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Abstract: Multi-Robot Task Allocation (MRTA) addresses the problems related to an efficient job assignment in a 
team of robots. This paper expresses MRTA as a generalization of the Multiple Traveling Salesman 
Problem (MTSP) and utilizes evolutionary algorithms (EA) for optimal task assignment. The MTSP version 
of the problem is also solved using combinatorial optimization techniques and results are compared to 
demonstrate that EA can be effectively used for providing solutions to such problems. 

1 INTRODUCTION 

Efficient planning is one of the major skills required 
to accomplish a complex task by a team of agents, 
be it humans or robots. Multi-Robot Task Allocation 
(MRTA) deals with the problem of determining the 
optimal assignment of a group of tasks to a team of 
robots for efficient completion of the jobs at hand. A 
group of robots cleaning up an office block, a team 
of surveillance bots providing security to a facility, 
or a team of firefighting robots unit covering a 
disaster situation in a forest fire are all examples of 
multi-robot tasks. To make this cooperation of 
agents efficient, a plan needs to be formulated on 
how a team of robots should approach a set of tasks 
for optimum results.  

The first and the most fundamental question that 
needs to be asked in this case is “which agent 
performs what task?” To answer this, an 
optimization strategy needs to be executed. The 
strategy must keep all the spatial, temporal, and 
physical constraints of the team in check and 
provide a plan that optimizes the whole operation. 
Gerkey and Matarić (2004) proposed a 3 axis 
taxonomy for MRTA. Gerkey (2003) proved that 
MRTA in its simplest form is a typical 
Combinatorial Optimization problem that is of NP-
Hard nature. This implies that for larger problems, 
only approximate solutions are possible which 
brings heuristic-based optimization schemes into the 
picture. This research aims to use Evolutionary 
Algorithms (EA) for this purpose. It is worth 

mentioning that compared to mathematical modeling 
methods, the evolutionary computing paradigm has 
proved to be more flexible in real-life dynamic 
environments. Especially, since at times, it is 
difficult to formulate every real-life scenario 
mathematically. Even if it is done, any change in the 
environment may make the whole mathematical 
model infeasible. The experiments for the EA are 
performed on a Robot Operating System (ROS) 
(Quigley et al., 2009) based setup, using Gazebo 
(Koenig and Howard, 2004) as a simulator. The 
selection of ROS for implementation makes the 
experiments as close to the real robots as possible. In 
addition, the whole setup can be implemented on a 
team of real robots with only minor changes.  

The results obtained from the optimization are 
validated against a mathematical formulation of the 
same problem using Multi-Traveling Salesman 
Problem (MTSP) approach. The MTSP is modelled 
in AMPL (Fourer et al., 1987) and is solved using 
CPLEX (“IBM CPLEX CP Optimizer,” n.d.) Solver. 
The CPLEX is commercially provided by IBM and 
solves linear programming problems using the 
simplex technique through primal or dual variants. 
Due to computing constraints in AMPL’s student 
version, the CPLEX solver provided by the NEOS 
server (Gropp and Moré, 1997) was used. NEOS 
server hosts a number of free solvers online for 
numerical optimization purpose.  

The rest of the paper is organized as follows. 
Section 2 provides a brief literature review along 
with an overview of the key concepts used in this 
work. Section 3 provides the details of the 
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experimental setup. Section 4 analyses the results 
obtained. Finally, Section 5 discusses the findings of 
the research and provides future research directions. 

2 LITERATURE REVIEW 

2.1 Overview of MRTA 

MRTA is the study of efficient task allocation for 
multi-robot teams. It was classified by Gerkey and 
Matarić (2004) on a three axis taxonomy. The 
taxonomy differentiates among (a) Type of Robot: 
Single Task Robot (ST) and Multiple Task Robots 
(MT) (b) Task type: Single Robot Tasks (SR) and 
Multiple Robot Tasks (MR) and (c) Arrival Time of 
the task: Instantaneous Arrival (IA) and Time 
Extended (TE). According to this taxonomy, the 
most basic and the most researched distribution is 
the Single Task - Single Robot - Instantaneous 
Arrival (ST-SR-IA).  

In an organizational paradigm, MRTA 
techniques could be distributed into two types, 
namely, centralized and distributed. Centralized 
techniques comprise of a central planning unit which 
has the knowledge of the whole environment. 
Information about the number of jobs at hand, 
positions of every robot, the current task list of every 
robot, etc. are available to the central unit. Global 
communication is needed for sharing all the 
information with the central station. The centralized 
techniques have the advantage of providing the 
optimal solution all the time. Such systems are 
widely used for MRTA (Al-Yafi et al., 2009).  
Centralized systems, however, suffer in robustness 
and overhead of communication. Distributed 
techniques, on the other hand, have no centralized 
agent, and the authority of task allocation is 
dispersed amongst the agents. Depending upon the 
technique used, robots in a distributed system might 
act completely independent or occasionally share 
some information with other robots for plan 
optimization. Distributed planning might not provide 
with the optimal solution, but do not need global 
communication, and have a high degree of 
robustness and scalability (Parker, 1998). All the 
MRTA techniques present in the literature can be 
distributed into the following four major approaches 
which are briefly discussed in the sequel: 

(a) Behaviour Based 
(b) Market Based 
(c) Combinatorial Optimization Based 
(d) Evolutionary Algorithm Based 

   

2.1.1 Behaviour based Approaches 

These are distributed solution approaches which 
incorporate some form of mathematical or heuristic 
based action selection mechanism in the robot. 
Based on a reluctance or willingness like feature, the 
mechanism decides if the robot should consider a 
particular job or not. ALLIANCE (Parker, 1998), 
and BLE (Werger and Matarić, 2000) are good 
examples of these schemes. Behavior-based 
techniques enjoy the basic advantages of distributed 
systems and require no communication at all. Since 
the plans executed by robots are local in nature and 
lack any interaction at the global level, these 
techniques at times fail to provide the best solutions 
and usually come up with approximate solutions. 

2.1.2 Market-based Approaches 

The market-based approach is another distributed 
approach which works on an auction-based 
mechanism. Usually, a bid is requested from all the 
interested robots to attempt an available task. The 
bid majorly corresponds to the cost (in terms of the 
required resources) the robot expects to incur while 
attempting the task. When all the bids have been 
received, the task is assigned to the best bidder. It 
must be stated that comparative studies (Badreldin et 
al., 2013) have found auction based schemes to 
struggle in performance when compared with other 
approaches. Hybrid schemes have also been 
explored that work in combination with techniques 
such as reinforcement learning (Kose et al., 2004) 
and combinatorial optimization (Hunsberger and 
Grosz, 2000) for improved results. 

2.1.3 Combinatorial Optimization based 
Approaches 

Gerkey and Matarić (2003) showed that ST-SR type 
MRTA problems are instances of Optimal 
Assignment Problem (OAP) (Gale, 1960). This is 
the only distribution of the MRTA taxonomy that is 
polynomially solvable; all the remaining problems 
are NP-hard. Despite the fact that exact solutions of 
the ST-SR distribution exist and can be achieved in 
finite time, suboptimal techniques have been 
proposed in the literature mainly because the 
expansibility and efficiency of combinatorial 
optimization based approaches are weak. The two 
popular techniques that have been used in this case 
of MRTA are linear programming (Atay and 
Bayazit, 2006) and Optimal Auction Algorithms 
(Berhault et al., 2003). 
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2.1.4 Evolutionary Algorithm based 
Approaches 

Evolutionary algorithms are population-based 
optimization schemes, inspired by Darwin’s theory 
of evolution, that comprise of a population of 
solutions optimized using evolutionary operators 
such as selection, reproduction, mutation, and 
recombination.  

The algorithm starts with a population of 
randomly initiated solutions. It aims to improve 
solution quality over a period of several generations. 
A balance is kept in every generation between 
exploring and exploiting the solution space through 
the crossover and mutation operators. Evolutionary 
techniques are quite famous and successful in 
solving problems such as MRTA. For example, 
(Shea et al., 2003) uses a genetic algorithm to 
provide a solution for multiple target tracking by a 
group of robots. (Jones et al., 2011) also used a 
genetic algorithm for a time extended task 
assignment in a disaster situation. This paper uses 
EA based optimization for multi-robot task 
assignment. There are three major components of an 
EA which need to be taken care of while designing 
an effective optimization scheme. These three 
components are explained below:  

Chromosome Encoding 
MTSPs are usually encoded for EA using 3 basic 
formats: single chromosome technique, two 
chromosome technique, and two part chromosome 
technique. All three representation are shown in 
Figure 1. 

Having n jobs at hand to be attempted by m 
robots, the single chromosome representation 
represents the complete solution using a single 
chromosome which is n + m -1 in length. Figure 1a 
provides a possible representation of single 
chromosome scheme. The solution comprises of m 
sub-tours, one for each robot, each of which is 
identified by a marker (negative numbers in this 
case).  All the sub-tours combined should be a 
permutation of n jobs. Jobs are visited by the robots 
in the order by which they appear in the 
chromosome. The second encoding scheme    
(Figure 1b) uses two chromosomes of length n to 
represent a single solution. The first chromosome 
represents a permutation of jobs to be attempted 
whereas the second chromosome gives information 
regarding the robot attempting a particular job from 
chromosome 1. The index of a job represents the 
order in which it will be attempted by the robot 
responsible for it.  

Carter and Ragsdale (2006) highlight the lacking 
of these two schemes and propose the two-part 
chromosome representation (Figure 1c). The two-
part chromosome has one portion having a 
permutation of the jobs to be attempted, and the 
other portion representing the number of jobs 
assigned to each robot from the first portion. The 
chromosome length is n + m, n for the first portion 
and m for the second. This representation needs no 
markers for isolating the two portions, as it could be 
done on the basis of length. This paper uses the two 
part chromosome representation for the ST-SR-IA 
type of MRTA problem.  

 

Figure 1: Chromosome Representation for MRTA. 

Evolutionary Operators 
A balanced exploration and exploitation of the 
solution space ensure good results in EA. Crossover 
and mutation have to be smartly designed and 
customized according to the problem, for them to be 
effective. (Carter, 2003; Yuan et al., 2013) highlight 
the limitations of conventional crossover operators 
when applied to the two-part chromosome 
representation. Carter (2003) emphasizes the 
importance of further exploration whereas (Yuan et 
al., 2013) presents a new crossover operator called 
the Two-part crossover (TCX), used with mutation, 
to achieve better results. TCX shows better results 
when compared with conventional crossover 
schemes (Yuan et al., 2013). This paper uses the 
TCX operator for an effective explorative crossover.  

Fitness Function 
Fitness function guides the search direction of EA as 
it aims to obtain a good solution. The fitness 
function judges the effectiveness of the proposed 
solution. It helps the EA not only differentiate 
between good and bad solutions but also helps in 
moving from one generation to another. The 
crossover, mutation, and selection operators of an 
EA all depend on the fitness function, either directly 
or indirectly. 
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3 PROBLEM FORMULATION 

It is generally suggested that problem formulation 
plays a vital role towards getting desirable results 
from an EA. This paper takes advantage of the 
similarities the ST-SR-IA problem distribution has 
with MTSP by formulating it as a generalization of 
MTSP. This section explains the structure of the 
representation used for solving the MRTA. 

 

 

Figure 2: Two-part Chromosome Crossover (TCX). 

3.1 Multiple Traveling Salesman 
Problem 

MTSP is an extension of the famous traveling 
salesman problem (TSP). With n cities to be visited, 
the MTSP seeks m tours, one for each salesman (n > 
m) traveling to each city only once. Even the simple 
TSP falls under the NP-complete (Junjie and 
Dingwei, 2006) class of problems. Although exact 
solution approaches for MTSP exist, but due to its 
NP-hard nature, the combinatorial complexity 
increases for large sized problems. Heuristic based 
methods are a popular choice in such cases. 
Amongst heuristic based methods, EA is successful 
and widely used. Due to its structure, MTSP could 
be generalized to solve a number of similar 
problems. Problems such as vehicle routing problem 
(Park, 2001) and job scheduling (Carter and 
Ragsdale, 2002) provide promising results when 
modeled as MTSP. This research uses MTSP for 

formulating the structural representation of MRTA 
to be optimized by EA. The MTSP based 
representation is also later used for validating the 
EA results by solving the MTSP through 
combinatorial optimization based technique.  

3.2 Evolutionary Algorithm 

As already discussed in Section 2, chromosome 
encoding, evolutionary operators, and fitness 
function are the three most important factors of an 
EA for achieving effective results.  

The two-part chromosome technique is used in 
this paper for solving the ST-SR-IA type MRTA 
problem. The first part represents a permutation of 
all the jobs, while the second part represents the set 
of jobs to be executed by each robot. The position of 
the job in the permutation represents the order in 
which they are to be executed. Figure 1c represents a 
solution where the first robot attempts 5 jobs in the 
order 1-9-12-3-4, the second robot has 4 jobs to do 
in the order 7-8-5-11, and the third robot will 
perform 3 jobs in the order 2-6-10.   

As already discussed in Section 2, the TCX 
(Yuan et al., 2013) shows better results when 
compared with conventional crossover scheme for a 
two-part chromosome representation. The working 
of the TCX is illustrated in Figure 2. TCX is a 5 step 
operation that takes 2 parents and produces 2 
offspring. The figure represents chromosomes for a 
12 task problem with 3 robots.  

Mutation is as important as crossover in an EA 
because it keeps genetic diversity in the population 
alive. The algorithm uses inverse mutation for this 
purpose. Inverse mutation picks a sub-tour randomly 
from the first portion of the two-part chromosome 
and inverts it. No mutation is applied to the second 
portion of the chromosome. 

The fitness function is concerned with the total 
distance the team has to cover in order to complete 
all the tasks. Since we are concerned with reducing 
the team's efforts to accomplish all the tasks at hand, 
this becomes a minimization problem. Hence, the 
fitness function comprises of a simple sum of 
Euclidean distance calculation for each robot. In 
other words, for every robot, the sub-tours presented 
by the chromosome are worked through once and 
the total distance traveled by all the robots combined 
acts as the fitness function.  
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4 EXPERIMENTAL 
EVALUATION 

4.1 Simulation 

The experiments were performed on a powerful 
open-source simulator, Gazebo, which provides an 
accurate simulation environment for population of 
robots with a robust physics engine. A team 
comprising of three Turtlebots (Garage, 2011) was 
used for these experiments. Turtlebot is a low-cost 
open-source robot, comprising of (a) depth camera 
that allows the robot to see in 3D (b) a mobile base 
which has bumper sensors and (c) two differential 
drive motors which help the robot move. During the 
experiments, each Turtlebot was initiated as an 
individual ROS node having its independent 
navigation using the depth camera. The navigation 
not only planned the robot’s path for stationary goals 
but also kept the dynamic obstacles (other robots) in 
consideration.  

The simulation was carried out on a preloaded 
map of 7 x 7 meters. The locations of the jobs were 
provided at the start of the algorithm as the paper 
only focuses on Instantaneous Arrival (IA) type of 
problem. For simplicity, the robot had to just visit 
the job location in order to get it counted as 
complete. Only one robot had to visit a job location 
as the jobs are SR (Single robot) in nature. Random 
job locations were generated for this purpose. Any 
solution which was unable to complete even a single 
job from the job set was considered invalid and was 
removed from the population. 

4.2 EA Implementation 

The TCX operator with a conventional mutation 
operator for exploration and exploitation was used. 
To further improve the exploration and exploitation 
components and to prevent the algorithm from 
getting stuck at local minima, an Artificial Immune 
System (AIS) (Hunt and Cooke, 1996) type 
approach was used in the algorithm. In the (µ + λ) 
generational scheme, 30% randomly generated 
solutions were inducted in every generation. Figure 
3 gives an overview of the scheme. 

 

Figure 3: Overview of the working model. 

4.3 Validation 

For validation purposes, the job distribution and the 
map information was passed to a linear optimization 
program written in AMPL for the optimization of 
the MTSP based representation of free AMPL the 
ST-SR-IA. Due to computing constraints in the 
version, the code was run on NEOS online server 
using the CPLEX solver. Distance matrix 
comprising of distance values from one job to 
another was generated using ROS and Gazebo. This 
step was repeated for different jobs. The distance 
matrices were fed into the CPLEX algorithm for tour 
optimization. Figure 4 shows a distance matrix for a 
10 job problem. The tours generated through 
CPLEX and their lengths were used for validation 
purpose. Next, the EA was initiated with a random 
initial population. A fix population size of 300 
individuals was kept for all the job distributions, 
with a crossover probability of 0.4 and a mutation 
probability of 0.6.  

The EA was terminated whenever the fitness of 
our best solution reached in the proximity of 1% of 
our exact solution obtained through CPLEX. The 
generations taken to reach the solution were also 
recorded. It is worth mentioning that EA was able to 
match the best solution for all the job distributions 
on which it was tested. Table 1 gives the accuracy 
comparison of CPLEX and EA and the generations 
taken by the EA to achieve the exact solution.  

The relation between accuracy of the EA and 
generations needed was also plotted. Figure 5 
provides this graph for a cluster of 30 job problems. 
The average generation values for the graph were 
computed by generating random job distributions 
multiple times and running the EA over them. As it 
can be seen, the better quality we seek the more 
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generations would be needed, and it is exponential in 
nature. 

A surface plot representing the changes in fitness 
value with any changes in the job distribution of the 
robots is shown in Figure 6. This provides a deep 
insight into the properties of the fitness curve. The 
figure shows the surface plot for the 30 job problem. 
from the first  portion  of  the chromosome constant  
and just altering the number of jobs to be executed 
by each robot (that is the second portion of the 
chromosome). For easier visual understanding, the 
surface plot in Figure 6 represents the inverse of 
fitness values. A constant value is assigned to the 
combinations that are not possible, that is, for a 30 
job problem, this included combinations that have a 
sum greater than 30.  

As can be seen from the surface plot, there is a 
very obvious ridge along the diagonal, indicating not 
much difference in fitness values for minor changes 
in robots job distribution (keeping the job 
permutation in the first part of the chromosome 
constant). In addition, there is a very sharp valley 
just before the ridge of optimum values indicating 
the tricky nature of the fitness function. This sharp 
valley just before the maximization ridge explains 
the need for AIS like optimization strategy as it 
provides a certain portion of randomly generated 
solutions in every generation; making the EA fall 
out of any local optima when stuck. The 
combination of this ridge and valley also explains 
why mutation during the EA was not performed in 
the second half of the chromosome, as keeping the 
job permutation constant and making minor 
adjustments to the job distributions of the robot 
would either have made minimal changes to the 
fitness value (ridge) or had substantially increased 
the fitness value (valley). Figure 7 provides the Best 
so Far (BSF) and Average so Far (ASF) curves of 
EA for different job distributions. The figure 
represents a scenario having 30 jobs which are to be 
distributed among 3 robots by the EA. The algorithm 
takes around 500 generations with a population size 
of 300 individuals to reach within 1% of the exact 
solution provided by the combinatorial optimization 
technique. The gap between ASF and BSF is due to 
the 30% random individuals injected every 
generation for better diversity.  

 
 
 
 
 
 
 

Table 1: Fitness comparison of CPLEX with EA. 

 

 

Figure 4: Distance matrix for 10 jobs. 

 

Figure 5: Average number of generations taken by EA 
with respect to accuracy. 

 

Figure 6: Surface Plot for 30 Job Optimum Solution. 
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Figure 7: BSF and ASF Curves for a 30 Jobs 3 Robot ST-
SR-IA problem. 

5 CONCLUSION AND FUTURE 
WORK 

The paper used MTSP based chromosome 
representation to solve MRTA using EA. The results 
were compared with exact mathematical solutions 
obtained through CPLEX. EA provided an optimal 
solution in each and every case and did it in an 
acceptable number of generations. However, the 
advantage EA has over combinatorial optimization 
based techniques is that for dynamic environments, 
such as a robot team executing tasks in real life 
scenarios, the problem will not need remodeling if 
minor changes occur in the structure of the problem. 
Moreover, EA provide the flexibility of restarting 
the optimization from the last solution in case the 
last solution becomes invalid due to some structural 
changes in the problem. 

The future work will focus on using this same 
MTSP representation for solving more complex 
MRTA distributions. This will allow taking 
advantage of EA for adjusting to changes made in 
problem representation more flexibly as compared to 
exact mathematical solutions.  
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