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Abstract: Digitized histology images are analyzed by expert pathologists in one of several approaches to assess pre-
cervical cancer conditions such as cervical intraepithelial neoplasia (CIN). Many image analysis studies 
focus on detection of nuclei features to classify the epithelium into the CIN grades. The current study 
focuses on nuclei segmentation based on level set active contour segmentation and fuzzy c-means clustering 
methods. Logical operations applied to morphological post-processing operations are used to smooth the 
image and to remove non-nuclei objects. On a 71-image dataset of digitized histology images (where the 
ground truth is the epithelial mask which helps in eliminating the non epithelial regions), the algorithm 
achieved an overall nuclei segmentation accuracy of 96.47%. We propose a simplified fuzzy spatial cost 
function that may be generally applicable for any n-class clustering problem of spatially distributed objects.  

1 INTRODUCTION 

The abnormal growth of squamous cells on the 
surface of the cervix leads to cervical cancer. Study 
of microscopic slides of cervical tissue allows early 
detection of cancer. The thickness of the squamous 
epithelium on the surface of the cervix and the 
various nuclei features have been examined in 
previous studies (Krishnan et al., 2012) to determine 
the grades of cervical intraepithelial neoplasia 
(CIN), a cervical cancer precondition.  CIN grades 
include Normal, CIN1, CIN2, and CIN3. CIN1 
grade corresponds to initial human papilloma virus 
(HPV) infection; CIN2 and CIN3 show increasing 
density of nuclei, and increasing spread of the 
abnormal area across the epithelium. Examples of 
the CIN grades are shown in Figure 1. 

Many algorithms have been implemented for the 
extraction of nuclei features from cervix epithelial 
tissue. Convolutional nets and graph partitioning 
have been explored for the segmentation of the 
nuclei and the cytoplasm (Song et al., 2015). This 

combination has achieved an accuracy of 90.2%. 
The accuracy of this algorithm is reduced in cases of 
overlapping of nuclei or cytoplasm. Another 
combination in this field uses the K-means 
clustering for initial segmentation and superpixels 
for the segmentation of cytoplasm and nucleus (Lu 
et al., 2013). This paper addresses the segmentation 
problem of the overlapping cervical cells and 
achieves a comparably good accuracy using k-means 
and superpixel segmentation methods.  

 

Figure 1: Examples of Four CIN grades. 

Other than segmentation, various selected features 
can also be used for the classification of the images. 
Fast morphological gray-scale transforms were used 
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by (Walker et al., 1994) for the image classification. 
This has utilized GLCM texture features for the 
identification of traces of cancer, achieving good 
accuracy and experimental results. Along with these 
methods, image filtering with K-means clustering 
for nuclei segmentation along with the other 
combinational algorithms has been applied in other 
nuclei studies (Guo et al., 2015) (Rahmadwati et al., 
2011).  This paper introduces a level set algorithm in 
combination with fuzzy clustering for the 
segmentation of the nuclei.  

1.1 Fuzzy Clustering and Level Set 
Algorithm 

The level set contour algorithm is combined with an 
additional algorithm for accurate results. (Wang and 
Pan, 2014) used the local correntropy-based K-
means along with the level set algorithm.  

This algorithm helps in eliminating the complex 
noise present. Similarly, this paper uses spatial fuzzy 
c-means clustering for the initialization of the level 
set parameters. These parameters change with 
respect to the type of input image. Initially, the level 
set method uses the level set function, which evolves 
from the zero level set to the boundaries of the 
object that is being segmented. This function is 
restricted by the driving force. This force can be 
either the inverse of the gradient of the image or a 
Gaussian function which can be a positive constant 
or a negative force based on the input image.   The 
driving force function is usually the gradient 
function, because the gradient detects sharp intensity 
changes in an image. The value of the gradient is 
high at object edges, indicating a sharp change in 
intensity.  The contour is obtained based on the 
driving force. A high driving force inside the object 
allows the contour to expand, while a low driving 
force at the  object edges causes  the contour 
evolution to stop at the object boundaries (Phillips, 
1999).  In this paper the driving force is controlled 
by the membership function. The proposed 
algorithm is shown in the Figure 2. These main steps 
are explained in the next section. 

2 PROPOSED ALGORITHM 

2.1 Dataset Description  

The images used for the segmentation of the nuclei 
are from a 71-image dataset. These images are the 
digitized histology images of hematoxylin and eosin 

(H&E) glass slide preparations of uterine cervix 
biopsy tissue.  These images are initially masked to 
eliminate non-epithelium regions. This masking is 
done manually. An example input image and 
associated mask are shown in Figure 3. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Sequential steps of the proposed algorithm. 

2.2 Spatial Fuzzy C-means Clustering 

As discussed above spatial information is included 
in the membership function. The input image is the 
masked RGB epithelium region from Figure 3 (RGB 
image is masked with the binary image below) and 
is used for modeling to include spatial information. 
A  gain  field  is  introduced  and  is  multiplied  with  

Digitized Histology Image 

Manually mask epithelium region 

Multiply final mask with original 
image to obtain final nuclei mask  

Combine all morphological 
outputs 

Calculate energy function 

Obtain mask from contour and 
apply morphological operations 

Update membership function, 
cluster centers and gain field 

Initialize membership function, 
cluster centroids and gain field 

Multiply each pixel with the gain 
field in a loop

Minimize energy function and 
obtain contour 
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Figure 3: The unmasked (top) and mask of the images of 
the epithelium. 

each and every pixel of the input image. This helps 
in including the spatial information in each and 
every pixel rather than using a confined window. 
The equation for the modeling of the input image is 
shown below (Balla-Arab et al., 2013). ݕ௜ = ,௜ܩ௜ݔ ∀݅ ∈ ሼ1,2,3, … , ܰሽ (1)

where ݕ௜ and ݔ௜ are the observed and the true 
intensities of the pixel and ܩ௜ is the gain field for the ݅௧௛ pixel of the image. N is the total number of 
pixels present in that image. This modeled image is 
then used for further analysis in place of the input 
image. The cost function of this algorithm is 
modified by introducing the modeled output in place 
of the general input (Lu, 2013). The general cost 
function ܳ and the updated cost function ܳᇱ are 
shown below. 

ܳ =෍෍ݑ௝௜௙ฮݔ௜ − ௝ฮଶேݒ
௜ୀଵ

௞
௝ୀଵ  (2)

ܳ′ =෍෍ݑ௝௜௙ฮݕ௜/݃௜ − ௝ฮଶேݒ
௜ୀଵ

௞
௝ୀଵ  (3)

As we can see, the parameter u indicates the 
membership function and ݒ௜ indicates the centroid of 
the ݅௧௛ pixel, whereas the parameter ‘f’ indicates the 
amount of fuzziness to be included for each and 
every cluster. This value is obtained by applying the 
algorithm on various inputs with various fuzziness 
values. The final fuzzy value which is used in this 
algorithm is 2. This parameter controls the amount 
of fuzziness to be included in the cost function. This 
helps in introducing the spatial information into the 
membership function. In general, the minimization 
of the cost function gives the final clusters and its 
centers, which are the values obtained after the 

convergence. Here the updated cost function is 
minimized to get the converged cluster centers. We 
used gradient descent as the minimization method. 
While minimizing, the first derivatives of the cost 
function are calculated with respect to the 
membership function, cluster centers and the gain 
field. The obtained first derivatives are then equated 
to zero to get equations which are solved for points 
that minimize the cost function. These derivatives 
when set to zero give the final update laws for the 
membership function, gain field and the cluster 
centers. The equations for the updated membership 
function, cluster centers and the gain fields are given 
below (Balla-Arab et al., 2013). U୩(x, y) = 1∑ ൬‖Y(x, y) − B(x, y) − v୩‖‖Y(x, y) − B(x, y) − v୪‖൰ ଶ(୤ିଵ)ୟ୪ୀଵ

 
(4)

v୩(x, y) = ׬ U୩୤ (x, y)∅ன ൫Y(x, y) − B(x, y)൯dx	dy׬ U୩୤ (x, y)∅ன dx	dy  (5)

B(x, y) = Y(x, y) − ∑ U୨୤(x, y)v୩୩୨ୀଵ∑ U୨୤(x, y)୩୨ୀଵ  (6)

where ܷ௞ indicates the membership function of the ݇௧௛ pixel, ܻ(ݔ,  is the modeled input image at that (ݕ
particular location. ݔ)ܤ,  is the bias function (ݕ
which is obtained using the gain field of the modeled 
image at that location. ݂ indicates the amount of 
fuzziness to be included in each cluster. ∅ indicates 
the whole image whereas ߱ indicates the part of the 
image. ݒ௞ indicates the centroid of the ݇௧௛ pixel. ܽ 
indicates the number of clusters.   

2.3 Simplified Spatial Cost 
Membership Function for Optimal 
Clustering 

As we can see, the exponent in the membership 

function in Equation (4) is 
ଶ(௙ିଵ). If the value of ݂ is 

greater than 2, the membership function increases 
gradually, which might lead to over clustering; on 
the other hand,  if the value of ݂ is less than 2 and 
greater than 1, the membership function decreases, 
and the pixels which are supposed to have high 
membership function values will have low 
membership function values, which might lead to 
under segmentation. To balance these tendencies, we 
take f = 2 as the fuzziness parameter.. (We made this 
decision based on empirical tests of the algorithm on 
various input images.) So when ݂ is taken as 2, the 
membership function reduces to the equation given 
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by Equation (7).  

௞ܷ(ݔ, (ݕ = 1∑ ൬‖ܻ(ݔ, (ݕ − ,ݔ)ܤ (ݕ − ,ݔ)ܻ‖‖௞ݒ (ݕ − ,ݔ)ܤ (ݕ − ௟‖൰ଶ௔௟ୀଵݒ  
(7)

This is the final membership function which is used 
to derive the energy function of the image and also 
the driving force which controls the evolution of the 
level set function. We assume that we need exactly 
two clusters, one for nuclei and one for non-nuclei. 
This assumption will give rise to the following 
equation. ଵܷ(ݔ, (ݕ + ܷଶ(ݔ, (ݕ = 1 (8)

2.4 Level Set Active Contour Method 

The zero level set in general is from the level set 
function intersected with a constant plane. This 
intersection gives a contour in two dimensional 
space. This is shown in Figure 4, where ∅(ݔ, ,ݕ  is (ݐ
the level set function and ∅ = 0 is the equation for 
the zero level set. The red contour obtained is the 
intersection of the level set function and the plane 
which is the zero level set. The evolution of the level 
set function starts from the zero level set and evolves 
to the edges of the nuclei.  In this paper the driving 
force is obtained from fuzzy c-means clustering by 
using the fuzzy membership function. The 
parameters of the level set algorithm which control 
the evolution are shown in Table 1. 

 
Figure 4: The zero level set is the level set function 
intersected with a plane. 

From Table 1, ‘τ’ represents the time step. A larger 
time step may reduce the evolution time but may 
result in loss of boundary detail. We used an 
empirically determined value, after experimentation 
on various input images. This value varies with the 
type of input image. ‘f’ represents the amount of 
fuzziness induced by the membership function. We 
set this value to 2, as discussed above. ‘V1’, ‘V2’ 
are the cluster centres, one for the nuclei and one for 
the non-nuclei regions. ‘λ’ is an empirically 
determined constant which is multiplied by the force 
function, which was determined as 2.  

Table 1: Parameters of level set. 

Parameters Description 
τ Time step of evolution 
f Fuzziness parameter  
V1 Cluster centre 
V2 Cluster centre 
λ Multiplicative factor 

 

The equation for the driving force, including the 
fuzzy membership function, is given below (Balla-
Arab et al., 2013). ܨ = )ߩ ଵܷ௙(ݔ, ,ݔ)ܻ‖(ݕ (ݕ − ,ݔ)ܤ (ݕ − −ଵ‖ଶݒ ܷଶ௙(ݔ, ,ݔ)ܻ‖(ݕ −(ݕ ,ݔ)ܤ (ݕ − ଶ‖ଶ) (9)ݒ

where ߩ	is a parameter which enhances or reduces 
the controllability of the driving force. In this paper 
the value of ߩ	equals 1.  This driving force contains 
the modeled input image, gain field information, 
membership function and the cluster centers. These 
values are obtained from the previously derived 
equations and are substituted in the equation of the 
driving force. Minimization of the driving force 
divides the whole image into the two regions, one 
for non-nuclei regions and one for nuclei regions. 
This results in obtaining the contour which stops 
evolving at the edges of the nuclei. The mask for the 
epithelium region of the input image is manually 
marked.   

2.5 Morphological Operations 

Morphological operations are applied to the output 
from the level set operation described in section 2.2 
to obtain a nuclei mask. Three functions are 
implemented to clean the mask while retaining the 
data. These morphological operator outputs help in 
reducing noise while preserving critical nuclei 
information from the input. Three functions are 
applied since the data present in one output may not 
be present in the other output. Combining all the 
three outputs gives the best final result. The three 
functions are demonstrated below. 

i. Small nuclei are retained while removing 
the large area objects and very small area 
objects 

ii. Large area nuclei objects are retained while 
removing the small nuclei objects 

iii. Difference image between i and ii.  
 

The morphological operations are applied to the 
level set output generated from the masked 
epithelium region from Figure 3. It is evident that  in 
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Figure 5: Retaining the small nuclei by eliminating large 
area objects. 

 

Figure 6: Retaining the large area objects. 

 

Figure 7: Output of the difference. 

 

Figure 8: Combined output of the morphological 
functions. 

Figure 5, nuclei with comparatively small size are 
retained and in Figure 6 nuclei which have large area 
are retained. Figure 7 is the morphological output of 
the difference of the previous two images. This helps 
in retaining the medium sized nuclei present. Figure 
8, the final nuclei mask, is the combined output and 
is free of noise. This nuclei mask when multiplied 
with the input image, gives the masked nuclei 
output, shown in Figure 9. 

 

Figure 9: Nuclei Mask. 

3 EXPERIMENTS AND RESULTS 

This algorithm is applied on various images and the 
accuracy for all the 71-image dataset is calculated. 
Examples of false negative and false positive cases 
are shown below. True positive results are the cases 
where the detected object is in fact a nucleus, and a 
false negative result is the case where the nucleus 
object is not detected; false positive cases and true 
negative cases indicate non-nuclei objects 
incorrectly and correctly labeled, respectively. 

 

Figure 10: False positive detection example. 

As we can see in Figure 10 the circled area in the 
masked image is not a nucleus but it is detected as 
nucleus, a false positive.  

 

Figure 11: False negative detection example. 

In Figure 11 the nucleus shown is not detected and 
hence this is a false negative result. False negative 
and false positive cases reduce the overall accuracy. 
We calculated accuracy based on these visual 
inspections of the results. The best and the worst 
cases of the algorithm are shown below. 

 

Figure 12: Example of good nuclei segmentation. 
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Figure 13: Mask generated. 

 

Figure 14: Masked nuclei output. 

 

Figure 15: Image example with nuclei detection errors. 

 

Figure 16: Masked image. 

 

Figure 17: Masked nuclei output. 

In most cases the nuclei are detected with good 
accuracy. For a few input images with smaller 
nuclei, sensitivity of nuclei detection is less than for 
the other images. When morphological operations 
are applied to the binary mask image, smaller sized 
nuclei get eliminated since they are considered 
noise. This can be improved by tuning the 
parameters of the morphological operations. 

4 EVALUATION 

We calculated nuclei segmentation accuracy by 
initially calculating the number of nuclei objects 
detected by the algorithm, and then using human 
visual inspection to assess true positive, false 
negative, and false positive . We calculated accuracy 
from the equation below (Szénási et al., 2012) 

Accuracy = T୔ − F୒ − F୮T୔  (10)

where T୔ indicates the true positive detections 
(number of nuclei correctly found), F୒ indicates the 
false negative detections (number of nuclei that are 
not found) and F୔ indicates the false positive 
detections (number of false nuclei that are found) 
from the image. For the masked epithelium image 
from Figure 3 used for demonstration, the nuclei 
segmentation accuracy obtained is 96.47% (T୔ =1163,F୒ = 4, F୮ = 37). In the experimental results, 
the accuracy for the best case image is 100% (T୔ =2164,	F୒ = 0, F୮ = 0) and the accuracy for the 
worst case image is 81.98% (T୔ = 827,	F୒ =0, F୮ = 149). This accuracy is calculated for each 
image in the 71-image dataset. 

5 COMPARISON 

Various investigators have published results on 
nuclei segmentation. To cite one example (Guo et 
al., 2015), K-means and other morphological 
operations have been used and have achieved 88.5% 
accuracy. This paper segments the initial image into 
ten vertical segments and then SVM or LDA 
algorithms are applied and then their results are used 
for obtaining final classification label. The dataset 
used is similar and has obtained from NLM database 
which was discussed earlier. This proposed 
algorithm presents a nuclei segmentation approach 
based on the fuzzy c-means and level set 
segmentation methods and performs the 
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segmentation of the nuclei on a digitized histology 
dataset of 71 images.  The average accuracy for 
segmentation results achieved is 96.47%. Table 2 
provides a summary of the nuclei detection results 
for these images 

Table 2: Nuclei Segmentation Results, 71-image Dataset. 

Total No.  
Nuclei 

T୔ F୮ T୒ 

75107 73791 1662 346 

6 DISCUSSION 

The best result, 100% detection of all the nuclei, was 
achieved for an image where the nuclei were non-
overlapping and had larger nuclei as compared to the 
other test images. A combination of morphology 
operators is proposed as a method to optimize 
information preservation while removing noise.  In 
the worst case (81% accuracy), nearly 20% of nuclei 
were not detected, since many small nuclei were 
removed in the morphological operations. We 
experimented with modifying the algorithm to allow 
small objects to be retained; this increased the 
accuracy of nuclei detection for one particular image 
by 10%, at a cost of drop in overall accuracy over 
the 71-image set of 9%, from 96% to 87%. In our 
current work, we use the original algorithm and 
continue to seek an alternate solution which does not 
degrade the overall accuracy. We propose the 
simplified spatial cost function Equation (7), as a 
cost function that may be generally applicable for 
any N-class clustering problem of spatially 
distributed objects.  Since many problems involve 
two classes, our novel technique represented in 
Equation (8) is proposed as an optimal solution to 
two-class spatial clustering problems.  
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The relatively small set presented here (71 
images) is typical for this domain, with other studies 
presenting fewer images. The 71 images represent 
284 possible grading choices: normal, CIN1, CIN2 
and CIN3. The domain addressed here is therefore 
quite dependent on expert input. The large number 
of segments, 710, and the large number of nuclei 
present in each segment, provide a sufficiently large 
number of nuclei for application of the methods 
outlined here. 
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