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Abstract: Acoustic alarms generated by biomedical equipment are relevant sounds in the noisy Neonatal Intensive Care
Unit (NICU) environment both because of their high frequency of occurrence and their possible negative
effects on the neurodevelopment of preterm newborns. This work addresses the detection of specific alarms
in that difficult environment by using neural network structures. Specifically, both generic and class-specific
input models are proposed. The first one does not take advantage of any specific knowledge about alarm
classes, while the second one exploits the information about the alarm-specific frequency sub-bands. Two
types of partially connected layers were designed to deal with the input information in frequency and in
time and reduce the network complexity. The time context was also considered by performing experiments
with long short-term memory networks. The database used in this work was acquired in a real-world NICU
environment. The reported results show an improvement of more than 9% in absolute value for the generic
input model and more than 12% for the class-specific input model, when both consider time information using
the proposed partially connected layer.

1 INTRODUCTION

The acoustic environment of a Neonatal Intensive
Care Unit (NICU) is very noisy and contains a high
diversity of sounds that happen spontaneously and of-
ten overlap in time. The possibility of noxious ef-
fects of the noisy NICU environment on preterm new-
borns has been well documented and is of great con-
cern in the medical literature (Wachman and Lahav,
2010). Acoustic alarms, which are frequently gen-
erated by various biomedical equipment, are among
the most relevant types of sounds in the NICU envi-
ronment and may negatively affect the neurodevelop-
ment of the preterm infants. Besides, the excess of
alarms that do not have clinical relevance can cause
an alarm fatigue to the medical staff and affect the
quality of healthcare provided by them (Freudenthal
et al., 2013). Therefore, automatic detection of acous-
tic alarms in the NICU can be useful to: 1) study
relations between the detected alarms and the infant
health; and 2) assist the medical staff in their work.

So far, the problem of general acoustic alarm de-
tection has not been much explored. In general, it was
investigated for hearing impaired assistance or hear-
ing support in noisy conditions (Beritelli et al., 2006;
Carbonneau et al., 2013). To the best of our knowl-
edge, the first work on automatic alarm sounds detec-

tion is reported in (Ellis, 2001), where an approach
borrowed from speech recognition and an approach
based on sinusoid modelling and separation were
compared. Later works on acoustic alarm detection
usually make use of particular properties of alarms
as: detection of amplitude periodicity in a specified
frequency bandwidth (Carbonneau et al., 2013); pitch
detection in a predefined frequency range (Meucci
et al., 2008); spectral- and time-domain properties
extracted with morphological features (Xiao et al.,
2009); explotation of the long-term periodicity with
the autocorrelation function (Lutfi and Heo, 2012).

A system for acoustic alarm detection in a NICU
environment was first presented in (Raboshchuk et al.,
2014), for the task of binary alarm detection; and also
an acoustic description of that environment was pro-
vided. The proposed system included a denoising
pre-processinng step, employed generic features that
cover the whole frequency bandwidth and pre-trained
neural networks. In (Raboshchuk et al., 2015), the
problem of detecting specific NICU acoustic alarm
classes was addressed. The system consisted of a
set of binary Gaussian mixture modelling based de-
tectors (one per each alarm class). The knowledge
about the spectro-temporal alarm characteristics was
exploited. First, by using sinusoid detection around
alarm-specific frequencies for feature extraction; and
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second, by including a post-processing step that takes
into account the temporal structure of alarms.

An approach based on Neural Networks (NN) is
proposed in this paper to detect alarm sounds in a
real-world NICU hospital environment. The NNs de-
scribed in (Ellis, 2001; Beritelli et al., 2006) have a
conventional topology and use extracted features at
the input (perceptual linear predictive cepstral coeffi-
cients in (Ellis, 2001) and mel-scale cepstral coeffi-
cients in (Beritelli et al., 2006)). Conversely, in this
work, a simple magnitude spectral representation is
used at the input, but a more elaborated NN struc-
ture is explored, though, due to the small size of the
dataset, deep topologies could not be considered. Two
types of partially connected hidden layers with lim-
ited weight sharing are implemented to reduce the
number of network parameters to train. Those layers
are employed in the networks to extract local infor-
mation in either time or frequency, so we call them,
respectively, Frequency Weighting (FW) and Tempo-
ral Weighting (TW). Two different kind of models are
proposed: a Generic Input Model (GIM) and a Class-
specific Input Model (CIM). GIM does not employ
any knowledge about the particular alarm class, while
CIM takes advantage of the knowledge about alarm-
specific frequency components. Both models were
studied and compared through the presented results.

The NN-based techniques which have been devel-
oped and compared in this work operate at the frame
level. In order to evaluate the systems also in terms of
event detection, the sequence of frame-level classifi-
cation decisions is processed with a simple smoothing
technique.

The rest of the paper is organized as follows. Sec-
tion 2 contains the description of the database and
of the acoustic alarms. In Section 3, the system de-
velopment is presented, including the description of
input representation, pooling techniques and partially
connected hidden layers, and the description of the
two input models proposed. Finally, in Section 4 the
evaluation setup and the experimental results are dis-
cussed.

2 DATA DESCRIPTION

The database used in this work contains audio ac-
quired during ten recording sessions in the NICU of
Hospital Sant Joan de Déu Barcelona (108.7 minutes
in total). Two electret unidirectional microphones
connected to a linear PCM Recorder were used to
make recordings. One microphone was placed inside
the incubator, close to the infant’s ear, and the other
one outside the incubator, usually pointing to the cen-

Figure 1: Typical structure of an alarm sound.

ter of the room. But only the recordings obtained
from the microphone placed outside are used in this
work. The manual annotations cover 54.3 minutes of
this data, where 19.28% of time is labelled as alarms.
Note that each alarm signal was annotated separately
(see Figure 1).

A large diversity of sounds can be found in a typi-
cal NICU environment. In the acquired database 16
different alarm classes were observed, which were
generated by various types of biomedical equipment,
such as cardiorespiratory, monitors, ventilators, infu-
sion pumps, incubators, etc. Only 7 most populated
alarm classes, which were also relevant from the med-
ical point of view, are selected in this work.

Alarm sounds are periodic in time, and each pe-
riod is defined by a signal and silence intervals of
specific durations (see Figure 1). The signal inter-
val contains one or several consecutive tones, which
are stationary. Each tone is defined by one or several
simultaneous frequency components harmonically re-
lated or not. Several alarm classes show some varia-
tions in the frequency and duration values, and such
cases are referred to as different versions of the alarm
class. The specific spectro-temporal properties of the
selected alarm classes are presented in Table 1.

Most of the time, alarm sounds occur together
with other types of sounds. However, the temporal
overlaps between alarms are not rare either, and in the
annotated data two or more alarms sound simultane-
ously almost 8% of time.

3 SYSTEM DEVELOPMENT

3.1 Input Representation

The recorded audio was downsampled from 44.1 to
24 kHz, thus, the observed frequency range is up to
12 kHz. For processing, the frame length was set to
2048 points with 50% of overlap. Then, each spec-
tral frame length is 1024 points, which corresponds
to a resolution of 11.78 Hz per spectral point. In this
work, a spectrum representation rather than an ex-
tracted set of features is used directly as the input data
to let the network learn the feature representation by
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Table 1: Description of the chosen alarm classes. After “alarm-classes”: comma-separated frequencies are simultaneous in
time; information separated with brackets corresponds to a different version of the alarm; frequencies separated with slash
correspond to consecutive tones.

Class Period duration (s) Frequency components (kHz) Samples Frames

a1 2.050
[2.246]

0.495, 1.465, 2.435
[0.515, 2.455, 3.445, 4.415] 238 3935

a3 15.300 0.665, 1.330, 1.990, 2.660 / 0.540, 1.60, 3.150
[0.520 / 0.420] 130 1928

a6 0.447 2.410 203 1785

a7 1.015 0.980, 2.935
[2.880] 114 2239

a8 2.245 0.490, 1.480, 2.460, 3.440, 4.420 452 2956

a10 1.000 1.140, 2.280, 3.425
[0.880] 75 1186

a16 2.053 0.495 135 969

itself. This was inspired by recent works reported in
(Sainath et al., 2013; Abdel-Hamid et al., 2013).

3.2 Pooling Techniques for Input
Pre-processing

Several pooling techniques are implemented to reduce
the input size while preserving the relevant informa-
tion. Average Pooling (AP) technique averages the
small portion of frequency sub-band values. Then two
non-linear pooling techniques based on maximum are
proposed, where the goal is to preserve high spectral
peaks with their real values: Standard Max Pooling
(SMP) and Mel-Scale Max Pooling (MSMP). SMP
technique has the same structure as AP, but it uses
maximum rather than averaging. MSMP, on the other
hand, looks for the maximum value following the
mel-scale filter bank distribution and provides a more
natural representation according to the human ear per-
ception.

3.3 Model Structures

3.3.1 Generic Input Model

The aim of using this kind of model is to have a net-
work structure and a set of features that do not de-
pend on the alarm properties, so they have not to be
changed when the model for a new alarm has to be
trained. Figure 2(a) shows the general scheme of this
model. The input-vector is the whole spectral frame
representation (magnitude DFT of the signal frame).
First, the spectral values are pre-processed to reduce
the size of the representation of the spectrum, while
keeping the relevant information. Then, logarithm
and Mean-Variance Normalization (MVN) are used
to improve the data distribution before it is fed to the

classifier, which is either a feedforward NN or a long
short-term memory NN.

3.3.2 Class-specific Input Model

For this model the particular spectral and temporal
properties of alarms are assumed known. In fact, only
the spectral information is used, since the inclusion
of the temporal information (i.e. signal and silence
interval duration) requires that many more network
weights are trained, what is not feasible. The spectral
information is exploited at the input of the network
(see Figure 2(b)), where the input features are only the
spectral values at the alarm-specific frequency bins
( f 0, f 1, f 2, f 3) and the bins around them: Left Neigh-
bors (LN) and Right Neighbors (RN). Logarithm and
MVN are further applied to the input data. Obviously,
neither pooling strategies nor partially connected lay-
ers for frequency weighting are used by this model.

3.4 Partially Connected Layers

3.4.1 Frequency Weighting

For model size reduction we first propose to use par-
tial connections as a weighted average of a portion of
spectral bins, as shown in Figure 3(a), where F is the
number of input spectral bins of frame St . As shown
in the figure, the upper layer has a size that is the quo-
cient between the input size and the pooling size.

3.4.2 Temporal Weighting

This layer exploits the frame temporal context as
shown in Figure 3(b). The central frame St of the
context window is the one to be classified by the NN,
but the input of NN is a concatenation of all frames
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(a) Generic Input Model (GIM) (b) Class-specific Input Model (CIM)

Figure 2: Proposed input models.

inside the context window. Therefore, the input vec-
tor contains information from past and future frames.
The upper layer performs a time weighted average for
each frequency bin, and so it has the same size F than
a single input frame.

4 EXPERIMENTAL
EVALUATIONS

4.1 Experimental Setup

Since the dataset is relatively small, a 10-fold cross-
validation scheme was implemented to obtain more
statistically relevant results. As the dataset consists
in 10 recording sessions, on each fold 9 sessions
were used for training and the remaining one for test-
ing. Then, the overall metric results were obtained.
For training the model for an alarm class, from each
recording session, all the alarm class frames were ex-
tracted plus the same amount of non-alarm frames to
create a balanced training set. In order to maximize
variability, those non-alarm frames were chosen ran-
domly.

The fully connected hidden layer employed in the
neural networks of the presented experiments had 8
hidden units. The activation function of the hidden
units was the sigmoid, and that of the output units
was softmax. Note that there was no pre-training.
Binary cross-entropy was used as objective function
for networks training, which seems to perform better
than mean-squared error function neither pre-training

nor a good initialization are used (Golik et al., 2013).
Stochastic gradient descend was used for the network
optimization. The learning rate and momentum pa-
rameters of the network were set to 0.01 and 0.9, re-
spectively. The number of epochs was 70 and the
mini-batch size was 10.

With both types of models the mean and the vari-
ance required for applying MVN to both training and
testing samples were obtained from the training data.
According to (Lecun et al., 1998), convergence is usu-
ally faster if the average of each input variable over
the training set is close to zero.

4.2 Evaluation Metrics

In this work, frame-level and event-level metrics are
used to evaluate the detection performance. The
Missing Rate (MR) and the False Alarm Rate (FAR)
metrics are used for the frame-level evaluations. And
these are defined as

MR =
NM

NA
, FAR =

NFA

NNA
, (1)

where NM and NFA is the number of misclassified
frames for alarm and non-alarm class, respectively,
and NA and NNA is the total number of alarm and non-
alarm frames, respectively.

The Equal Error Rate (EER) was chosen as the
decision criterion at the frame level, therefore the
reported MR and FAR metric scores have the same
value.

All the alarms are periodic sounds. The period of
the alarm was chosen for the event-level evaluation,
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(a) Partially connected layer for frequency weighting (b) Partially connected layer for temporal weighting

Figure 3: Partially connected layers implemented.

since it is a natural alarm-specific unit. The Period-
Based Error Rate (PB-ERR), is defined as

PB−ERR = 1− 2 ·NC

2 ·NC +NFA +NM
, (2)

where NC is the number of correctly detected refer-
ence alarm periods, NM and NFA is the number of
missed and falsely inserted periods. For calculating
this metric, a smoothing post-processing, which is
based on majority voting, is applied to the frame-level
output labels. The length of the smoothing window
was set to be the minimum of the signal and silence
interval length in the alarm period. A detailed expla-
nation of this event-level metric is presented in (Ra-
boshchuk, 2016).

4.3 Results and Discussion

The experiments were first carried out with the most
populated alarm class from the recorded database (see
Table 1), which is class ’a8’. Then, the best network
structures for each model were replicated for the rest
of the alarm classes.

Table 2 shows the baseline results when either an
amplitude (A) or log-amplitude (LogA) spectral input
is used. The latter was introduced taking into account
that the non-linear logarithm transformation reduces
the value range, which could benefit the network’s
learning. Both experiments were performed using the
whole spectral frame length (thus, 1024 input units)
fully connected with a hidden layer of 8 units.

Table 2: Baseline results.

Input Evaluation metrics (%) Network
weightsMR=FAR PB-ERR

A 26.42 56.17 8218
LogA 23.44 57.53 8218

It can be seen that using the log-amplitude spec-
trum (LogA) the EER was reduced by almost 3% in
absolute value, although PB-ERR slightly increased.

Since in this work the focus is on the frame-level clas-
sification, the rest of the experiments were performed
using the logarithmic representation of the spectrum.

The results in Table 3 show the performance of the
system using the proposed pooling techniques for the
Generic Input Model (GIM): Average Pooling (AP),
Standard Max Pooling (SMP) and Mel-Scale Max
Pooling (MSMP). AP and SMP had a pooling size
of 4 bins so the resultant input had 256 units. This
size was chosen to avoid merging of spectral bins
corresponding to class-specific frequencies of differ-
ent alarm classes inside pooling groups, which may
harm the system performance. In order to keep a
minimum resolution while preserving the maximum
alarm-specific spectral information, a bank of 60 fil-
ters was used in MSMP, although typically 40 fil-
ters are used in speech and acoustic recognition (e.g.
(Sainath et al., 2013)).

Table 3: Pooling techniques results.

Technique Evaluation metrics (%) Network
weightsMR=FAR PB-ERR

AP 30.24 64.15 2074
SMP 23.55 55.20 2074

MSMP 25.00 57.47 506

Non-linear pooling techniques clearly provide
better results than average pooling, both in terms
of frame-level and period-level metric scores. This
may be explained by the fact that both max-pooling
schemes preserve high spectral peaks corresponding
to alarms. Notice that a strong reduction of network
weights in MSMP with respect to SMP is obtained at
the expenses of only a small increase in EER (6.1%
relative). Similarly, at the frame-level compared to
the best baseline (LogA), much smaller number of
training weights is used, what is an advantage in terms
of computation time and overfitting. Next experi-
ments aimed to further decrease both the error rate
and the number of training weights.

Experiments with GIM were performed includ-
ing partially connected hidden layers for weighting in
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frequency (FW) and in time (TW), the results from
which are shown in Table 4. Spectral representations
after SMP and MSMP were used with a FW layer of
pooling size 4 and 5, respectively, creating a hidden
layer of size 64 and 12 units. Further, a TW layer
with a context window of 5 frames was implemented
also on both representations. The pooling sizes were
experimentally optimized.

Table 4: Generic input model results using partially con-
nected structures.

Setup Evaluation metrics (%) Network
weightsMR=FAR PB-ERR

SMP+FW(4) 18.27 50.14 450
SMP+TW(5) 16.67 46.03 2050
MSMP+FW(5) 19.05 45.32 98
MSMP+TW(5) 13.87 41.65 482

In terms of the frame-level evaluation, the use of
FW layer with the SMP representation gives slightly
better results than using it with MSMP, but the oppo-
site is true in terms of the event-level evaluation. Us-
ing TW layer rather than FW layer with both SMP
and MSMP better results were achieved, although
the number of training weights was around 5 times
higher. Also the size of the input representation it-
self affects: it seems that wider frequency representa-
tions (using SMP) work better when the input is only
one frame, but shorter representations (using MSMP)
work better when temporal context is included.

Recurrent neural networks were also explored
for GIM, specifically, the Long-Short Term Memory
(LSTM) networks. The objective was to let the net-
work learn the temporal recurrence inherent to the se-
quence of alarm periods. Table 5 shows the results
for different LSTM setups. Starting from a baseline
setup, experiments were performed changing only
one parameter value at each time. The fixed setup was
the MSMP spectral input, a single hidden layer, and a
hard sigmoid inner activation function. The baseline
setup had 4 cells (C) and 5 timesteps (TS), i.e. the
number of spectral frames to look backward. And in
the rest of experiments the number of timesteps and
the number of cells were modified. Also, averaging
the MSMP input frames in a context window (CW) of
size 5 was tried, similarly to TW layer. Note that more
experiments were carried out with different parameter
values, but only the best results are presented.

The various LSTM results do not differ much from
their baseline performance and do not achieve those
from the combination of MSMP input frames with
TW layer that actually shows a smaller number of net-
work weights.

In Table 6 the experimental results for the Class-

Table 5: Generic input model results employing LSTM.

Setup Evaluation metrics (%) Network
weightsMR=FAR PB-ERR

Baseline 14.84 48.03 >1000
TS(2) 14.56 49.45 >1000
CW(5) 14.30 47.41 >1000
C(6) 14.84 47.62 >1500

C(6)-CW(5) 14.09 45.66 >1500

Specific Input Model (CIM) are shown. In the first
two rows, the network consists of a single fully con-
nected (FC) layer of 8 hidden units. The network in-
put consisted of concatenating ± 1 or 2 bins around
the bins corresponding to alarm-specific frequency
components (SF). TW layer was also used in CIM
with the same size of the context window as in the
previous experiments (i.e. 5 frames). As the num-
ber of training weights was small enough, the experi-
ment with an extra fully connected (FC) hidden layer
of 8 hidden units on the top of TW layer was also per-
formed.

Table 6: Class-specific input model results using fully con-
nected and partially connected hidden layers.

Setup Evaluation metrics (%) Network
weightsMR=FAR PB-ERR

SF(±1)+FC 16.44 44.09 146
SF(±2)+FC 16.37 41.45 226
SF(±2)+TW 13.23 41.02 202
SF(±2)+TW+FC 10.69 38.36 376

A wider margin around specific frequency compo-
nents slightly improved the evaluation results at both
frame and alarm period levels. As in GIM, using a
TW layer instead of fully-connected layer improved
the results, reducing the frame-level metric score by
almost 3% in absolute terms and also reducing the
number of network parameters. Then, even better re-
sults were obtained when a second fully connected
hidden layer of 8 units was added. The number of
network weights still was low and further reduction of
both metric scores was around 3% in absolute value.

Finally, the best structures obtained with ’a8’
alarm class for the baseline, GIM and CIM, which are
highlighted in bold in Tables 2, 4 and 6, respectively,
were replicated to the rest of alarm classes:

1. Baseline: logarithmic representation of the mag-
nitude spectrum and a fully connected layer of 8
hidden units (LogA+FC, see Table 2).

2. GIM: TW layer over 5 concatenated MSMP input
frames (MSMP+TW(5), see Table 4).

3. CIM: concatenation of ±2 spectral bins around
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the alarm-specific bins at the input, TW layer
over 5 concatenated MSMP input frames and a
second fully connected hidden layer of 8 units
(SF(±2)+TW+FC, see Table 6)

The results shown in Table 7 are the metric scores
averaged over the 7 considered alarm classes. The
baseline model and GIM have the same number of
training weights for all the classes as they have the
same input. But the CIM structure has a different
number of weights depending on the number of class-
specific frequency components. Namely, for each
alarm class, all its frequency components (shown in
Table 1) were included at the input; thus, each alarm-
class has a different number of network parameters.
Note that the number of network weights provided in
Table 7 for CIM is an average value over all alarm-
specific structures.

Table 7: Best model structure results over all alarm classes.

System Evaluation metrics (%) Network
weightsMR=FAR PB-ERR

Baseline 23.42 68.68 8218
GIM 17.76 54.80 482
CIM 11.13 53.75 330

Both kinds of input models improve significantly
the baseline results, and the proposed CIM struc-
ture clearly outperforms GIM. It can be seen that the
event-based evaluation was considerably improved by
both input model structures with respect to the base-
line, but it still has much room for improvement.

5 CONCLUSIONS

In this work several neural network based structures
were presented to detect alarm sounds in a NICU en-
vironment. Two kind of models based on different in-
put formats, that either make use or not of the knowl-
edge about the alarm class properties, were proposed
and tested: generic and class-specific. Due to the
scarcity of available annotated data, the number of
layers and nodes was kept small. Both linear and non-
linear pooling techniques were considered in order to
reduce the size of the input. Also, in order to exploit
frequency and temporal information while reducing
that network complexity, two types of partially con-
nected hidden layers were implemented.

As expected, it was observed that the class-
specific input model, which takes advantage of the
knowledge about the alarm frequency components,
yielded better results than the generic input model;
however, the structure of the latter model has does

not need to be adapted to each new alarm class. Also,
both types of partial connections, which make a sig-
nificant reduction of training weights, improved the
error rate, especially the time-based one.

The detection rate is still high, but we believe
that, when a much bigger dataset will be available
and used, the differences in performance among the
various tested neural net structures that have been ob-
served in this work will be substantially kept.
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