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Abstract: The growing number of MapReduce applications makes the Data Warehouse access time estimating an 
important task. The problem is that processing of large data requires significant time that may exceed the 
required thresholds.  Fixing these problems discovered at the system operations stage is very costly. That is 
why it is beneficial to estimate the data processing time for peak loads at the design stage, i.e. before the 
MapReduce tasks implementation. This allows making timely design decisions. In this case mathematical 
models serve as an unreplaceable analytical instrument. This paper provides an overview of the n-dimensional 
MapReduce-based Data Warehouse Multi-Fragment-Replication Join (MFRJ) access method. It analyzes 
MapReduce workflow, and develops an analytical model that estimates Data Warehouse query execution 
average time. The modeling results allow a system designer to provide recommendations on the technical 
parameters of the query execution environment, Data Warehouse and the query itself.  This is important in 
cases where there are restrictions imposed on the query execution time.  The experiment preparation and 
execution in a cloud environment for model adequacy analysis are evaluated and described. 

1 INTRODUCTION 

Data Warehouses are commonly used for Big Data 
processing (Kaur, 2016) and are especially popular in 
Business Intelligence applications (Duda, 2012). 
They support a multi-dimensional model (Inmon, 
2005; Golfarelli and Rizzi, 2009). A Data Warehouse 
with dimensions has the form of a multi-dimensional 
cube.  Every point in this cube corresponds to one or 
multiple values (facts). Sparse data cubes are allowed. 

Data Warehouse implementation principles 
varied over time.  There were three approaches at the 
beginning: MOLAP, ROLAP, HOLAP (Inmon, 
2005; Golfarelli and Rizzi, 2009; Duda, 2012). 
MOLAP (Multidimensional OnLine Analytical 
Processing) data is stored in the form of special 
ordered multidimensional arrays (hypercubes and 
polycubes). ROLAP (Relational OLAP) uses a 
relational database to store dimension and fact tables.  
HOLAP (Hybrid OLAP) combines the two above 
mentioned approaches.  The following products 
implement these approaches: Oracle Hyperion 
Essbase (MOLAP), MS SQLServer 2000 Analysis 
Services (MOLAP, ROLAP or HOLAP), et.al. 

However, with the growth of the processed data 
volumes the Data Warehouse implementation cost 
has also radically increased (Hejmalíček, 2015).  

Regularly the platform for large Data Warehouse 
implementation is RDBMS (Relational DataBase 
Management System). In order to significantly 
increase the volume of processed data an additional 
powerful server(s) has to be added (which is costly) 
as well as purchasing an additional license for 
installation of a new RDBMS entity.  Moreover, 
additional costly software has to be installed to 
support distributed environment and optimize Data 
Warehouse processes.  One of the most expensive 
Data Warehouse parts is its external memory. The 
disks are organized into a RAID to ensure fault 
tolerance leading to expensive planning and support. 

The Data Warehouse strategy has changed with 
the emergence of NoSQL databases (Duda, 2012).  
This can be attributed to the fact that NoSQL are open 
source systems with great scalability (up to a few 
thousand nodes) and reliability (due to multiple 
replication of database records) as well as low node 
cost (Redmond and Wilson, 2012; Sadalage and 
Fowler, 2012).  Already existing platforms were used 
initially. They read actual data with ETL from a 
NoSQL database into a MOLAP cube and process it 
there, e.g. Jaspersoft and Pentaho (Duda, 2012).  
However, here the volume of processed data was 
limited by the single MOLAP server. 
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MapReduce (MR) (Jeffrey and Sanjay, 2004; 
Duda, 2012; Hejmalíček, 2015) became the next step 
of Data Warehouse evolution.  There are many 
technologies based on MR that allow implementation 
of a Data Warehouse (Li, et.al, 2014).  Hive is an 
example of major Facebook platform components.  It 
is intended for implementation of a Data Warehouse 
in Hadoop (Huai, et al., 2014).  Here a SQL query is 
translated into a series of MR tasks.  Some 
experiments show that Hive is significantly slower 
than other methods (Duda, 2012; Zhou and Wang, 
2013).  In order to solve the low performance problem 
of a Data Warehouse in MR systems some methods 
were developed that allow access to Data Warehouse 
directly in MR (i.e. without additional components).  
Four such methods (MFRJ, MRIJ, MRIJ on RCFile, 
MRIJ with big dimension tables) are described in 
(Zhou and Wang, 2013).  They are based on the 
dimension table caching in the RAM of each node. 

Along with the MR Hadoop a MapReduce-like 
system Spark and others are used; however, their 
discussion is outside of this paper’s scope. 

This paper discusses Multi-Fragment-Replication 
Join (MFRJ) method (Zhou and Wang, 2013), which 
unlike other methods allows access to n-dimensional 
Data Warehouse for only one MR task and avoids 
extra transfers of the fact table external keys (section 
3).  It is also simple in implementation. Effectiveness 
of this method in comparison with other methods is 
shown in (Zhou and Wang, 2013). 

The motivation of this work is the need for Data 
Warehouse access time forecasts, due to the intense 
growth in number of MR applications. Examples of 
such applications are provided below: 

o Internet-application log processing for large 
internet shops and social networks (Duda, 
2012) for service demand analysis. 

o Large data volume processing for data 
collected by credit organizations for market 
behavior forecasts. 

o Statistics calculation for large weather 
forecast processing. 

The problem is that large volume data processing 
is time-consuming which may become unacceptable.  
Discovery of this problem at the operational stage 
leads to costly resolution.  First of all, there are many 
processing tasks.  Secondly, if the tasks are complex 
then tuning does not help.  In this case algorithms 
have to be changed and Map and Reduce functions 
recoded. This means redoing the already done work 
wasting time and resources.  Thus the processing time 
estimation for peak load during the design stage, i.e. 
before MR tasks implementation, is beneficial. 

The importance of modeling can be demonstrated 
on the following example.  Two RDBMSes (column 
and row-based) and MR Hadoop were compared in 
an experiment in (Pavlo, et.al, 2009).  The conclusion 
was that Hadoop loses in the test tasks. 

Detailed analysis in (Burdakov, et.al, 2014) 
showed that experiments with RDBMS were 
executed with the node number below 100, with low 
data selectivity in queries, with the lack of sorting, 
and record exchange of fragmented tables between 
the nodes.  Modeling was performed with calibrated 
models and different input parameters (Burdakov, 
et.al, 2014).  The results showed that Hadoop over-
performing RDBMS with high selectivity and sorting 
starting from 300 nodes (6 TB of stored data). 

Obviously, implementation of a test stand and live 
experiments on a large number of nodes is much more 
expensive than development of an adequate 
mathematical model and its application. 

This paper discusses an MFRJ access method to a 
Data Warehouse (section 3), analyzes MR workflow 
(section 4), develops an analytical model for Data 
Warehouse query execution time evaluation (section 
5), and calibrates the model and evaluates its 
adequacy based on experiments (section 6). 

2 RELATED WORK 

The developed analytical model for query execution 
time evaluation is a cost model (Simhadri, 2013). 
 Below we provide an overview of the existing 
models and point out their disadvantages. 
 Burdakov, et.al (2014) and Palla (2009) model 
only two tables join in MR.  Palla (2009) evaluates 
input/output cost, but disregards the processing part.  
However, as the measurements indicate (e.g. see 
Section 6), the process load cannot be disregarded.  
The processing time is considered in (Burdakov, et.al, 
2014), however the Shuffle algorithm is simplified. 

Afrati and Ullman (2010) propose the following 
access method to n-dimensional Data Warehouses.  
The Map phase in each node reads dimension and fact 
table records (n+1 tables).  The Map function 
calculates hash-values h(bi) for bi attributes that 
participate in a join.  Each Reduce task is associated 
with n values {h(bi)}.  Each record is sent to multiple 
Reduce tasks according to the calculated hash-values.  
The Reduce task joins received records.  Transferred 
records number minimization task is solved based on 
a constant number of Reduce tasks.  This method has 
the following disadvantages: 
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1) It assumes record transfer of the joined tables 
between the nodes which may consume 
significant time. 

2) In certain cases the optimization task does not 
have an acceptable solution. 

An example for query execution time in a Hadoop 
Data Warehouse provided in (Afrati and Ullman, 
2010) has 2052 sec duration (two dimensions, one 
fact table, four nodes, 100 Reduce tasks and 
approximately one million records in each table). 

An n-dimensional Data Warehouse query 
execution optimization method is provided in (Wu, 
et.al, 2011). An optimal plan is defined for a received 
query.  Each option’s cost is evaluated taking into 
account record duplication as in (Afrati and Ullman, 
2010).  This method has the following disadvantages: 

1) Histograms are built for table columns before 
the optimization; 

2) Record duplication throughout nodes is 
required; 

3) The weights for the cost model have to be 
defined manually; 

4) The fact that the processes in resources at the 
Shuffle phase are executed in parallel; 

5) Disregards the split number, Java Virtual 
Machine (JVM) containers number per node, 
and that the Reduce-side sort merge can have 
a few execution rounds. 

Zhou & Wang (2013) provide simplified estima-
tion formulas for RAM and data volumes read from a 
disk and transferred through a network. However, 
these formulas do not account for MapReduce 
process functioning specifics (see section 4). 

Afrati, et.al, (2012) evaluate the following two 
MR characteristics for different tasks: average 
number of records generated by Map tasks for each 
input (replication rate); the list upper border for 
values linked with a key (reducer size).  The Reduce 
task load is evaluated based on these characteristics. 

The theoretical works (Karloff, et.al, 2010; 
Koutris and Suciu, 2011) build abstract MR models.  
The estimates are given at the asymptotic record form 
level (O(n),  Ω (n), etc.), that cannot be used for 
concrete calculations.  The work (Tao, et.al, 2013) 
defines conditions when MR algorithms (sorting, 
etc.) satisfy the following minimal algorithm 
conditions: Minimum Footprint, Bounded Net-traffic, 
Constant Round, and Optimal Computation. 

The model developed in this paper has the 
following advantages: 

1) It models MFRJ algorithm behavior where it 
is not required to duplicate Data Warehouse 
table records. 

2) It is not required to manually assign weights 
for cost estimate. 

3) The model calculates average volume-
temporal characteristics of query execution 
in n-dimensional Data Warehouses 
(considering disk, processor and network). 

4) It is detailed, accounts for specifics of Map, 
Shuffle and Reduce phases, and can be tuned 
for a large number of parameters influencing 
the temporal characteristics (section 5). 

5) It has a parameters calibration procedure. 

3 MFRJ DATA WAREHOUSE 
ACCESS METHOD IN 
MAPREDUCE ENVIRONMENT 

The query execution algorithm in n-dimensional Data 
Warehouses with the use of the MFRJ method (Zhou 
and Wang, 2013) is discussed below. 
  

SELECT D1.d11, D2.d21, …, Dn.dn1,  
F.m1, … F.mk 
FROM D1 JOIN F ON (D1.d10 = F.fk1)  
JOIN D2 ON (D2.d20 = F.fk2)… 
JOIN Dn ON (Dn.dn0 = F.fkn) (1) 
WHERE CD1 AND CF1,  
 

where D1, …., Dn are dimension tables, F is a fact 
table, CD1 and CF1 are some additional conditions, 
applied to dimensions and facts. 

 

Figure 1: Fact table decomposition into 1+k tables (Zhou 
and Wang, 2013). 

 The dimension tables are duplicated on all 
Hadoop system nodes.  They are stored in rows.  The 
fact table is divided into 1+k tables (see Figure 1): the 
1st row includes columns of external dimension keys 
(fki), every fact column (mi) comprises a separate 
table (tables 2,…,к+1).  All table blocks 1…k+1 are 
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arbitrarily and automatically spread throughout the 
nodes by Hadoop (Hadoop attempts to make it even). 

The data access is executed in the following 
manner for the query type (1): 

 
Map (in each node): 
1) Records are read from dimension tables that 

participate in a query. The CD1 condition is checked 
for each record.  Hash-indices are built in RAM for 
records satisfying the condition. 

2) Dimension external keys of fact tables 
(Table 1) that are stored in (fki) nodes are read; each 
row (position) and external key is checked for 
existence of the key in the corresponding hash-index; 
upon successful comparison the following record is 
put into the output stream: 
 

 <position1,(vd1,…,vdn)>    (2) 
  
where «position1» is a row number in external key 
table (the enumeration is continuous for table 1 rows); 
(vd1,…,vdn) is a list of attribute values of dimension 
tables that are given in (1) following SELECT (they 
are selected from dimensions hash-indices). 

3) The i-th fact column values are read (table i+1) 
that are stored in a node; for each fact value the CF1 
query condition is checked and its value is put into the 
output stream: 
 

 <position 2i, vmi>,  (3) 
  
where «position 2i» is the row number in i+1 table 
(continuous enumeration for all i+1 table rows), vmi  
is the i-th fact value. 
 The «position 1» and «position 2i» key values 
correspond to one fact table, however by conditions 
the 1…k+1 table blocks are arbitrarily spread by 
nodes. 

4) The item 3 is further repeated for other fact 
columns which blocks are stored in the node 
(i=1,…,k). 

 
Reduce: 
If the element number of the value area of the 

record received by Reduce function (after grouping 
by position) equals to n+k (n is the number of 
dimensions, k is the number of facts) and it satisfies 
the query condition (relationships between columns 
are checked), then the record is put into the output 
stream as the resulting table row: 
 

 <position, (vd1,…,vdn ,vm1,…,vmk)>  (4) 
 

The MFRJ method was implemented in Hadoop 
environment. 

4 MAPREDUCE SYSTEM 
FUNCTIONING PROCESS 

Map Phase (see Figure 2).  L entities of Map function 
are simultaneously run on each of NM nodes (label 2; 
the labels on the Figure 2 are underlined).  The Map 
entities are executed simultaneously and read MR 
records (objects) from the MR file system in 
<key,value> pairs (label 1).  
 Each Map entity processes records of one 
input file.  The size of the processes partition does not 
exceed the size of one split (by default its size is equal 
to the block size VS=VB= 128 MB).  Upon completion 
of the Map entity another entity is started that 
processes the next split file, and so on (if Map number 
per node is higher than L).  Overall  SF V/V  Map 

entities will be executed on one node for each input 
file, where VF is the input file volume on that node. 
  The received records are converted into new 
<key1,value1> records and are stored into a RAM 
buffer (label 3).  A QB-sized RAM buffer is allocated 
to each Map entity.  Once the buffer is saturated, a 
new thread is started in the background.  It splits the 
buffer into fragments and sorts each fragment by key 
(in-memory sort).  The number of fragments in the 
buffer equals s number of partitions (Reduce task 
entities) set in a Job.  A record belongs to i-th buffer 
fragment (i.e. to i-th partition) if h(attribute)=i where 
h is a hash-function.  After that each sorted buffer 
fragment is output to the disk as part of a file (spill to 
disk) (label 4).  So, the total number of sorted 
fragments that will be stored on a disk during the 
execution of one Map node entity will be equal to r 
multiplied by s, where r is the number of stored files 
determined by the following formula: 
 

 r= Q/( QB·PT·PM/16)=Q/QM,  (5) 
 
where  Q is the total number of output records 
generated by one Map function entity (i.e. per one 
split), QB is the RAM buffer size (100 MB by default), 
PT  is the buffer fill threshold (0.8), PM is a part of the 
buffer allocated for metadata (0.05), 16 is the 
metadata record size in bytes (Palla, 2009). 

Note: Fragments (j-1)s+1,…, js are parts of j-th 
file, j=1…r (see Figure 2, label 4).  So r physical files 
are stored on a disk, each of which has s logical files 
(fragments). 
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Figure 2: MapReduce operation execution sequence.

Once the Map function has processed all input records 
of its split, a special procedure is started on the node.  
It reads i-th partition fragments and outputs them into 
one sorted file (merge on disk, labels 5, 6 and 7).  This 
file is sorted by the key «key1».  The procedure 
described above is executed consequently for all 
partitions (i=1,…,s) of Map entity. 

The activities described above are executed in 
parallel for all Map entities simultaneously executed 
on the node.  The sorting is necessary for group 
operation execution at the Reduce phase. 

Shuffle Phase. The master nodes are informed on 
Map entity execution completion.  Simultaneously 
with Map R entities of Reduce task are started on each 
of NR nodes.  Each j-th Reduce task queries the master 
node, determines the completed Maps and reads j-th 
partition files (see label 7) into its area (labels 8, 9 and 
10).  So, the different nodes’ files with one partition 
number j will be transferred into a node where the j-
th Reduce task is executed (j=1,…,s).  If the file size 
is below 0.7·0.25·VHR, then it is stored in a Reduce 
and Map JVM heap.  By default its size is 200 MB. If 
the size of a filled heap exceeds the VP=0.7·0.66·VHR 

threshold, then the files stored in the heap are merged 
into one file stored on a disk (similar to label 6).  
 The above description tells us that Map and 
Shuffle intersect. Li, et.al (2011) and analysis of logs 
generated by Hadoop query execution confirm that. 

Reduce Phase. If the number of saved files 
exceeds the 2(u-1) threshold, then «u» files are 
merged into one file and it is stored on a disk (labels 
11, 12 and 13). By default u=100, V2 is the input data 
volume of all Reduce tasks.  This case is possible if a 
significant data volume is processed by a cluster with 
a small number of nodes (similar to labels 5, 6 and 7). 

The stored files are read and sorted/merged in 
RAM (label 14), so that one sorted flow of records is 
formed.  The system groups the records of the stream 
by the values of the key that was used for sorting 
(label 15). Record groups are sent to the Reduce 
function input without its intermediate disk storage. 

The Reduce function then processes each group 
and puts the result into the output stream. This data is 
stored in the MR file system (label 16). 

5 DATA WAREHOUSE 
AVERAGE ACCESS TIME 
ESTIMATE FOR MFRJ 
METHOD 

The Figure 3 depicts the analytical model structure for 
Data Warehouse query execution time calculation 
(MapReduce task) for the MFRJ method. 
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Figure 3: Analytical model structure. 

The model is developed based on the MR 
workflow description (Section 4).  The labels (1-16) 
on Figure 3 correspond to the labels on Figure 2.  The 
model calculates time-volume characteristics for each 
phase (Map, Shuffle, Reduce) and the whole task. 

The models shall be calibrated based on task 
execution time measurements since it is impossible to 
directly measure some input parameters of the model.  
For example the model takes into account the 
processor portion of the MapReduce task execution 
time. One short logical operation execution time of an 
algorithm (SLOA) is set as a parameter (Burdakov, 
et.al, 2014), which is challenging to measure. Model 
calibration allows evaluation of that parameter.  

The model is rather complex as it accounts for 
MapReduce parallel processing specifics.  Due to the 
space restrictions we provide only one formula 
fragment.  Below there is a fragment that calculates 
Shuffle time (labels 8-10 on Figure 2). The resource 
processes at the Shuffle phase are executed in 
parallel, so the time is defined by the slowest re-
source, and hence the max function is used.  Formula 
(6 a-g) define the resource temporal characteristics:  
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The equations (6)-(9) use the following notations: 

N is the total number of nodes; NM is the number of 
nodes that execute the Map tasks (NM number cannot 
be higher the total split number divided by L); NR is 
the number of nodes that execute Reduce tasks; 
K=min(K1,N),  K1 is the maximum number of nodes 
linked to each switch;  V2 is the number of files 
generated by all Maps of all nodes; G2 is the number 
of records generated by all Maps of all nodes; 
VP=0.7·0.66·VHR is the buffer copy threshold for the 
Reduce task (Palla, 2009)  (VHR is the JVM Reduce 
heap size); V1 is the volume of all input files 
processed by Map entities of all nodes; VS is one split 
size (by default it is equivalent to block size); s is the 
total number of Reduce tasks (MR task parameter); τ 
is one SLOA execution time; μdR, μPW, μN1, μN2, μPR, 
μdW (bps) is the disk throughput (read), switch port 
(output), switching matrix of a switch, linking ring, 
switch port (input) and disk (write). 
  Let us discuss the Formula (6) in greater 
details: 
(a) The data read time from a disk (or Map buffers) 

for data generated by all Map entities of one node. 
(b) Transfer time from one node to the input port of a 

switch; it is considered that part of data remains in 
the node (see Formula (7)): on this node Reduce 
tasks are running with NR/N probability and they 
process 1/NR part of Map data of this node. 

(c) Data transfer time in a switch; Map tasks are run-
ning on the node with NM/N probability; Reduce 
tasks are running with NR/N probability; so each 
node from (NM/N)K nodes sends to each node 
from (NR/N)(K-1) nodes VM/NR data fraction. 

(d) Data transfer time through the connecting ring (for 
N>K); similar to (c): each node from (NM/N)·N 
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nodes sends to each node from (NR/N)·(N-K) 
nodes a VM/NR fraction of data. 

(e) Data receipt time by all Reduce entities of one 
node from input switch port; it is considered that 
part of data was left on this node after Map task 
execution (see Formula (8)). 

(f) File (partition) union time from the heap of one 
Reduce entity into files that are stored on a disk 
(Reduce entities are executed NR·R times in 
parallel; s= k·NR·R is their total number, where R 
is the number of entities that are executed in 
parallel on the node) - for VP<V2/s; the sorting is 
done by the merge-sort method; the logarithm 
function is derived not from the number of records 
(the usual way), but from the number of partitions 
(VP/V2F) read by Reduce entity and stored in the 
heap of this task; it is considered that each output 
partition generated by a Map entity is already 
sorted; V2F is the size of such partition (see 
Formula (9));  V1/VS is the split number, so (9) is 
the volume of output data (one partition), 
corresponds to one split (i.e. per one Map entity) 
and one Reduce entity. 

(g) File storage time for further in-disk sorting for 
files sorted by Reduce entities of a node. 

6 MODEL ADEQUACY 
EVALUATION 

The goal for the experiments is to test the adequacy 
of the developed multidimensional Data Warehouse 
access process model in a Hadoop environment with 
the MFRJ method. 

6.1 Experiment Stand Description 

There are a number of companies that provide cloud 
computing resources.  We used virtual nodes (servers) 
provided by DigitalOcean (DO) (Digital Ocean, 
2016) in our experiments.  The number of nodes in a 
cluster varied from 4 to 10 (1 master node and the rest 
were slave nodes with stored data).  Each node had 
the following characteristics: one dual-core processor 
at 1.8 GHz, 4 GB RAM, 20 GGB SSD. 

We used Ubuntu Server 14.04 OS preset by the 
cloud service provider. MapReduce 2 Hadoop 
(White, 2015) was set-up for the experiment. The 
block size and Hadoop split was set to 128 MB.  
MFRJ Data Warehouse access method was 
implemented in Hadoop (see Section 3). 

6.2 Experiment Preparation and 
Execution 

A Data Warehouse with star schema was created in 
the Hadoop environment. It had three dimension 
tables: Date (36 records), Town (200 records) and 
Goods (8500 records).  The number of records in the 
fact table Sales Volume varied from 10M to 30M. 

 

Figure 4:  Node CPU load. 

 

Figure 5: Node SSD performance. 

 

Figure 6: Network performance measured in a node. 

The Data Warehouse query is presented in 
Formula (1).  There n=3, mk=m1. The selectivity of 
CD1 was at 67% for the Date table, 90% for Town 
table and 80% for Goods.  There was no condition 
applied to the facts table. 

The queries were executed for the following 
parameters: the number of slave nodes (N) was 3, 6 
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and 9, the number of fact table records (Q1) was 10M, 
20M and 30M, the Reduce tasks number was 2 and 4. 
There were 3(N)·3(Q1)·2(s)=18 experiment query (1) 
runs on the Data Warehouse.  Each query was re-
peated three times and average time was taken. The 
measured and modeling time were compared. 

The experiments were run on different days for a 
different number of nodes.  In most cases we observed 
high processor load, low disk and network 
performance.  The Figures 4-6 depict the correspond-
ing characteristics for one node during the execution 
of an experiment series for the number of slave nodes 
N=6. The number of peaks (equals 18) on each Figure 
corresponds to the number of queries in a series for 
N=6: 1(N)·3(Q1)·2(s)·3(repeat)=18. The processor 
core load reached 90%.   The shared disk throughput 
reached 15MB per second (except a single peak), 
while the network throughput reached 60 Mbps. 

6.3 Model Calibration and Adequacy 
Evaluation 

A part of the source data for modeling (NM, NR, et. al) 
was selected from logs generated by Hadoop during 
the query execution. For other parameters that cannot 
be measured directly we performed a calibration 
procedure based on the experiment results. The 
following resource performance was evaluated with 
the calibration: HDFS (read and write μDR, μDW), 
LocalFS (read and write μdR, μdW); switch ports (input 
and output μPR, μPW), switch (μN1) and processor 
(SLOA time τ). Based on the results of peak 
performance measurements we defined the bounda-
ries for these parameters and executed its estimation 
with the least squares method (Abdi, 2007).  The 
Figure 7 provides the estimation algorithm. 
An arbitrary selection of the starting point in the outer 
loop avoids reaching the local minimum moving 
along the gradient. 
 The following three calibration models were 
analyzed: 
 Option 1. The calibration procedure used the 
average time for execution of 6 queries executed on 
clusters with 3, 6 and 9 slave nodes.  The modeling 
accuracy was evaluated for all 18=3(N)·3(Q1)·2(s) 
queries.  The Figure 8 provides the modeling error 
distribution diagram.  Here

expmodexp T/T100 T−⋅=Δ is the relative modeling 

error for query execution time by percentage.  The 
sector on the Figure depicts the fraction of the queries  
number (out of 18) which modeling error fits the Δ 
half-closed interval. The percentage is shown under 
this    half-interval.   The   fraction   of   queries   with  

LOOP i= 1…200 

Select an arbitrary point inside 
calibrated parameter boundaries 

 LOOP j= 1…200 

Move inside the area of calibrated 
parameters by gradient (numerical 
differentiation is used) 

/* The exit from the inner LOOP is performed in the 
following 3 cases: 1) if the current sum of error squares 
of the average experimental and modeling results for the 

query execution time  −= k
2k

mod
k
exp )T(Tδ is 

higher than the previous sum (the local minimum is 
found); 2) the local calibrated parameter crossed the 
measurement boundaries; 3) the j iteration number 
exceeds the limit */ 

 END OF LOOP by j 

Store the current optimal values for 
calibrated parameters 

Figure 7: Model parameters calibration algorithm. 

modeling error higher than 20% equals to 
17+28=45% (this is 18·0.45=8 queries out of 18).  
 Option 2. The calibration procedure used the 
average execution time of four queries executed on 
clusters with 6 and 9 slave nodes.  The modeling 
accuracy was evaluated based on the corresponding 
12=2(N)·3(Q1)·2(s) queries (i.e. experiments on a 
cluster with three slave nodes were excluded).  The 
Figure 9 provides modeling error distribution 
diagram.  The fraction of queries with the modeling 
error higher than 20% equals to 8% (it is 12·0.08=1 
query out of 12). 
 Option 3. The calibration procedure used the 
average time for execution of three queries executed 
on the cluster with 9 slave nodes.  The modeling 
accuracy was evaluated based on the corresponding 
6=1(N)·3(Q1)·2(s) queries (i.e. experiments on 
clusters with 3 and 6 slave nodes were excluded).  The 
Figure 10 provides the modeling error distribution 
diagram.  In this case there are no queries with 
modeling error higher than 20%. 

 

Figure 8: Modeling error distribution (calibration 
Option 1). 
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Figure 9: Modeling error distribution (calibration Option 2). 

 

Figure 10: Modeling error distribution (calibration Option 
3). 

Based on the calibration options 1-3 analysis we 
can conclude that the accuracy of the developed 
model shows significant growth with the increase in 
number of slave nodes in a cluster. 

7 CONCLUSION 

Based on the performed research we developed an 
analytical model that estimates the n-dimensional 
Data Warehouse query execution average time for 
MapReduce environments with the MFRJ method. 
 The experiment and modeling results show 
that the modeling accuracy grows with the increase in 
number of salve nodes. In particular, the error above 
20% for 3, 6 and 9 nodes was shown in 8 out of 18 
queries.  The 9-node runs showed an error rate below 
20% for all 6 queries. The demonstrated modeling 
accuracy is adequate for the information system 
design estimation. 
 This model checks whether the Data 
Warehouse access time is acceptable. This is 
especially important for business intelligence systems 
with limited response time.  The analytical model 
application helps a designer to make the right decision 
at the right time before the coding is started and well 
in advance of the system operation. 

The proposed approach can be used for 
development of mathematical models for other Data 
Warehouse access methods (Zhou & Wang, 2013). 

We continue our work on a method for Data 
Warehouse with an arbitrary schema (not limited by 
the star schema).  This method will be based on 
cascade application of the Bloom filter and allow 
implementing complex SQL queries in the Spark 
environment, that cannot be implemented in Hive or 
Spark SQL.  SELECT operator with a “not equal” 
condition applied to a correlated query result is an 
example of such complex SQL queries.  We work on 
a cost model for this method.  It will take into account 
transformations and operations formed by the query 
execution Directed Acyclic Graph and Spark 
implementation specifics.  A plan can be complex and 
represented by an acyclic graph.  It works as a 
conveyer simultaneously pushing RDD partitions 
(table fragments that are stored at the cluster stations) 
between the nodes of the graph. 
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