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Abstract: Ontology-based classification (OBC) has been used extensively. The classification ontologies (COs) are the 
grounds of the OBC systems. It is an urgent call for a method to guide the development of CO, to get better 
performances for OBC. A method for developing CO named Spirals is proposed, taking the development of 
the ontology for space object classification named OntoStar as an example. First, soft sensing data and hard 
sensing data are collected. Then, various kinds of human knowledge and knowledge obtained by machine 
learning are combined to build a CO. Finally, data-driven evaluation and promotion assesses and promotes 
CO. Classification of space object based on OntoStar show that data-driven evaluation and promotion 
increases the accuracy by 4.1%. Meanwhile, OBC is more robust than baseline classifiers with respect to a 
missing feature in the test data. When classifying space objects with “size” missing in the test data, OBC 
keeps its FP rate, while the baseline classifiers’ FP rates increase between 3.9% and 35.5%; the losing 
accuracy of OBC is 0.2%, while that of baseline classifiers ranges from 1.1% to 69.5%. 

1 INTRODUCTION 

Recently, Ontology-Based Classification (OBC) has 
been paid more and more attentions to. OBC 
accomplishes classifications through deducing on 
knowledge bases like a human expert, owing to the 
ontology’s ability of expressing domain knowledge 
and multi-sensor data in a machine-readable format 
explicitly (Zhang et al., 2013, Belgiu et al., 2014). In 
addition, OBC keeps robustness in the dynamic open 
environments (Kang et al., 2015). For these reasons, 
OBC has been used extensively. In most OBC 
systems, classifications are realized by instance 
classification (Gómez-Romero et al., 2015) named 
classification ontology (CO). COs are ground of 
these systems. They determine the capabilities and 
performances of the OBC systems. Therefore, it is 
an urgent call for a suitable method to guide the 
development of COs, for better performances of the 
OBC systems and efficient development.  

In the last two decades, many methodologies for 
ontology development have been proposed. They 
focus on domain problems mainly and have been 
validated by the developments of specific domain 
ontologies (Suárezfigueroa et al., 2015). Past studies 
indicate that it is better to choose a suitable 

methodology for the ontology development with 
respect to the domain, concerning the efficiency of 
the ontology development and performances of the 
ontology (Haghighi et al., 2013). In terms of CO 
development, previous methods need to be improved 
and supplemented. E.g., capabilities of OBC systems 
are enhanced by embedding the knowledge obtained 
by machine learning (MLK) into ontologies (Belgiu 
et al., 2014, Kassahun et al., 2014, Kang et al., 2015, 
Zhang et al., 2013). On the one hand, the 
performances of OBC systems and efficiency of 
ontology development are improved by integrating 
MLK. On the other hand, the way to embed MLK 
into the ontology needs to be further studied, for a 
better combination of MLK and human knowledge. 
However, current methods of building CO do not 
assess how well MLK and human knowledge are 
combined. In addition, MLK is coded into CO by an 
one-shot behavior. Thus, further improvements of 
CO are not considered. As a result, the performances 
of the OBC systems can hardly be further improved. 
Therefore, it is still necessary to explore better 
constructions for COs. 

To address and solve the problems, a method of 
developing CO named Spirals is proposed, taking 
the development of CO of Space Object (OntoStar) 
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as an example. Contributions of this paper include 
the following aspects. First, a whole workflow of 
developing CO is presented, including the specific 
means of acquiring ontological data, how to use 
background knowledge, contextual knowledge and 
MLK to develop a CO in the first step, and how to 
evaluate CO. Second, unordered machine learning 
classification rules (CRs) are learned and coded with 
Semantic Web Rule Language (SWRL) (Horrocks et 
al., 2004), for comprehensibility and modification of 
the ontology. Last, making full use of data for 
ontology development, data-driven evaluation and 
promotion for CO is proposed to assess how well 
MLK and human knowledge are combined and to 
improve the ontology further.  

2 RELATED WORK 

2.1 Ontology based Classification 

OBC has been applied extensively in the past, such 
as emotion recognition (Zhang et al., 2013), 
classifying adverse drug reactions and epilepsy types 
(Zhichkin et al., 2012, Kassahun et al., 2014), 
classifications in remote sensing (Belgiu et al., 2014, 
Moran et al., 2017), classifying chemicals (Magka, 
2012, Hastings et al., 2012), and etc. 

 

Figure 1: Common architecture of OBC 

In most OBC systems, the categories of an object 
is derived by two steps. In the first step, namely 
ontology development for classification, CO is built 
using domain knowledge and MLK. In the second 
step, namely representing and reasoning, when data 
of the object are imported into CO or some features 
of the object are modified, the step reasoning about 
CO is started, aiming at finding matches to the 
descriptions of the object, and categorizes the object. 
Most OBC systems are under the architecture of 
Figure 1. The development of CO is a precondition 
of realizing an OBC system. Most COs integrate 

MLK. However, the effectiveness and  impacts of 
the integration are not validated. Besides, the one-
shot integration provides no mechanism to improve 
CO further. In addition, MLK is only for direct 
classification, whose type is so few that it can’t be 
used to infer other kinds of information. 

2.2 Ontology Development for OBC 

2.2.1 Ontology Development 

Previous studies for developing domain ontologies 
offer experience and references for developing CO. 
They specify necessary steps ontology construction 
(Casellas, 2011) including acquiring ontological data, 
converting data to ontological elements, ontology 
formalization and checking. Other formed guidelines 
include converting data to ontological elements by 
learning (Maedche, 2002) and reusing ontologies 
(Suárezfigueroa et al., 2015). However, they do not 
provide specific approach to realize the guidelines 
for CO. Some applications of OBC also provide 
practices and experience for the emerging approach. 
E.g., data are pre-processed to extract more features 
after obtained (Zhang et al., 2013, Belgiu et al., 
2014). Decision trees are deployed to convert the 
data to the ontological elements, by generating CRs 
which are used to deduce the more specific type of 
the objects (Moran et al., 2017). Concepts and 
definitions are formalized by OWL and rules. 
Reasoners are used to realize the OBC systems.  

2.2.2 Capturing CO’s Knowledge from Data 

MLK makes COs more complete. In most COs, it is 
learned from structured data for direct classification 
and obtained by two ways. One way is capturing the 
characterizations of concepts by machine learning as 
definitions, e.g., by clustering (Maillot and Thonnat, 
2008) and instantiating the qualitative descriptions 
of concepts in classification (Belgiu et al., 2014). 
Another is learning rules for direct classification, 
e.g., rules extracted from decision trees (Zhang et al., 
2013). It is a trend of expressing MLK with SWRL 
in COs (Belgiu et al., 2014). Knowledge related to 
classifications can be obtained by learning too. It is 
not considered in current OBC systems, including 
relations between concepts and attributes (Fürnkranz 
and Kliegr, 2015, Mansinghka et al., 2015). 

2.2.3 Ontology Evaluation 

Ontology evaluation is calculating the degree of the 
fitness for use, e.g., expressing domain knowledge 
(Brewster et al., 2004). According to the evaluation, 
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how the user’s requirements are satisfied can be 
estimated. Developers also assesses the developing 
ontology for improvement. Methods for ontology 
evaluation emerged in the past can be categorized 
into four types, including the gold standard-based 
evaluation, corpus-based evaluation, the task-based 
evaluation and the criteria-based evaluation (Raad 
and Cruz, 2015). Meanwhile, criteria for ontology 
evaluation are presented (Sánchez et al., 2015). 

Manual work in evaluating shall be as less as 
possible to make the evaluation as objective and 
efficient as possible. However, subjectivity is a 
common major limitation to current evaluations 
(Hloman and Stacey, 2014). Because every 
evaluation can be regarded as a measurement for 
the ontology (Brank et al., 2005), subjectivity can 
be reduced if every process in the ontology 
evaluation can be quantized. On the one hand, it is 
thought to be impossible to compare the ontology 
evaluation to the evaluations in Information 
Retrieval, for precision and recall cannot be easily 
used in ontology evaluation (Brewster et al., 2004). 
On the other hand, task-based ontology evaluation 
and data-driven ontology evaluation are thought to 
be more effective methods of evaluation for the 
ontology containing MLK (Dellschaft and Staab, 
2010). Fortunately, the classification results 
obtained by CO containing MLK can be compared 
to that obtained by the referred ontology (gold 
standard ontology). Thus, the evaluation results can 
be obtained (Raad and Cruz, 2015). With the 
accumulated labelled data, it is possible to evaluate 
the classification by the labelled data, similar to the 
data-driven evaluation of domain ontology 
(Brewster et al., 2004). 

3 SPIRALS: DEVELOPING CO 

The method for developing CO named Spirals will 
be described in this section, taking the Ontology for 
Classification of Space Object (OntoStar) as an 
example. As its name suggests, Spirals is a cyclic 
process which optimizes the knowledge in CO. It  
summarizes and provides ways to acquire data for 
the developing CO, emphasizes the reuse and share 
of existing domain knowledge, addresses the 
integration of MLK, and quantizes the evaluation for 
CO. The data acquisition in Spirals provides data for 
the learning and the evaluation. The evaluation 
verifies and validates the developed ontology, and 
assesses how the different kinds of knowledge are 
running in with each other. The evaluation provides 

cues for the further improvement of the ontology. 
The whole workflow of Spirals is shown in Figure 2. 

 

Figure 2: The workflow of Spirals. 

As shown in Figure 2, there are 9 steps in Spirals as 
follows. 
Step 1, analyzing motivation, scenario and domain 
knowledge, including identifying the scope of the 
domain, identifying the scenario and requirements of 
classification, and identifying the intended users and 
use of the classification. 
Step 2, acquiring ontological data, such as relational 
database of the objects to be classified, documents, 
web pages, domain ontologies and experts. 
Step 3, extracting taxonomy, including extracting 
terminology, identifying concepts and identifying 
properties from documents, experts and web pages. 
Reusing existing domain ontologies and obtaining 
taxonomy from databases by reverse engineering. 
Step 4, analyzing ontological data to obtain 
knowledge for defining concepts in the taxonomy. 
Step 5, obtaining knowledge by machine learning 
for CO. 
Step 6, adding constraints to concepts in the 
taxonomy using MLK. 
Step7, representing concepts with OWL and 
expressing the learned rules by SWRL to obtain the 
formalized CO. 
Step 8, representing test data by CO, performing 
data-driven evaluation for CO with the aid of 
ontology reasoner, including consistency checking, 
non-trivial concept validation and verification. 
Step 9, learning new CRs for the ontology according 
to the evaluation until the performances of OBC 
achieve the expectations. 

To realize the four common and most important 
activities in the abstract methodology for developing 
ontology, namely acquiring data, converting data to 
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ontological elements, formalization and ontology 
checking, Spirals proposes acquiring ontological 
data from multiple sources, learning unordered rules 
for classification and learning rules relative to the 
classification, representing concepts with OWL and 
expressing the learned rules by SWRL, and using 
data-driven evaluation to check CO, respectively. 

3.1 Acquiring Data for Developing CO 

Ontological data are a basis of developing CO. They 
are very important to the learning and evaluation for 
the building ontology. Ontological data sources such 
as databases, corpuses, web pages, expert knowledge 
and domain ontologies, can be used to extract 
domain knowledge and learn knowledge about 
classification for the developing CO. These data are 
from multiple sources, and are obtained by different 
ways. But ultimately, they are either from soft 
sensing or from hard sensing. Web crawling, human 
scouting and analysis are soft sensing. Collecting 
data by physical sensors such as Nuclear Magnetic 
Resonance Spectrometer or Radar is hard sensing. 

The major focus of previous hard sensing for 
classification is capturing data and extracting 
features of the objects themselves. E.g., in 
developing COs in (Zhang et al., 2013, Belgiu et al., 
2014), hard sensing data about the objects 
themselves are collected by physical instruments of 
the specific domain first. Then, features of the 
objects are extracted from the hard sensing data 
such as shape of the buildings. Finally, feature 
selection is applied to reduce the dimension of the 
features for machine learning.  

Some common features which can be extracted 
from hard sensing data are shown in the following. 
(1) features of the time and frequency (e.g., peak 
alpha frequency, power spectral density, center 
frequency, etc.); 
(2) statistical features (e.g. standard deviation, mean 
value, kurtosis, skewness, etc.); 
(3) nonlinear dynamical features (e.g., C0-
Complexity, kolmgolov entropy, Shannon entropy, 
the largest lyapunov exponent, etc.). 
E.g., when a sequence of Radar Cross Section (RCS) 
of a space object is obtained, the statistical features 
such as the mean value or the deviation of the 
sequence can be computed and used to analyze the 
space object. 

Because the information obtained by sensors of 
the same type is very limited, it is a bottleneck to 
increase the accuracy of classification by enhancing 
the precision of physical sensors. Expanding the 
sources of information to provide more features can 

increase the accuracy of classification. Soft sensing 
data can not be ignored for this purpose. Firstly, soft 
sensing data can be used to describe the objects 
more precisely and used in the machine learning. 
Secondly, when the soft sensing information is 
employed in the representing and reasoning of OBC, 
more information about the objects can be inferred. 
E.g., in the BIO-EMOTION ontology (Zhang et al., 
2013), more contextual data such as information 
about the social environment can be collected for 
more accurate emotion recognition. 

3.2 Extracting Knowledge from 
Corpus 

Reusing the analyzed knowledge from corpuses 
helps to construct an initial CO. The knowledge 
includes taxonomy and knowledge related to 
classifications.  

The structure of concepts is expressed by 
taxonomy from specific to general. Knowledge is 
expressed by taxonomy in a more concise format 
and higher abstraction level (Di Beneditto and De 
Barros, 2004), so effective reasoning for OBC is 
facilitated. Taxonomies are mostly built by experts. 
A set of key features or attributes are the basis of 
building taxonomies by experts. The most well-
known taxonomy built by experts is the classical 
Linnaeus biological taxonomy (Godfray, 2007). 
Taxonomy is used express MLK for classification as 
definitions of concepts in (Belgiu et al., 2014), and 
used for hierarchical classification in (Ruttenberg et 
al., 2015). There are expert-built taxonomies 
classifying space objects, e.g., the taxonomies of 
artificial space object (Fruh et al., 2013, Ruttenberg 
et al., 2015) and the taxonomy in the domain 
ontology of space objects (Cox et al., 2016). 

Knowledge related to classification includes the 
knowledge characterizing the objects, contextual 
knowledge and the relations between features. The 
knowledge related to classification is described 
directly or indirectly in some models such as learned 
models, mathematical models and ontologies. E.g., 
characterizations of space objects are learned 
(Howard et al., 2015) and are described in models of 
space objects (Han et al., 2014, Henderson, 2014) 
respectively, relations between the elements of space 
object surveillance (Pulvermacher et al., 2000) can 
be used as contextual knowledge, and the feature 
deduction for satellites (Mansinghka et al., 2015) 
learns relations between features.   

An initial ontology for space object classification 
(OntoStar) containing a taxonomy of space objects 
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and the knowledge related to classification is shown 
by Protégé1 in Figure 3. 

 

Figure 3: Initially built OntoStar. 

The left part of Figure 3 shows part of the 
taxonomy of OntoStar which represents concepts 
from general to specific. The right part shows 
descriptions of the selected concept “RiskDebris”. 
E.g., the description “Debris and (size only 
xsd:float[>0.01f,<=0.1f])” means the range of its 
size is (0.01,0.1]. 

3.3 Learning Unordered Classification 
Rules and Background Rules 
Related to Classification 

As pointed out in Section 2.2.2, MLK plays 
important roles in building CO. MLK in current COs 
is mainly knowledge used for direct classification. 
This kind of knowledge whose form is unordered 
rules in Spirals, is called classification rules (CRs). 
Besides CRs, background rules related to 
classification can also be mined for CO and are 
considered in Spirals, which include the relations 
between features represented by rules and the rules 
related to classification. 

3.3.1 Learning Unordered CRs 

COs built manually can hardly be perfect. Obtaining 
knowledge by machine learning for classification 
can further improve completeness of knowledge in 
COs. In addition, the enriched descriptions in CO 
make OBC more robust. Due to the advantages of 
SWRL mentioned in Section 2.2.2, CRs will be 
learned in Spirals. There are two types of learned 
CRs, decision list (ordered rules) and rules set 
(unordered rules) (Han et al., 2011). Because the 
SWRL rules in CO are unordered, the learned rules 
shall also be unordered. Rules extracted from C4.5 
decision trees (Quinlan, 2014) are unordered and are 
chosen as the learned rules, because they are easy to 

                                                           
1  http://www.standford.edu/protege 

understand and easy to be expressed by SWRL, and 
also because an open implementation of C4.5 is 
provided by WEKA2. 

The CRs in Spirals are learned hierarchically, 
with the guidance of CO. Guided by the hierarchy, 
the learning concentrates on a smaller range, and 
gains smaller decision trees. The rules obtained by 
the learning will be used to deduce the objects’ type 
from general to specific corresponding to the 
taxonomy in CO. Therefore, when deciding the more 
specific type of an object, only rules which deduce 
the more specific type of the object from the object’s 
known types in the taxonomy will be explored. So 
the searching space is expected to be smaller. E.g., 
the following rules expressed in SWRL-style are 
learned hierarchically for OntoStar from the dataset 
RSODS (details of the dataset will be described in 
Section 4). 
 so:SpaceObject(?S), so:rcs(?S,?R), ?R>7.5, 
so:inOrbit(?S,?O), so:GEO(?O) → so:Satellite(?S) 
[Annotations: Source=learn from RSODS by J48, 
Confidence=1.0] 
 so:Satellite (?S), so:inOrbit(?S,?O), 
so:apogee(?O,?A), 39980f <= ?A <40020f, 
so:inclination(?O,?I), 63.4f <= ?I < 63.5f → 
so:Communication_Satellite(?S) [Annotations: 
Source= learn from RSODS by J48, 
Confidence=0.932] 
 so:Satellite (?S), so:inOrbit(?S,?O), (not(so:MEO 
or so:EllipticalOrbit))(?O), so:owner(?S,?C), 
name(?C,?N), 
swrlb:notEqual(?N,”NRO”^^xsd:string), 
so:inclination(?O,?I), ?I>87.5f, 
so:perigee(?O,?P), ?P>765f → 
so:Reconnaissance_Satellite(?S) [Annotations: 
Source= learn from RSODS by J48, Confidence=0.8] 

The meanings of the above rules are 
comprehensible. E.g., the first rule can be read as: if 
an object is a SpaceObject, its rcs is greater than 7.5 
and it is in a GEO, then it is a Satellite; the 
annotations indicate that the rule is learned from 
RSODS by J48 and the rule’s Confidence is 1.0. 

3.3.2 Mining Background Rules Related to 
Classification 

Background rules related to classification can infer 
more information in OBC. Therefore, they shall not 
be ignored. Some background knowledge such as 
the relations between features and the definitions of 
features, can be learned and mined. 

                                                           
2  http://www.cs.waikato.ac.nz/ml/weka/ 
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For some important features of the objects to be 
classified, definitions can be learned if there is no 
specific knowledge about them currently. E.g., the 
definitions of orbits are very important background 
knowledge in the classification of space objects, but 
definition of deep highly eccentric orbit is not clear 
when building OntoStar, so the following rule 
learned from RSODS by J48 is used to define the 
orbit in OntoStar temporarily, instead of leaving the 
definition missing. 
 so:Orbit(?O), so:apogee(?O,?A), ?A > 1261, ?A  
> 70157, so:eccentricity(?O,?E), ?E > 0.291845, 
so:SpaceObject(?S), so:inOrbit(?S,?O) → 
so:DeepHighlyEccentric_Orbit(?O) [Annotations: 
Source= learn from RSODS by J48, 
Confidence=0.9090909090909091 ] 

When integrating multiple-source data into CO, 
there may be missing data if some sensors are 
deactivated. So some features important to the 
classification may be missing. At this time, relations 
between features play a part in estimating the 
missing features from known features, and can get 
more accurate values than general methods of data 
imputation. When there is no domain knowledge of 
inferring features which are always missing, it is an 
optional way to learn relations between the features 
and other features and use the relations to estimate 
the missing features. E.g., the approximate relation 
between the feature “rcs” and “size” of space objects 
can be discovered by fitting from RSODS, which is 
represented by the following rule. 
 so:rcs(?X,?RCS), swrlb:power(?P,?D,0.5f), 
so:SpaceObject(?X), swrlb:divide(?D,?RCS,0.79f), 
swrlb:subtract(?S,?P,2.57E-13f) -> so:size(?X, ?S) 
[Annotations: Source: learn from RSODS by Fitting, 
Corr_Coef=0.9999] 

Background knowledge relative to classifications 
can even be learned from ontologies when there are 
ontological data. E.g., when multiple-source data of 
space objects are represented by the initial OntoStar, 
methods like semantic rule mining (Fürnkranz and 
Kliegr, 2015) can be deployed to learn relations 
between entities and properties in the ontology. An 
example of this kind of learned rule is shown below. 
 so:SpaceObject(?S), so:Organization(?O), 
so:owner(?S,?O), so:Organization(?H), 
so:affiliate(?O,?H) → so:owner(?O,?H) 

The above rule has its realistic meaning. It can 
be read as the following: if the owner of the space 
object S is the organization O, and O is a affiliate 
of the organization H, then H is also the owner of S. 

3.4 Data-driven Evaluation and 
Promotion for CO 

As addressed in Section 2.1, validations of the 
effectiveness of MLK and mechanisms for further 
improvement of CO shall be considered. This 
requirement can be met by applying evaluation and 
promotion to the ontology development. The 
problem of evaluating CO is assessing how CO suits 
the classification. Accuracy, consistency, efficiency 
and completeness are the most important criteria for 
evaluating CO, among the eight ones summarized in 
(Sánchez et al., 2015), because the evaluation aims 
at calculating the influence of CO to the capability 
of the OBC system. Consistency of CO can be done 
by ontology reasoning. Efficiency is determined by 
the ontology reasoning. Therefore, only accuracy 
and completeness are discussed in this paper.  

Because ontology evaluation is also a kind of 
measurement : [0,1]   (Brank et al., 2005), 

its results can be quantized to be more objective. In 
order to reduce subjectiveness and raise efficiency of 
the evaluation for CO, data-driven evaluation for CO 
is proposed, whose results are quantized. Different 
from the data-driven evaluation (Brewster et al., 
2004) for domain ontology which tests the 
expressiveness of the domain ontology, the data-
driven evaluation for CO tests CO’s abilities of 
classification by comparing the results of OBC to 
the labels in the test data. Although the measurement 
of CO is obtained indirectly, testing for CO is direct.  

There are indexes for evaluating classifications, 
such as accuracy, precision, recall, AUC, etc. (Han 
et al., 2011). An intuition of ontology evaluation is, 
that precision reflects the ratio of correct knowledge 
among the knowledge to be validated and verified 
(Brewster et al., 2004). The precision obtained in 
testing is defined in the following (TP: true positives; 
FP: false positives). 

TP
precision

TP + FP
  (1)

Precision is the ratio of the objects of a given 
type correctly classified among the objects classified 
as this type. The more accurate the knowledge is, the 
higher the precision. Hence, precision reflects the 
accuracy of the knowledge of a given concept in CO. 

The recall of a classifier obtained in testing is 
defined in the following (FN: false negatives). 

TP
=

TP+ FN
recall  (2)

Recall is the ratio of the objects of a given type 
correctly classified among the objects which belong 
to the given type and have been classified. The more 
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complete the knowledge is, the higher the recall. 
Hence, recall reflects the completeness of the 
knowledge about a given concept in CO. 

Although a test instance classified incorrectly 
owes to the lack of correct knowledge, recall can not 
be analogized to precision. If there are unclassified 
objects, it is uncertain whether there is correct 
knowledge to classify the objects (maybe there is 
correct knowledge, but it is deactivated in the 
reasoning when conflicting with other knowledge). 
Despite of this annoyance that recall only measures 
one aspect of completeness, there is AUC, reflecting 
another aspect of completeness. When the recall of a 
given type is very high and AUC is very low, we 
know there are unclassified objects. It indicates CO 
lacks knowledge to classify the objects. 

Accuracy measures comprehensive capability of 
the classifier. It reflects both completeness and 
accuracy in some degrees. So, accuracy of OBC can 
be used to assess the overall ability of CO. The 
accuracy obtained in testing is defined in the 
following (TN: true negatives; TN: true negatives). 

TP+TN
=

TP + FN+TN+FP
accuracy  (3)

It is indicated by the data-driven evaluation that 
how CO needs to be improved. When the precision 
of a given concept is low, the knowledge about it is 
not accurate. When the recall of a given concept is 
low, more knowledge about it is necessary. When 
the recall is very high but the AUC is very low, it is 
sure that the knowledge about the concept often 
conflicts with other knowledge in CO, requiring to 
be refined.  

4 EXPERIMENTS AND RESULTS 

The dataset of space objects RSODS which is 
derived from the datasets NORAD_Catalog and 
UCS_Satellite will be used for the experiments. 
NORAD_Catalog describes space objects using the 
following attributes/features: cospar_id, nord_id, 
period, perigee, apogee, eccentricity, rcs, amr and 
labels. It contains 8071 samples with 3 labels: 
Debris, Rocket Body and Satellite. It is used to 
analyze orbital distributions of different types of 
space objects in (Savioli, 2015), and also used to 
derive new features’ data of satellites in 
(Mansinghka et al., 2015). UCS_Satellite describes 
active satellites with the following attributes/features: 
cospar_id, nord_id, period, perigee, apogee, 
eccentricity, orbit type, orbit class, longitude, power, 
dry mass, launch mass, launch vehicle, launch site, 

owner, contractor, users and purposes. The attribute 
purposes is treated as the dataset’s labelling attribute. 
It contains 1346 samples with 19 labels, and 
contains 1267 samples with at least one attribute of 
missing value. It is used to describe satellites in 
(Ruttenberg et al., 2015). NORAD_Catalog and 
UCS_Satellite contain 318 identical space objects. 
The two datasets are merged into RSODS, through 
left join on the attribute cospar_id. The 318 identical 
space objects in RSODS are labelled the same as 
their labels in UCS_Satellite.  

RSODS contains 9099 samples. It has 21 types 
of space objects which are Rocket (7.6%), unknown-
type Satellite (15.9%), Satellite of specific purposes 
(14.8%) such as Communication Satellite and 
Global Position Satellite, and Debris (61.6%). 9020 
records in RSODS have at least one missing value. 
So RSODS is incomplete. The other 79 records 
without missing values in RSODS are all data of 
satellites of specific purposes. 

OntoStar is initially developed under the 
guidance of Spirals. Concepts and the taxonomy 
necessary to the classification for space objects are 
specified. CRs and background rules are learned 
from RSODS. Data of space objects are imported to 
OntoStar using OWLAPI with the form of instances 
to learn more semantic rules. An OBC system of 
space objects named Clairvoyant is built upon 
OntoStar by integrating the ontology reasoning tool 
pellet3. OntoStar is evaluated by Clairvoyant with 
RSODS. Finally, the initially built OntoStar is 
further improved according to the evaluation. 

Integrating Clairvoyant into WEKA, the indexes 
of classifying RSODS can be computed by WEKA. 
Ten-fold cross validations (TCV) (Han et al., 2011) 
are performed on RSODS using various approaches. 
In every validation, data are split into training data 
(90 %) and test data (10 %) in the TCV. All MLK of 
OntoStar is obtained from the training data. The 
baseline classifiers are C4.5 (Quinlan, 2014), SVM 
(Keerthi et al., 2006), Ripper (Cohen, 1995), 
Bayesian Network (Friedman et al., 1997), Random 
Forests (Breiman, 2001) named RF in the table, 
Backpropagation Neural Network (Erb, 1995) 
named BPNN and Logistic Model Trees (Landwehr 
et al., 2005). All the baseline classifiers are set to use 
their default parameters in WEKA, except that 
RandomForest is setup with 50 trees and BPNN is 
setup with 4 hidden layers.  

When applying the data-driven evaluation and 
promotion of Spirals to build OntoStar, the training 
data are split into data for learning (90%) and 

                                                           
3  https://github.com/Complexible/pellet  

Ontology Development for Classification: Spirals - A Case Study in Space Object Classification

231



 

 

validating data (10%). CRs are then obtained by 
C4.5 with confidence factor of 0.25 from the data for 
learning. After that, the validating data are used to 
test the OntoStar with the CRs integrated. Finally, 
the learned CRs of concepts in OntoStar whose 
recall or precision in the evaluation are less than 60% 
are replaced with more specific rules obtained by 
C4.5 with confidence factor of 0.5. 
(a) Some common indexes for classification 

The results are shown in Table 1. All the 
indexes except accuracy are weighted indexes. 
OBCMan represents the classification based on the 
OntoStar containing no learned rules. OBC 
represents the classification based on the OntoStar 
built without data-driven evaluation and promotion. 
OBCEval represents the classification based on the 
OntoStar built by Spiral. 

Table 1: results of TCV on RSODS. 

           M 
EI 

OBCMan  OBC  OBCEval C4.5 Ripper 

accuracy 11.0% 86.3% 90.4% 85.2% 91.9% 
TP rate 70.9% 88.2% 90.7% 85.2% 91.9% 
FP rate 1.9% 3% 2.7% 12.1% 3.7% 

precision 78% 87.2% 90.7% 80.0% 91.7% 
recall 70.9% 88.2% 90.7% 85.2% 91.9% 
AUC 83% 91.6% 93.9% 93.7% 96.6% 

T 0.0 1.2 227.7 3.9 3.7 
        M 

 
EI 

Bayesian 
Network 

SVM BPNN(4 
hidden 
layers) 

RF (50 
trees) 

Logistic 
Model 
Trees 

accuracy 90.0% 90.2% 84.6% 89.9% 90.1% 
TP rate 90.0% 90.2% 84.6% 89.9% 90.1% 
FP rate 2.6% 4.1% 4.6% 8.3% 3.9% 

precision 90.5% 90.1% 81.0% 89.5% 90.0% 
recall 90.0% 90.2% 84.6% 89.9% 90.1% 
AUC 99.0% 95.1% 95.9% 99.1% 98.5% 

T 0.2 3.5 345.6 244.2 3083.2
M: methods; EI: weighted average evaluation index; T: 
time for learning (seconds) 

It can be seen in Table 1, that the integration of 
CRs into CO increases OBC’s accuracy by  75.3%, 
compared to OBCMan.  Its accuracy increases 4.1% 
further by the data-driven evaluation and promotion, 
compared to OBCEval. OBCEval outperforms Random 
Forests, Backpropagation Neural Network, C4.5, 
SVM, Bayesian Network and Logistic Model Trees, 
and competes with Ripper. 
(b) Robustness with respect to missing feature in 
the test data 

Although the performances of OBC is not as 
good as that of Ripper, it is robust in the presence of 
missing features caused by some deactivated sensors 
in the open environments. OBC rarely depend upon 
any one path. It usually has several different ways to 
classify one object, so that there are always other 
ways to classify an object if one way fails. This 

ability of OBC is obtained by integrating various 
kinds of knowledge into CO. In terms of 
classification for space objects, the feature “size” of 
space objects is difficult to capture in reality. It is 
often missing when classifying the space object. To 
mimic this situation, the feature “size” is set to be 
missing in the test data. Results of TCV on RSODS 
with “size” missing in the test data using various 
approaches are shown in Table 2. 

Table 2: TCV on RSODS without “size” in the test data. 

M 
EI

OBCEval C4.5 RF (50 
trees) 

Ripper

accuracy 90.2% 69.0% 88.8% 82.7%
TP rate 90.4% 69.0% 88.8% 82.7%
FP rate 2.7% 47.6% 12.2% 20.8%

precision 90.5% 59.9% 88.5% 82.6%
recall 90.4% 69.0% 88.8% 82.7%
AUC 93.8% 86.9% 99% 82.5%
      M 

 
EI

Bayesian 
Network 

SVM BPNN (4 
hidden 
layers) 

Logistic 
Model Trees 

accuracy 86.2% 39.3% 15.1% 74.6%
TP rate 86.2% 39.3% 15.1% 74.6%
FP rate 13.8% 25.3% 7.8% 26.7%

precision 86.4% 52.6% 66.7% 68.4%

recall 86.2% 39.3% 15.1% 74.6%

AUC 98.7% 68.1% 61.1% 80.6%

M: methods; EI: weighted average evaluation index 

It can be seen in Table 2 that OBC outperforms 
all baseline classifiers. Comparing the result of 
Table 2 to Table 1, it can be seen, that a missing 
feature paralyze all the baseline classifiers to some 
extent, whereas OBC who has failed at some 
attempts will find other ways to proceed. When 
missing “size”, SVM and Backpropagation Neural 
Network are almost paralyzed, C4.5, Ripper and 
Logistic Model lose a lot of performances especially 
in accuracies and FP rates, accuracies of Bayesian 
Network and Random Forests drop 1.1% and 3.8% 
respectively, FP rates of Bayesian Network and 
Random Forests increase 11.2% and 3.9% 
respectively, while OBC lose a few performances. It 
can be seen in Table 2 that OBC’s accuracy drops 
0.2% and its FP rate stays the same. 

5 CONCLUSIONS 

A method for developing classification ontology 
(CO) named Spirals is proposed, taking the 
development of Ontology for Classification of Space 
Object (OntoStar) as an example. Spirals is 
composed of a set of activities among which is a 
cyclic subsequence of activities. It proposes 
acquiring soft sensing data and hard sensing data of 
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the objects to be classified, and extracting features 
from these data. Then, a CO is initially developed 
upon the knowledge base extracted from ontological 
data such as corpuses, experts, databases and domain 
ontologies. After that, data-driven evaluation is 
proposed to evaluate CO and to guide the further 
improvement and promotion of the ontology. Data 
acquisition, data exploitation, ontology evaluation 
and mechanism for ontology promotion are 
addressed in Spirals. Especially, not only in the 
phase of learning, but also in the ontology evaluation, 
data are made full use of, aiming at enhancing the 
efficiency of the ontology development and the 
performances of OBC.  

OntoStar is developed under the guidance of 
Spirals. The OBC system for space object named 
Clairvoyant is built upon OntoStar. Experiments 
conducted on the dataset of space objects RSODS 
show that Clairvoyant is competitive against 
baseline classifiers, in terms of common indexes of 
classification and robustness with respect to missing 
an important feature. The results also show that 
Spirals can further improve the performances of 
OBC. One of the main advantages of OBC, 
integrating domain knowledge to build the initial CO, 
is also OBC’s main disadvantage, because manual 
work is required. Spirals is still in its exploration 
and needs further improvements. In the following 
step, Spirals will be extended and applied to develop 
more COs to further test its effectiveness. It will also 
be further studied for the optimization of its 
activities, including expanding the sources and types 
of MLK, further investigation of the data-driven 
evaluation and promotion of CO. 
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