. 
For this goal we have proposed two different methods based on a modified RRT algorithm and a 
skeletonization of the freespace. In order to extract possible drivable maneuvers out of the current scene, the 
candidate paths are assigned to predefined maneuver classes and selected with respect to their length and 
reasonableness. The set of meaningful and drivable maneuvers will be communicated to the user in form of 
an abstract and simplified catalogue. With this framework we provide both the FAV and the external user 
with a mutual understanding about the scene and avoid the possible ambiguity in goal understanding. The 
proposed framework is validated with sensor data from real scenarios. 

1 INTRODUCTION 

In past decades the intelligence of automated vehicles 
has increased evolutionary, so that fully automated 
vehicles (FAV) are gradually available for defined 
roadways in restricted environments (CityMobile2, 
2016; WePods Project, 2016; Navya Shuttle, 2016). 
With FAVs, we are addressing the highest automation 
level, in which there is no need for the presence of a 
human driver for monitoring the driving environment 
or to interfere as a fallback layer, as it is defined in 
the SAE-Level 5 (SAE international, 2014). Since the 
driving task is a social behaviour, even in the absence 
of a driver there is still a need to understand the 
intention of other road participants and interact with 
them. This interaction has two communication ways: 
not only the FAV has 
 

 
Figure 1: Examples of use-cases for interaction framework 
with external users. a) Road user approaching the 
automated vehicle in a narrow street and wishes to 
communicate the backward maneuver. b) Operator wants to 
assign a new position to the vehicle and ask the vehicle to 
turn back. 
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Figure 2: Maneuver extraction and mapping with the user commands. 

to understand the intention of the road participant 
based on its observation, but also the target person 
should be able to communicate his goals and 
intentions to the FAV explicitly. The interaction and 
cooperative vehicle guidance based on the  
observation and implicit intention estimation of the 
other road users has been the focus of many research 
activities recently (Ulbrich et al., 2015; Bahram et al., 
2016; Liu et al., 2015). In contrary, the direct and 
explicit cooperation of the external road participant 
with the FAV is usually overlooked, which is the 
focus of this work. This type of interaction usually 
happens in low speed scenarios.  

The importance of this communication can be 
identified in dead lock situations, which can be 
caused due to the faulty perception or not general 
validity in decision making of the FAV.  In such a 
situation the road participant cannot communicate a 
possible solution to FAV, due to the absence of visual 
interaction channels such as eye contacts and gesture 
(Figure 1-a). Another example can be identified in use 
cases of cooperative task execution, in which the 
FAV should cooperate with an external operating 
person, who is involved in a secondary task rather 
than driving (e.g deliver person who cooperates with 
fully automated delivery vehicle). In this case, the 
operating person needs to communicate with the FAV 
and interfere in vehicle guidance remotely (Figure 1-
b). 
In this work we introduce an interaction framework 
for the FAV and an external user (i.e. an operating 
person or a road participant) at low velocities in urban 
situations. This framework enables both the external 
user and the FAV to have a mutual understanding 
about the driving environment and inform the user 
about the feasible action set through a formalized and 
regulated communication. The user can interfere in 
vehicle guidance at high-level without being 
informed about the details of its driving environment. 

This paper is structured as follows: After discussing 
related works in chapter 2, an overview of the 
presented approach is given in chapter 3. The 
implementation is given in chapter 4 and results are 
illustrated in chapter 5. Conclusions follow in the last 
chapter. 

2 RELATED WORKS 

In field of robotics, the Human-Robot-Interaction 
(HRI) has been widely studied. The HRI allows a 
natural and effective interaction between human users 
and robots using technologies such as speech and 
gesture recognition. HRI has a wide range of 
application in fields such as education, home and 
rehabilitation for tele-operated and unmanned robots 
(Tsai et al., 2009). In the context of driving, the 
interaction between the driver and the automated 
vehicle has been investigated in many research 
activities recently. The H-Mode (Flemisch et al., 
2003; Kienle et al., 2009) and Conduct-By-Wire 
(CbW) (Hakuli et al., 2010) are examples of such an 
interaction. Both concepts address semi-autonomous 
driving for urban and highway scenarios (i.e. 
Automation Level 3 (SAE international, 2014)), in 
which the driver is continuously involved with the 
vehicle guidance via an active interface. Both 
concepts are based on a maneuver-based approach, 
which makes the guidance of the vehicle available by 
means of maneuver commands instead of 
conventional control elements such as steering, gas 
and brake. Geyer has added a Gate-Concept to the 
CbW-Framework which segments the vehicle 
guidance task by identification of decision points 
during the execution (Geyer, 2015). Lotz has 
introduced a similar maneuver-based concept, which 
delegates specific driving maneuvers like lane 
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changes or turns at intersections also on vehicle 
guidance level (Lotz and Winner, 2014). In these 
concepts, the vehicle should drive along a fixed 
navigation route, and lane changes and turn 
maneuvers are the focus of the research. Contrary to 
the interaction concepts for the driver and automated 
vehicles, there are only few examples available for an 
explicit interaction between the automated vehicles 
and external user. The FAV of the Google Car project 
can check the presence cyclist and understand its 
hand signal (Kretzschmar and Zhu, 2015). In the tele-
operated driving project from Technical University of 
Munich, the subject vehicle can assist the operator 
with communicating and executing the feasible paths, 
which are extracted from the current scenes. The 
operator can select between the available paths and 
cooperate in vehicle guidance which also helps him 
to overcome the communication delay (Hosseini et 
al., 2014). 

3 OVERVIEW OF THE 
APPRAOCH 

3.1 Problem Statement 

The main idea of this work is to open an interaction 
interface for the external user and make him possible 
to interfere in the vehicle guidance explicitly and in a 
discrete form from the limited distance. The 
framework should not stress the user with the 
workload and must be generally applicable also in 
unknown traffic situations, also in absence of the 
digital map.  
 

There are two main use cases conceivable for this 
framework. The first use case addresses conflict and 
deadlock scenarios, in which the one road participant, 
who shares the same driving area with FAV, wants to 
interact explicitly in order to solve the situation. The 
second use case refers to an external user near the 
subject vehicle, who wants to navigate the vehicle to 
the next desired point. Examples of this use case are 
an operating person who wants to coordinate the 
vehicles in the depot, or the delivery person who 
wants to navigate the delivery vehicle to the next 
delivery point, or the vehicle owner who wants to 
guide the vehicle to the desired parking spot. These 
use cases take place in the low velocity fields; 
therefore, we assume it as semi-stationary. 

The major challenge of this framework is to 
provide both the user and the FAV with a mutual 
understanding about the shared drivable area and 

possible actions. Since the user might have a 
restricted sight to the FAV, he might not be able to 
interpret the situation correctly as the FAV does. 
Furthermore, the FAV might not be able to map the 
desired user command to the available action due to 
the ambiguity in command understanding. Therefore, 
it is necessary to provide the user with a standard list 
of executable commands, which are extracted out of 
the current scene understanding of the FAV. Each 
command can be described as a simplification of a 
chain of actions, which can be clustered into a 
comprehensible single command for the user. The 
user commands (in form of the gesture or signal in 
case of use of smart devices) should be standardized 
and mapped directly to standard actions, which 
vanishes the ambiguity in communication. The 
detection of the user feedback (gesture or a signal) is 
not the focus of this work.  

 
Figure 3: Functional architecture of the interaction 
framework with the external user. 

3.2 Functional Architecture of the 
Concept 

Inspired by (Geyer, 2013), we will also use a 
maneuver-based approach for the cooperative vehicle 
guidance for an interaction with the external user. The 
framework provides the user with the set of standard 
maneuvers, which are extracted from the current 
scene. For each of this standard maneuver, there 
could be an associated user command in form of a 
gesture or considered signal. The creation of a 
maneuver catalogue can be split into four main steps, 
as illustrated in Figure 3.  The first step is to detect 
the drivable area and the static obstacles. Since we 
only incorporate with dynamic obstacles during the 
maneuver execution in later steps, we filter them 
explicitly from the detected navigable spaces. The 
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output of this step is the static representation of the 
environment in form of an occupancy grid, which is 
used in the second step for the path exploring. Since 
the FAV is not informed about the desired goal of the 
external user yet, it has no target pose for calculating 
the maneuver respectively. Therefore, it calculates 
multiple possible drivable paths, which can be 
pursued in the detected drivable area. As a result, the 
number of paths has to be reduced to a smaller set of 
meaningful paths, from which the final maneuvers are 
selected that will be communicated to the external 
user. In order to perform this reduction, paths leading 
to the same destination will be clustered together. 
Short paths, which cannot be assigned to a specific 
standard maneuver in the current scene will not be 
considered further. Subsequently, the remaining 
paths will be mapped to the predefined set of 
maneuvers by geometrical considerations.  

The total functional architecture of the interaction 
framework is illustrated in Figure 3. The user will be 
provided with a set of standard maneuvers extracted 
from the current scene based on the bottom-up 
approach. After the user communicates his desired 
command, the FAV has to analyse the situation 
including the dynamic obstacles. The future 
behaviour of the other road participants with respect 
to the actual context has to be estimated. Furthermore, 
the collision risk for the desired maneuver has to be 
evaluated. Based on this information, the FAV can 
recalculate the maneuver and split it into more ones 
for a feasible execution. The output will be forwarded 
to the trajectory planning module for the fine 
planning.  

4 BUILDING THE MANEUVER 
CATALOG 

The following subchapters deal with the construction 
of the maneuver catalogue (cp. Fig. 3). It is required, 
that this catalogue provides maneuvers, that are 
drivable on one hand – concerning vehicle dynamics 
and collisions with the static environment – and 
meaningful on the other hand. In this context, 
‘meaningful’ relates to a path that a human driver 
would have chosen concerning the topology of the 
drivable area. For example, a path should not end 
directly in front of a wall or be curvier than necessary. 
It is inherent to the idea of proposing drivable 
maneuvers, that a set of candidate paths must be 
determined before a specific target position is given 
(cp. ‘Path Exploring’ in Fig. 2). This is contrary to the 
common path planning task, which aims at following 
a given route.  

In order to generate a set of maneuver proposals, 
we compute a set of candidate paths without given 
goal positions. Once this set of candidate paths has 
been determined, a subset is chosen by comparison 
with a predefined maneuver set. In order to generate 
the candidate set, we have investigated several 
approaches that can be assigned to two categories, 
which differ in the way of handling the absence of a-
priori known goal positions. The first category aims 
at generating a large number of paths leading into the 
freespace and subsequently selects some of these 
paths. Each selected path implies a goal position 
through its endpoint. The second category aims at 
determining meaningful goal positions by an analysis 
of the environment first, and subsequently applies a 
classical path search algorithm in order to find a path 
leading to each goal position that has been 
determined. Once a proposed maneuver is chosen by 
the external user, the respective path serves as an 
initial solution for calculating the actual trajectory in 
detail (e.g. by numerical optimization), that is passed 
to the control level of the FAV.  

In the following subchapters, we present two 
approaches to generate candidate paths, one from 
each category. In addition to that, the representation 
of the static environment as prerequisite of this 
framework and the final construction of the maneuver 
catalogue will be addressed in the following. 

4.1 Static Environment Model 

The static environment is represented as a 2D 
occupancy grid, composed of quadratic grid-cells ݉௜. 
Each cell is updated according to new sensor data by 
individual Bayes Filter updates as described in (Thurn 
et al., 2006) 

݈௞,௜ ൌ ݈௞ିଵ,௜ ൅ log
,ሺ݉௜|z௞݌ ௞ሻݔ

1 െ ,௞ݖ|ሺ݉௜݌ ௞ሻݔ

െ log
ሺ݉௜ሻ݌

1 െ ሺ݉௜ሻ݌
 

(1)

 with 
 

݈௞,௜ ൌ log
,ଵ:௞ݖ|ሺ݉௜݌ ଵ:௞ሻݔ

1 െ ,ଵ:௞ݖ|ሺ݉௜݌ ଵ:௞ሻݔ
 (2)

where ݈௞,௜ is the log odds representation of the 
occupancy probability at timestep k. ݖ௞ denotes the 
range measurements and ݔ௞ denotes the FAV’s 
position, which is assumed to be known by 
measurements. In order to filter spurious elements 
from the occupancy map, that might be caused by 
measurements associated to moving objects if the 
FAV is not equipped with a radar sensor, we follow 
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the method proposed in (Schreier et al., 2016). In each 
iteration, ‘newly-free’ and ‘newly-occupied’ grid 
cells can be determined by threshholding the change 
in the log odds w.r.t to the previous time-step. By 
making geometrical considerations, these cells can be 
merged and enclosed by a rectangular bounding box, 
which is treated as a potential dynamic object. This 
hypothesis is further investigated by filtering the 
observations over time with help of an Interacting-
Multiple-Model in combination with a Probabilistic 
Data Association Filter (see (Schreier et al., 2016) for 
details). From this procedure, a probabilistic 
evaluation for the validity of the dynamic object 
hypothesis can be obtained, such that sensor evidence 
for grid-cells classified as dynamic can be deleted 
from the occupancy map. The planning space for 
determining the maneuver catalogue is set as a 
quadratic region with sides up to 100 meters, having 
the FAV in the center. The size of a grid-cell is 0.2 m. 
Given the occupancy map ࢓, a binary representation 
ෝ࢓  can be constructed by threshholding the log odds. 
Further, a distance grid ࢊ can be obtained by an 
Euclidean distance transform 

ܦܧ ෝܶ࢓ ሺ݌ሻ ൌ min
୯∈ܕෝ,			࢓ෝ ሺ௤ሻୀଵ

݌‖	 െ   ,ଶ‖ݍ

 
ሻ݌ሺࢊ ൌ EDT௠ෝ ሺ݌ሻ 

 

(3)

by applying a linear-time algorithm introduced in 
(Felzenszwalb and Huttenlocher, 2012). Given the 
distance grid ࢊ, we can obtain an artificial potential 
field ࢇ as the logarithmic inverse distance transform 

ሻ݌ሺࢇ ൌ 	 log ቀ
ଵ

ሺ௣ሻࢊ
ቁ . (4)

All grids m, d and a are only given as sampled 
functions, respectively as two-dimensional arrays at 
discrete grid-points ݌ ∈  .࢓

4.2 Path Explorng By Modified RRT 

The original RRT algorithm introduced in (Lavalle, 
1999) as well as its extension to RRT*, further treated 
in (Karaman and Frazzoli, 2011), is a randomized 
search that iteratively extends a search tree, where 
each node in the search tree corresponds to a vehicle 
state in the planning space. Respectively, a path from 
the root to a leaf node corresponds to a possible path 
for the FAV to drive. It is typical for randomized path 
search algorithms, that the quality of the solution path 
(e.g. the shortest path leading to a given goal position) 
grows with the number of iterations, due to a deeper 
exploration  of the  search space.  A  large  variety of  

 

Figure 4: Illustration of the keysteps of the RRT algorithm. 

extensions and modifications have been developed 
since the original RRT algorithm has been proposed, 
which typically aim at increasing the quality of the 
solution path with respect to the runtime, often by 
goal-biased sampling techniques. Nevertheless, the 
RRT algorithm does not explicitly require a goal 
position to operate, which makes it particularly 
suitable for our use case. Therefore, we design our 
RRT algorithm in order to produce a large number of 
high quality paths quickly, rather than aiming for a 
single high quality solution path.  
 

Figure 4 illustrates the keysteps of one iteration of 
the basic RRT algorithm. The SAMPLING function 
randomly generates a new sample node in the 
planning space. The NEAREST function determines a 
node in the search tree, to which a new path will be 
appended that leads towards the sample node. This 
new path is determined by the EXTEND function. In 
the following we address the modifications for these 
keysteps that we have implemented in order to 
generate candidate paths. 
The SAMPLING is performed in a polar region 
around the FAV as depicted in Figure 5 with ݎ௠௜௡ = 
45 m and ݎ௠௔௫ = 50 m.  

 

Figure 5: Illustration of the sampling pattern for each search 
tree (right) and an exemplary turnaround maneuver, serving 
as bridge between initial positions of the separate search 
trees. 
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Two different search trees are built independently 
for both sampling regions front and back, depicted in 
green and red. Let the real vehicle pose	ሺݔ, ,ݕ  ሻ atߠ
calculation time correspond to the green scenario. 
The calculation for the red sampling region is 
performed in parallel on a second thread with the 
artificial initial pose ሺݔ, ,ݕ ߠ ൅  ሻ. The correspondingߨ
turnaround maneuver, illustrated in Figure 5, can be 
computed afterwards or simultaneously on a third 
thread by an A*-Search on a lattice, as briefly 
addressed in subchapter 4.4. In addition to the parallel 
computation of the two different trees, referred to as 
“OR-Parallelization” (Carpin and Pagello, 2002), 
more parallel workers can contribute to the 
calculation of each separate tree, referred to as 
“AND-Parallelization”. If the turnaround maneuver is 
not possible, e.g. due to a limited free-space, paths of 
the red tree can be used to propose reverse-drive 
maneuvers. Otherwise, they can be used for both 
reverse-drive and turnaround follow-ups, as will be 
addressed further in subchapter 4.4.  
 

For EXTEND, we use forward simulations of a 
dynamic single track model ࢞ሶ ൌ ݂ሺ࢞,  ሻ with stateߜ
vector ࢞ ൌ 	 ሾߚ	 ሶ߮  ,ߚ ሿ denoting slip angleݕ	ݔ	߮	
heading rate ሶ߮ , heading angle ߮ and position 
coordinates x, y. The input variable ߜ refers to the 
steering angle. In order to append new paths to the 
search tree, simulations are performed for a fixed 
number of time-steps with predefined steering angle 
increments ∆ߜ௟ ൌ ܿ௟ ∈ Թ, ݈ ൌ 1,… ,݉ keeping l 
fixed for each extension. A simulation is aborted if 
either a ߝ-neighbourhood of the sample node has been 
reached or a collision has occurred: 

 EXTEND(ݔ଴, ,଴ߜ ,௦ݔ  ௦ሻݕ
1 for l = 1:m 
଴,௟࢞     2 ൌ  ૙࢞
଴,௟ߜ     3 ൌ  ଴ߜ
4     for k = 1:n
௞,௟ߜ        5 ൌ ௞ିଵ,௟ߜ ൅   ௟ߜ∆

࢒,࢑࢞        6 ← ݂൫࢞௞ିଵ,௟,   ௞,௟൯ߜ

7        if(collision(࢞௞,௟ሻሻ {  

௞,௟ܥ            8 ൌ inf  

9            break 
10        } else {  

௞,௟ܥ            11 ← ,݈,݇࢞൫݅ܬ ,ݏݔ ,ݏݕ ݇൯  

12        }      
13     if(reach(࢞௞,௟, ,௦ݔ ,௦ݕ  ;ሻሻ breakߝ
14     end for  
15 end for  

16 ݅	 ←	min൫C௞,௟൯  
17 addpath(࢞૚:࢏,࢑,   ௞,௟ሻߜ

From the predefined steering increments, the best 
one is determined according to the cost 
,࢑࢞௜ሺܬ ,௦ݔ ,௦ݕ ݇ሻ, evaluating the simulated vehicle 
states ࢞௞ at integration step k and the position 
coordinates of the sample node ሺݔ௦,  ௦ሻݕ

,࢑࢞௜ሺܬ ,௦ݔ ,௦ݕ ݇ሻ ൌ eሺ࢑࢞, ,௦ݔ ௦ሻݕ ൅ α
∙ ሻۂ࢑࢞ہሺࢇ ൅ ߚ ∙  ௜ሺ݇ሻߪ

(5)

with squared Euclidean distance 

eሺ࢑࢞, ,௦ݔ ௦ሻݕ ൌ ሺݔ௞ െ ௦ሻଶݔ ൅ ሺݕ௞ െ ௦ሻଶ, (6)ݕ

the value of the artificial potential field ࢇ (cp. eq. 4) 
evaluated for the grid point determined by rounding 
the position to the nearest integer coordinates  

ሻۂ࢑࢞ہሺࢇ ൌ ܽ௜ , ݅ ← ሺݔہ௞ۂ, ሻ, (7)ۂ௞ݕہ

and the cumulated absolute steering effort 

௜ሺ݇ሻߪ ൌ ݇ ∙ ௜|. (8)ߜ∆|

,ߙ ߚ ∈ Թ are weighting parameters. For the 
NEAREST function, we use the j-th predecessor of the 
nearest leaf node of the tree, where ‘nearest’ is 
determined by the Euclidean distance metric with 
respect to the (x,y,ߪ)-space, where ߪ denotes the 
cumulated absolute steering effort measured from the 
root to the respective leaf node. ݆ ∈ Գ is a parameter 
of choice, e.g. j = 2. 

In order to prepare a smaller set of candidate paths 
for the further generation of the maneuver catalogue, 
endpoints of computed paths are clustered by 
applying a k-means clustering algorithm as proposed 
in (Hosseini et al., 2014). From each cluster, only one 
path is kept, that is the one with the smallest ߪ. 

4.3 Path Exploring by Skeletonization 

This subchapter deals with an alternative method to 
the previously proposed Path Exploring with help of 
the modified RRT algorithm. The need for an 
alternative method arises from the missing property 
of probabilistic completeness with respect to feasible 
goal states in the sampling region, resulting in the 
possibility that the modified RRT will miss possible 
paths even for long runtimes. The basic idea of the 
approach in this subchapter is to choose reasonable 
goal positions from junctions in the skeleton 
representation of the free-space, and to subsequently 
search for a path leading to this goal region. 
Skeletonization is a widely applied technique in 
image processing, leaving a ‘thin version’ of the 
shape contained in the original image while 
representing certain geometric and topologic 
properties. A great number of efficient algorithms 
have been developed for this purpose, just one famous 
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representative can be found in (Zhang and Suen, 
1984). In order to calculate the skeleton, the 
occupancy grid is converted into a binary image by 
threshholding, where unknown areas are considered 
as free-space. From the resulting skeleton, pixel 
coordinates of junctions can be obtained by applying 
an image based edge detection. In order to select 
distinct goal regions for a subsequent path search, we 
use a DBSCAN-clustering to ‘merge’ detected 
corners that lie very close to each other by replacing 
them with the respective cluster midpoint. A cluster 
midpoint is accepted as a goal position, if the 
associated value in the potential field (cp. eq. 4) 
undergoes a threshold and is sufficiently far away 
from the FAV’s position.  
 

Once the goal positions have been determined, a 
traditional path search is applied to find a path from 
the FAV’s current position to the goal positions. As 
the search must be performed for multiple target 
positions, the most important property of the path 
search algorithm that is chosen is the computational 
runtime. The quality of the obtained path is of minor 
interest, as it will not be executed by the FAV but only 
serves as proposal. A fast but sufficiently accurate 
method can be obtained by running a standard A* 
graph search on an individually constructed lattice, 
where the complexity of the lattice is the result of a 
trade-off between path quality and computation time. 
A graph representation of the lattice can be offline 
constructed   recursively   by   solving    a   two-point  

 

Figure 6: Illustration of a solved boundary value problem 
connecting ݊଴ to ݊ଷ (top). The bottom depicts a 2D 
projection of a recursively constructed state lattice. 

boundary value problem calculating a path from a 
starting node ݊ ଴ ൌ ሺݔ଴, ,଴ݕ  ଴ሻ to several target nodesߠ
݊௜ (cp. Figure 6) as addressed in (Pivtoraiko et al., 
2009). For each solution, the target node and the 
respective path will be added to a graph as new 
vertices and corresponding edges. Subsequently, the 
procedure is recursively called setting the target 
nodes of each solution as ݊଴ in the recursive calls. In 
order to solve the two-point boundary value 
problems, we use clothoid segments calculated by the 
fitting method proposed in (Bertolazzi and Frego, 
2012), ruling out solutions that violate maximum 
length and curvature constraints. 

Figure 6 depicts a two dimensional projection of 
an exemplary lattice, such that nodes are only 
represented by their position coordinates. The number 
of target nodes ݊௜ as well as the recursion depth are 
parameters in the graph construction, that can be 
easily adjusted to emphasize a faster runtime or the 
quality of obtained paths respectively. For computing 
the turnaround maneuver (cp. Figure 5), reverse edges 
must be considered in the graph construction. 

 

Figure 7: Illustration of the considered maneuvers and 
associated polar regions. ߮ denotes the FAV’s orientation 
and ߠ denotes the endpoint-orientation of a computed 
candidate path relative to the FAV.  

4.4 Maneuver Extraction 

The output of the Path Exploring is a set of candidate 
paths. The goal of the Maneuver Extraction is to 
compare this set of candidate paths to a predefined 
maneuver set in order to determine, which of the 
predefined maneuvers can be executed and therefore 
can be proposed to the external user in the maneuver 
catalogue (cp. Figure 7). 

For making this selection, each predefined 
maneuver is associated to a polar region around the 
FAV,  defined by an interval ሾ߮௠௜௡, ߮௠௔௫ሿ  for  each 

݊ଷ 

݊ଵ 

݊ଶ 
݊଴ 

r
min

 

߮ 

 ߠ
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Figure 8: Stereo Camera View and Pointcloud obtained by a Velodyne HDL-64E Sensor recorded in the Kitti-Dataset (Geiger 
et al., 2013) (left). The right picture depicts the 2D occupancy grid representation of the test scene.  

region, and the minimum radius ݎ௠௜௡ as illustrated in 
Figure 7. Every region additionally has an associated 
interval ሾߠ௠௜௡,  ௠௔௫ሿ addressing a range for validߠ
vehicle orientations. A maneuver is classified as 
executable and therefore contained in the final 
catalogue, if the endpoint of at least one candidate 
path lies inside the respective region and the 
associated vehicle orientation is in the valid range. If 
multiple endpoints of candidate paths are present in 
the same region, the longest path satisfying the above 
conditions is associated to the respective maneuver. 
The turnaround followup maneuvers, labelled in blue 
in Figure 7, are considered as possible, if the 
respective reverse drive maneuvers, labelled in dark 
grey, are feasible and a turnaround maneuver has 
been successfully computed. 

5 RESULTS 

In order to investigate the behavior of the described 
procedure for urban traffic scenarios, we have used 
sensor data offered by the Kitti database (Geiger et 
al., 2013) as inputs for our implementation. Figure 8 
illustrates one scenario, in which the ego vehicle is 
driving along a narrow street, approaching two 
driveways to the left and right. From the ego vehicles 

position in that scene, we expect the algorithm to 
propose maneuvers continuing the straight road 
course, as well as taking the driveways to both sides. 
Further opportunities are given in this scene by the 
reverse direction. Below, results from both presented 
algorithms are depicted, but for a different size of the 
planning area. In case of the modified RRT, the 
quadratic area is sized 100x100 meters. In case of the 
skeletonization approach, the area is limited to 50x50 
meters. The RRT approach offers a much greater 
opportunity for parallelization, which is limited for 
the skeletonization method. Figure 9 depicts the 
candidate trajectories generated by the modified RRT 
(mid), as well as the clustered endpoints (left) and the 
extracted maneuver paths (right). Comparing the 
maneuver paths with the ones obtained by the 
skeletonization method, depicted in Figure 10 (right), 
it can be observed that both algorithms are able to 
propose paths taking the driveways to the left and 
right, but paths differ in shape. Clearly, the effect of 
the cost function eq. (5) of the modified RRT can be 
identified, resulting in maneuver proposals that are 
less curvy compared with the paths generated by the 
lattice A*-search, which is aiming for the shortest 
path to the identified goal positions. This effect is 
even more emphasized in case of the straight forward 
and straight reverse maneuvers. As our framework 
 

 

Figure 9: Green paths are raw paths generated by the modified RRT. The orange paths (mid) are candidate trajectories, 
determined for each cluster, which are depicted right. The red paths (right) are the result of the maneuver extraction and 
correspond to paths in the maneuver catalogue. 
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Figure 10: The middle image depicts the skeleton of the free-space. Crosses denote selected endpoints from clustering detected 
corners, that correspond to a sufficient low cost on the potential field (left). The red paths (right) are the result of the maneuver 
extraction and correspond to paths contained in the maneuver catalogue.  

intends to propose maneuvers on an abstract high-
level, the curvier paths generated by the A*-search do 
not change the proposals contained in the maneuver 
catalogue. The missing proposal of a reverse-drive 
turn in case of the skeletonization method is due to 
the limited planning region, but has been addressed 
by a respective goal region (cp. Figure 10 middle). 
Nevertheless, the difference in paths’ shapes affects 
the execution of a maneuver once it has been selected, 
depending on the algorithms used for the trajectory 
planning and control of the FAV. Further, we aim to 
replace the method for evaluating candidate paths by 
predefined regions and maneuver classes (cp. ch. 4.4) 
by more generic algorithms that evaluate shapes of 
candidate paths directly, rather than focusing on 
endpoints. 

The output of the framework can be illustrated for 
user in an abstract form, for example in a smart device 
as it is sketched in Figure 11. The green maneuvers 
are available and can be executed after selecting by 
user. 

 

Figure 11: An example of user interface for communicating 
the abstract maneuvers in form of a standard catalogue.  

 

6 CONCLUSIONS AND FUTURE 
WORKS 

This paper presents a new interaction framework for 
the cooperation between the external user out of the 
FAVs based on a maneuver based approach. This 
framework provides the external user with an abstract 
and simplified drivable maneuver catalog, which is 
extracted out the current scene perception. The 
extraction leads to the mutual understanding between 
the user and the FAV about the environment and 
avoids ambiguous in goal communication. The user 
can use the catalog in order to interact and navigate 
the vehicle in a discrete way to the desired position. 
In order to create the maneuver catalog, a set of 
trajectories has been taken into account and filtered 
with respect to quality factors. In order to calculate 
the candidate paths, two different approaches have 
been proposed, which are based on modified RRT and 
Skeletonization. 
 

In the future work, the proposed framework will 
be extended with considering the further maneuvers 
such as follow me and parking. Moreover, the 
combination of the maneuver and the communication 
of chain of maneuvers will be taken into account. 
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