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Abstract: This paper introduces an approach to automatic generation of visually faultless facial morphs along with a 
proposal on how such morphs can be automatically detected. It is endeavored that the created morphs 
cannot be recognized as such with the naked eye and a reference automatic face recognition (AFR) system 
produces high similarity scores while matching a morph against faces of persons who participated in 
morphing. Automatic generation of morphs allows for creating abundant experimental data, which is 
essential (i) for evaluating the performance of AFR systems to reject morphs and (ii) for training forensic 
systems to detect morphs. Our first experiment shows that human performance to distinguish between 
morphed and genuine face images is close to random guessing. In our second experiment, the reference 
AFR system has verified 11.78% of morphs against any of genuine images at the decision threshold of 1% 
false acceptance rate. These results indicate that facial morphing is a serious threat to access control systems 
aided by AFR and establish the need for morph detection approaches. Our third experiment shows that the 
distribution of Benford features extracted from quantized DCT coefficients of JPEG-compressed morphs is 
substantially different from that of genuine images enabling the automatic detection of morphs. 

1 INTRODUCTION 

Face as a biometric modality is a widely accepted 
means of personal identity verification. For many 
years, a printed facial image has been an important 
part of identification documents. Recently, printed 
face images have been supplemented by digital face 
images stored on a chip integrated in the document. 
On the one hand, issuing machine-readable 
documents with digital photographs opens up new 
horizons for applying Automatic Face Recognition 
(AFR) systems to identity verification which saves 
expensive manpower. On the other hand, the risk of 
criminal intent to overcome AFR systems arises.  

One of the possible attacks is brought to the 
forefront by Ferrara et al. (Ferrara, 2014). This so-
called morphing attack is based on blending digital 
face images of a criminal and his accomplice 
resulting in a morphed face image (morph), which is 
visually similar to both faces: the accomplice’s face 
and the criminal’s face. As a result, two persons can 
share one document. 

In order to confirm the severity of this attack, 
Ferrara et al. (Ferrara, 2016) evaluated the human 
performance to match faces in original and morphed 

images as well as the performance of three 
commercial AFR systems to reject morphs. The 
conclusions raise a major concern because, in many 
cases, testees said that genuine and morphed face 
images depict the same person and the experts were 
not better in performing this task than laymen. Even 
worse results came from AFR systems. The Morph 
Acceptance Rate (MAR) at the decision thresholds 
of 1% and 0.1% False Acceptance Rate (FAR) is 
confirmed to be very high, indicating that the tested 
systems are not able to distinguish between morphed 
and genuine face images.  

All in all, the systematic analysis of the 
morphing attack has to be performed including the 
study on morphing generation approaches as well as 
the development of approaches to automatic morph 
detection. 

The morphs in (Ferrara, 2016) include a manual 
retouch, which makes morph generation very time 
consuming. There have only been 80 morphs 
generated resulting in 160 morph verification 
attempts for computing MAR. To the best of our 
knowledge, there are currently no large publicly 
available datasets of facial morphs. Therefore, we 
propose an algorithm for automatic generation of 
morphs enabling fast creation of thousands of 
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realistic morphs. Possessing a large database of 
multifarious morphs allows (i) for statistically 
significant estimation of MAR, thus establishing the 
resistance of AFR systems against the morphing 
attack and (ii) for training and evaluation of forensic 
morph detection algorithms.  

For our experiments, we generated 3940 halfway 
facial morphs from the Utrecht ECVP face dataset 
(http://pics.psych.stir.ac.uk/2D_face_sets.htm) and 
500 morphs from FEI Face Database (http://fei.edu. 
br/~cet/facedatabase.html). 

The visual quality of our morphs is proven in the 
experiment on human perception of morphs. In 
contrast to (Ferrara, 2016), in our experiment, a 
testee decides for each single image whether it is a 
morph or not. Human failure to reveal a morph 
indicates its visual faultlessness. The MAR of 
humans is 44.60% while the False Rejection Rate 
(FRR) is 43.64%.  

Next, we tested our morphs with the Luxand 
Face SDK 6.1 (https://www.luxand.com/facesdk/) 
which is taken as a reference COTS AFR system. At 
the thresholds of 1% and 0.1% FAR, the MAR 
yields 60.59% and 53.77% correspondingly. 
Nonetheless, only 11.78% of morphs have been 
verified against any of genuine images at 1% FAR 
and 3.21% of morphs at 0.1% FAR. 

 The poor performance of AFR systems to reject 
morphs motivates us to work on automatic morph 
detection. Our detector is based on Benford features 
calculated from quantized Discrete Cosine 
Transformation (DCT) coefficients of JPEG-
compressed images. Classification of feature vectors 
is performed using a linear Support Vector Machine 
(SVM). We state and experimentally show that the 
distributions of Benford features are substantially 
different for morphed and genuine images. The 
MAR of our morph detector does not exceed 13%. 
Our contributions can be summarized as follows:  

 we introduce a splicing-based approach to 
automatic generation of visually faultless facial 
morphs (Section 4.1) and evaluate the quality of 
the morphs experimentally in a human test 
(Section 5.4) and with a COTS AFR system 
(Section 5.5); 

 we introduce an automatic morph detection 
approach based on Benford features and linear 
SVM classifier (Section 4.2) and evaluate its 
classification performance (Section 5.6). 

Hereafter, the paper is organized as follows. 
Related work is summarized in Section 2 including 
recent advances in automation of facial morphing 
and standard approaches of digital image forensics. 
Section 3 encompasses the theoretical background of 

facial morphing and tampering detection based on 
JPEG compression artifacts. In Section 4, our 
approaches to automatic morph generation and 
detection are introduced. Our experiments are 
presented in Section 5. Section 6 concludes the 
paper with the results and future work. 

2 RELATED WORK 

2.1 Facial Morphing 

Morphing or “Metamorphosis” is a well-studied 
topic in computer graphics. A brief survey on 
morphing approaches is given in (Wolberg, 1998). 
Generally, morphing can be seen as a combination 
of image warping and a cross-dissolve of image 
elements. Wolberg in (Wolberg, 1990) summarizes 
the fundamentals of image warping focusing on the 
mesh warping technique. The most frequently 
referenced morphing technique is, however, feature-
based warping introduced in (Beier, 1992). The 
authors suggest locating pairs of corresponding line 
segments and designing the mapping function for 
each point based on the distance to each line. Further 
techniques suggest locating pairs of corresponding 
key points and applying the same mapping functions 
to local neighborhoods around these points (Arad, 
1994; Lee, 1996). 

Early morphing approaches, mostly applied in 
the film industry as a computer animation tool, have 
always required human assistance to specify image 
features. Modern morphing approaches evolve 
towards automatic establishing of structural 
similarity between objects in source and target 
images (Liao, 2014). 

A human face seems to be a favorite object for 
morphing, because it is very intuitive and impressive 
to visualize aging or a metamorphosis of one human 
to another. 

Blanz and Vetter (Blanz, 1999) introduce a 
technique for face and face pose morphing 
comprised of fitting the morphable 3D model to a 
2D face image and modifying the resulting 
individual 3D face towards another individual or 
another pose exploiting principal component 
analysis. However, this approach requires manual 
assistance to obtain an accurate alignment between 
the morphable model and a face in the image. 

The efforts towards automatic generation of 
facial morphs start with locating facial features in a 
fully automated way. Cootes et al. (Cootes, 2000) 
propose the concept of Active Shape Models to 
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locate key points using local template matching 
employing constraints of the shape models. This 
concept is effectively used to locate facial landmarks 
and to modify face appearance easily, representing 
another way of face morphing. ASM is applied in 
(Zanella, 2009) to face images in a frontal view to 
perform morphing automatically. A comprehensive 
survey on locating facial landmarks is presented in 
(Celiktutan, 2013). 

In spite of recent advances in facial morphing, 
the automatic generation of visually faultless facial 
morphs is still a very challenging task. The diversity 
of facial images including different poses, skin 
colors, hair styles and illumination conditions 
drastically influences the appearance of automati-
cally generated morphs making them look less 
realistic. One way to visually improve morphs is 
retouching photographs to remove unrealistic hair 
and spurious shadows caused by cross-dissolving of 
images. An automatic interpolation of hair for 
portrait morphing is addressed in (Weng, 2013). 
Another way to achieve a realistic appearance is to 
cut facial regions, warp them, blend them to a 
mutual face, and seamlessly stitch it back into one of 
the input images. We refer to the result of this 
strategy as a splicing morph. A splicing morph is 
taken as an opposite of a complete morph that could 
be seen as a result of warping and blending of 
complete facial images including hair, torso and 
background. We focus on generation of the former, 
because the visual inaccuracies created by splicing 
are easier to conceal. A relatively simple and 
straight-forward way to achieve seamless stitching 
during generation of splicing morphs is automatic 
selection of similar input images as suggested in 
(Bitouk, 2008) for swapping faces or in (Vyas, 
2015) for morphing. 

2.2 Detection of Face Morphs  

Since facial morphing can be seen as a special case 
of tampering with image content, well-established 
approaches to tampering detection from the field of 
digital image forensics can be adopted. Indeed, a 
morphing process along with a subsequent retouch, 
on the one hand, creates specific artifacts in the 
image and, on the other hand, destroys a camera-
specific fingerprint. Standard techniques of digital 
image forensics are summarized in (Farid, 2009). 

Notice that different morphing approaches create 
different inconsistencies. For instance, the afore-
mentioned splicing morphs represent a special case 
of image insertion or image splicing also referred to 
as a cut-and-paste attack (Piva, 2013).  

In (Schetinger, 2016) the “indirect arms race” 
between image tampering and image forensics is 
discussed. The authors assign image morphing to the 
group “Image Enhancement/Tweaking” and state: 
“Even though image insertion and manipulation can 
create visually convincing results, they should not 
pose a problem for modern forensic techniques.” 

Dealing with morphed images created by an 
attacker, a forensic expert is limited to so-called 
“blind” approaches, implying that no other 
information except for the probe image is presented 
for analysis. The most complete bibliography on 
blind tampering detection is gathered in (Mahdian, 
2010). Image splicing detection is a substantial part 
in this review. 

There are three basic clues to detect splicing 
independently from the image content. These are: 
noise distribution (Lyu, 2014), demosaicing 
inconsistencies (Dirik, 2009; Ferrara, 2012) and 
compression artifacts (Lukas, 2003; Bianchi, 2012; 
Milani, 2014). 

Camera Noise is also referred to as Photo 
Response Non-Uniformity (PRNU) of the camera 
sensor and considered to be unique for each camera 
(Fridrich, 2009). However, splicing detection from 
PRNU is traditionally performed in the presence of 
camera reference images. An alternative approach to 
exposing spliced regions by means of noise 
estimation is presented in (Lyu, 2014). 

Demosaicing, also referred to as Color Filter 
Array (CFA) interpolation, arises in color images 
because standard sensors capture only a single color 
value at each pixel location and the missing colors 
are interpolated from the adjacent pixels. Tampering 
detection (Dirik, 2009) as well as fine-grained 
splicing detection (Ferrara, 2012) by analyzing 
demosaicing inconsistencies has been proven an 
effective technique so long as fragile CFA traces 
have not been destroyed by legitimate image editing. 
It is mentioned in (Schetinger, 2016) that even a 
simple median or Gaussian filter is able to remove 
CFA traces. Nonetheless, CFA analysis is effective 
to distinguish native and non-native images, and 
therefore can be applied to detection of splicing 
morphs generated from raw images. Image 
morphing detection by analyzing CFA traces is 
addressed in (Ghatol, 2013). 

Compression Artifacts arise in images after lossy 
compression performed by a camera or by a 
photographer after editing a raw image. After 
tampering with image content, images are often re-
compressed. The vast majority of tampering 
detection approaches deal with JPEG as the most 
common compression standard. In order to detect 
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double JPEG compression, most of the algorithms 
rely on the analysis of the histogram of DCT 
coefficients (Piva, 2013). A recent study utilizing 
this idea (Bianchi, 2012) performs block-grained 
localization of tampered regions in the presence of 
aligned and non-aligned double JPEG compression. 
Milani et al. (Milani, 2014) advocate the idea of 
using first digit features also referred to as Benford 
features to identify a level of compression. 

Analysis of JPEG compression inconsistency is 
especially promising for detection of splicing 
morphs. Since the original images used for morph 
generation are often JPEG-compressed, a morphed 
image contains the original background blocks with 
compression artifacts and synthetic face blocks with 
destroyed compression artifacts due to interpolation 
and cross-dissolve. Hence, the compressed splicing 
morphs should contain blocks with different levels 
of compression. 

In (Schetinger, 2016), CFA and double JPEG 
compression artifacts are asserted to be plausible 
traces for morphing detection and noise to be an 
identifiable trace. 

The most recent effort to withstand the attack 
from (Ferrara, 2014) is reported in (Ramachandra, 
2016) introducing a morph detection approach based 
on binarized statistical image features used in 
conjunction with a linear SVM. 

3 GENERAL DEFINITIONS OF 
MORPHING AND BENFORD 
FEATURES 

3.1 Facial Morphing 

Morphing is defined as a process of fluid transfor-
mation of one digital image (source) into another 
(target). Generation of intermediate images is 
realized by image warping supplemented by color 
interpolation. Warping is a geometric transformation 
applied to one or both images aiming at alignment 
between important image features. We rely on the 
mesh warping technique setting mesh elements to 
triangles. Color interpolation can be understood as 
alpha-blending of intensity values of both images for 
each color layer separately. The parameter alpha 
defines the proportion of pixel intensity values 
obtained from source and target images. 

In the case of facial morphing, the features are 
defined by key points depicting eyes, nose, mouth 
and face contour. The warping functions are defined 
for the triangles built by the triplets of the key 

points. Mapping of triangles is known to be the 
standard affine transformation whose coefficients 
can be easily and efficiently found. Any kind of 
triangulation is theoretically possible. Practically, it 
is shown that Delaunay triangulation yields 
convincing results (Wu, 2011). We further use the 
term facial landmarks to refer to the key points. 

There are two ways to warp images: forward and 
reverse mapping. Forward mapping starts with a 
pixel within the source image and transfers it into 
the corresponding location in the destination image. 
Reverse mapping starts with a pixel within the 
destination image and looks for its color in the 
source image at the corresponding location. Forward 
mapping might lead to unpainted pixels in the 
destination image. Contrary to this, reverse mapping 
ensures that every pixel in the destination image 
obtains a value. 

For the source (Is) and target (It) input face 
images, the procedure of generation of intermediate 
frames Iα can be formally described as follows: 

1. define α from the interval [0,1] 
2. find facial landmarks Ls = {lsj, 
   j=1..n} and Lt = {ltj, j=1..n} 
3. create blended landmarks Lm = {lmj: 
   lmj = (1-α)·lsj + α·ltj, j=1..n} 
4. create set of triangles T = {ti: 
   ti=(a,b,c), a,b,c  Lm, i=1..k} 
5. initialize warped images Isw and Itw 
6. for each ti 

Ii denotes the set of pixels in I 
enclosed in the triangle ti (e.g. 
Isi, Iti, Iswi and Itwi) 
6.1 create mapping functions: 
    fsi: +2 → +2 and fti:+2 → +2 
6.2 apply these: 
    Iswi = fsi(Isi) and Itwi = fti(Iti) 

7. Isw = {Iswi, i=1..k} and Itw = {Itwi, 
   i=1..k} 
8. Iα = (1-α)·Isw + α·Itw 

where n is the number of landmarks and k is the 
number of triangles. 

3.2 Morph Detection by Analyzing 
JPEG Compression Artifacts 

Facing the diversity of morphing techniques, the 
creation of a general morph detection algorithm is 
extremely challenging. Quite to the contrary, the 
algorithms for detection of particular types of facial 
morphs can be developed with far less effort. 
However, detection of morphs requires the thorough 
understanding of the morph generation process and 
possible image artifacts resulting from it. 

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

42



We believe that splicing morphs can be efficiently 
detected by analyzing JPEG compression artifacts. 
Our hypothesis is that a morphed image contains 
blocks from the original image that have already 
undergone a JPEG compression as well as synthetic 
blocks generated by the morphing process. These 
blocks are uncompressed. If the morphed image 
undergoes JPEG compression, the original blocks 
become double-compressed and the synthetic blocks 
are single-compressed. 

In order to comprehend the features that we use 
for morph detection, let us look at the process of 
JPEG compression which is comprised of three basic 
steps: DCT, quantization and entropy coding. 

 Firstly, the color space of an image is 
transformed from RGB to YCbCr. Notice that the 
color levels are processed independently. Each layer 
is divided into non-overlapping blocks of 8x8 pixels 
and the DCT is applied to these blocks resulting in 
64 DCT coefficients. Each coefficient represents the 
contribution (amplitude) of a certain cosine function 
to the linear combination of cosine functions 
oscillating at different frequencies. This linear 
combination represents the original signal. In other 
words, the DCT coefficients give us an idea which 
frequencies reside in an image.  

Secondly, the DCT coefficients are quantized 
according to a quantization table. The table, which is 
not specified by the standard, describes the 
correspondence between compression levels and 
quantization factors. Formally, the quantized value 
is calculated from the original one by dividing it by 
a quantization factor and rounding to the nearest 
integer. Quantization is an irreversible transforma-
tion leading to lossy data compression.  

Thirdly, the quantized DCT coefficients are 
coded without loss of information applying Huffman 
coding. 

Application of Benford features (first digits of 
the quantized DCT coefficients) is suggested in (Fu, 
2007; Milani, 2014) for tampering detection in 
JPEG-compressed images. The hypothesis behind 
applying Benford features is that the naturally 
generated data follow Benford’s law and the 
manipulated data violates it.  

Benford’s law states that the distribution of the 
first digits in a set of natural numbers is logarithmic. 
A set of numbers satisfies the generalized Benford 
law if the first digit x (x=1,2,…,9) occurs with a 
probability p(x): 

10
1

( ) log 1p x n
x

 
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 

  


 (1)

where n is the normalization factor and α, β are the 
parameters specifying the distribution. 

Fu et al. (Fu, 2007) show that the quantized DCT 
coefficients of single-compressed JPEG images 
follow the generalized Benford law while the 
quantized DCT coefficients of double-compressed 
JPEG images violate it, which is reflected in the fact 
that the distribution of Benford features deviates 
from the logarithmic distribution.  

Moreover, it is shown in (Milani, 2014) that the 
distribution of Benford features is specific for 
further levels of JPEG compression making the 
features a powerful instrument for revealing the 
image compression history. 

Let Yi denote the i-th quantized DCT coefficient, 
and N the number of DCT coefficients, then the first 
digits fd are computed as follows: 
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and the Benford features as follows: 
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4 OUR APPROACH TO 
GENERATION AND 
DETECTION OF MORPHS 

4.1 Automatic Generation of Morphs 

Our approach to automatic generation of face 
morphs follows the general morphing procedure 
described in Section 3.1. Aiming at creating a morph 
appearing similar to both persons, we generate only 
halfway morphs (α=0.5) where both images 
contribute equally. Hence, alpha-blending is nothing 
else but averaging. The mapping of triangles is done 
in the reverse way making use of bilinear 
interpolation. The discontinuities between triangles 
are concealed applying the 2x2 median filter. 

There are 68 facial landmarks localized using the 
class shape_predictor from the dlib program-
ming library (http://dlib.net/). Three landmarks 
depicting the lower contour of the upper lip are 
replaced by two landmarks at the lower lip. This 
adjustment is important because ID photographs 
require a closed mouth. Given that, the lower 
contour of the upper lip might overlap with the 
upper contour of the lower lip causing the triangles 
with collinear corners that are inappropriate for 
warping. Moreover, the set of landmarks is extended 
by two landmarks at the pupils and seven landmarks 
at the forehead (see Figure 1a). 
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(a) (b) 

Figure 1: (a) Facial landmarks localized by dlib (green, 
blue), removed landmarks (blue) and our additional 
landmarks (red); (b) mask to apply smoothing filter. 

Figure 2a depicts the generation of complete 
morphs. The workflow starts with extraction of 
facial landmarks which are extended by 20 
landmarks on the image borders. Then the landmark 
coordinates are averaged. The blended landmarks 
are used for triangulation. The triangles from the 
first input image are warped to the average position 
resulting in the first warped image. Likewise, the 
second warped image is generated from the second 
input image. Finally, the warped images are 
averaged. Hence, a complete morph has mutual face 
geometry and texture. However, spurious shadows 
and strong visual inconsistencies in the hair region 
resulting from blending are the visual flaws that can 
hardly be concealed automatically. Therefore, we 
consider complete morphs to be inappropriate for the 
morphing attack, unless they have undergone a 
manual retouch. 

Splicing Morphs are designed to overcome the 
visual flaws encountered in complete morphs. Figure 
2b visualizes the morph generation process. After 
extracting facial landmarks, the convex hull 
representing a face is cut from the input images. The 
landmark coordinates are averaged and the blended 
landmarks are used for triangulation. The triangles 
from the first face are warped to the average position 
resulting in the first warped face. The same is done 
to obtain the second warped face. The warped faces 
are averaged in the frontal position similar to how is 
suggested in (Lee, 1998). This scheme allows for 
morphing three and more faces. The blended frontal 
face is warped back twice, namely to the face 
positions in the first and in the second input images. 
The result is two morphed faces. The final step is the 
splicing of the morphed faces into the corresponding 
original images. In order to make the transmission 
between the original and blended regions appear 
natural, all pixels in the mask in Figure 1b are 

smoothed by applying a Gaussian filter. The width 
of the mask and the parameters of the Gaussian filter 
are defined as relative values in accordance with the 
interpupillary distance. 

The advantage of the proposed splicing approach 
is that a morph looks realistic because the seams of 
the blended region match the original face contour. 
The disadvantage is that, after inverse warping, the 
blended face has the same geometry as the face it is 
warped into. Therefore, the morph has a mutual 
texture, but the geometry is adopted from one of the 
input faces. Consequently, the splicing morphs are 
expected to match well with one subject. In order to 
match with another subject, both faces should have a 
similar geometry. 

For perfectly frontal faces, inverse warping can 
be replaced by scaling and the blended face can be 
directly inserted into the one or other image. In this 
case, the blended face has an average geometry and 
an average texture, but the average geometry may 
differ from the original face geometry making 
seamless splicing extremely difficult. 

Further factors impeding morphs from appearing 
realistic are different skin color and occlusion of 
face parts by hair e.g. abundant hair at the forehead 
region in input images. A straight-forward approach 
to control the quality of morphs is an automatic 
selection of input face images in regard to skin and 
hair. Analyzing and mitigating these factors will be a 
part of our future work. 

The morph generation algorithm is implemented 
in Matlab. 

4.2 Automatic Detection of Morphs 

Based on the nine Benford features described in 
Section 3.2, we train the linear SVM classifier from 
two sets of images. The first one is comprised of 
splicing morphs and the second one encompasses 
original images as well as images after legitimate 
editing usually performed by photographers. This 
includes in-plane rotation, scaling and cropping. 
Notice that, after in-plane rotation, images are 
always cropped to get rid of blank corners. 

The parameters for image editing operations are 
randomly chosen from the following ranges: 
 cropping: from 60 to 80 pixels at every side (left, 

right, top, bottom); 
 scaling factor: from 0.8 to 1.2; 
 rotation angle: from -3° to 3°. 

The set of “positive” samples contains 524 
morphs that have been randomly selected from the 
whole set of 2614 splicing morphs. The set of 
“negative”   samples   contains   131   original,   131 
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Figure 2: The workflow for the automatic generation of (a) complete morphs and (b) splicing morphs. 

scaled, 131 cropped, and 131 rotated and cropped 
images, 524 samples in total. The equal number of 
positive and negative samples designates a balanced 
training set leading to the unbiased classifier. All 
training images are decompressed and then 
compressed in a JPEG format with 100% quality. 
For each test sample, the classifier makes a decision 
on which of two classes the sample belongs to. 
Before classification, all test images undergo re-
compression similar to that which is done for 
training images. Training of the linear SVM 
classifier as well as classification of test samples is 
carried out with WEKA data mining software 3.8.0 
(Hall, 2009) using default parameterization. 

5 EXPERIMENTS 

5.1 Evaluation Goals 

The evaluation addresses the morph generation and 
morph detection approaches introduced in Sections 
4.1 and 4.2 correspondingly. The quality of splicing 
morphs generated by the former is tested in two 
experiments on how well humans can recognize 
morphs as such (Exp1) and how many morphs 
would be accepted by a COTS AFR (Exp2). The 
classification performance of the latter is evaluated 
in the experiment (Exp3) with complete and splicing 
morphs from the Utrecht ECVP face dataset as well 
as with the original images and splicing morphs 
from the FEI Face Database. 
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5.2 Evaluation Dataset 

The morphing attack is usually performed on ID 
photographs that are compliant with the ISO/IEC 
19794-5 standard (ISO, 2011). In other words, a face 
pose in a photograph is frontal with the face parts 
located at particular regions. Facial expression is 
neutral and occlusions of eyes, nose or mouth do not 
occur. The interpupillary distance exceeds 120 
pixels. Lighting is equally distributed on a face. 

From among the publicly available face datasets, 
we have selected Utrecht ECVP face dataset as the 
one that best fits the ISO/IEC 19794-5 standard. It 
contains 131 images of 67 different individuals (20 
women, 47 men). The image resolution yields 
900x1200 pixels with the average interpupillary 
distance of 200 pixels. The majority of individuals 
are shot with neutral and smiling facial expressions.  

Morphs are generated from all possible image 
pairs of 52 individuals (17 women, 35 men) utilizing 
only the images with neutral expressions. For each 
pair of images one complete morph and two splicing 
morphs are possible. Hence, 1326 complete morphs 
and 2614 splicing morphs were generated. Our 
algorithm failed to generate the remaining 38 
splicing morphs because some triangles had 
collinear corners disabling warping. Finally, we 
manually selected 183 visually pleasing splicing 
morphs for evaluating human ability to distinguish 
between morphs and genuine images. 

5.3 Performance Measures 

In order to obtain uniform performance measures in 
all our experiments, we extend the standard 
performance measures of biometric systems 
expressed in terms of FAR/FRR by the MAR, which 
is used, on the one hand, for evaluation of AFR 
performance to reject morphs and, on the other hand, 
for humans and our morph detector to designate the 
relative number of morphs falsely classified as 
genuine images.  

Assuming the matching score of an AFR system 
expresses the similarity between a probe and a 
gallery sample, the FAR is estimated by the relative 
number of impostor attempts with matching scores 
exceeding or equal to a decision threshold, while the 
FRR is estimated by the relative number of genuine 
attempts with matching scores lower than the 
threshold. Similarly, we estimate the MAR of an 
AFR system by the relative number of morph 
attempts with matching scores exceeding or equal to 
the threshold. Since a morph attempt is a special 
case of an impostor attempt, the MAR can be seen as 

a substitute for the FAR and the performance of an 
AFR system to reject morphs is expressed by the 
combination of MAR and FRR.  

For biometric systems FAR and FRR are not 
equally important because the FAR is considered the 
security measure and the FRR the convenience 
measure. Therefore, the decision threshold is usually 
defined so that the FAR does not exceed a certain 
value and the FRR is then calculated at this 
threshold. Typical values for the FAR are 1% and 
0.1%. It is common to denote the FRR at the 
decision threshold of 1% FAR as FRR100 and at the 
decision threshold of 0.1% FAR as FRR1000. 
Following the same logic, MAR100 and MAR1000 are 
defined in (Ferrara, 2016). 

The estimated MAR values give a pessimistic 
impression of the success of a morphing attack. 
Indeed, if a face image of person A is only slightly 
modified toward person B, an AFR system would 
still verify the morphed image against images of 
person A and would fail to verify the morphed 
image against images of person B. The MAR with 
such morphs would yield 50% implying that 50% of 
morph attempts have been falsely accepted. In 
reality, these morphs are useless because person B 
cannot use them to deceive an AFR system. 

We propose to count the number of successful 
morphs instead of accepted morph attempts. A 
morph is successful if it has been verified against all 
gallery images of both persons. We call this 
performance measure the realistic MAR (rMAR). 

For morph detection, no matter whether it is 
performed by humans or by an automated morph 
detection system, the "positive" decision is that an 
image is a morph and the "negative" decision is that 
an image is genuine. The MAR is, therefore, equal 
to the False Negative Rate (FNR) because a morph 
falsely accepted by an AFR system means a morph 
falsely missed by a morph detection system. The 
FRR is equal to the False Positive Rate (FPR), 
because a genuine image falsely rejected (as a 
morph) by an AFR system means a false alarm of a 
morph detection system. FNR and FPR completely 
describe detection performance. We also report the 
classification accuracy as the relative number of 
correct decisions in the total number of decisions. 
Since, for morph detection systems, each morph is 
associated with exactly one morphing attempt, the 
MAR equals the rMAR. 

5.4 Evaluation of Morphs by Humans 

The first experiment (Exp1) on the human capability 
to distinguish between morphs and genuine images
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 has two goals: 
 evaluating the visual quality of our splicing 

morphs; 
 obtaining clues on how humans recognize 

anomalies in portrait images to utilize this 
knowledge for developing algorithms for 
automatic morph detection. 
For the experiment, we take 23 out of 183 pre-

selected splicing morphs and 7 out of 15 genuine 
face images that have not been used for creating 
morphs. In total, there are 30 images in the test. The 
images are printed with standard photo quality on 
photo paper having the passport dimensions of 
35x45 mm. Morphs and genuine photographs are 
mixed and presented sequentially to 42 participants 
under “thinking aloud test” conditions. Testees were 
asked to say whatever they think about the images 
and what pushes them to make one or another 
decision while performing morph detection. 

The results are visualized in Figure 3. The 
classification accuracy of humans yields 55.62% 
with the MAR of 44.6% and the FRR of 43.64%. As 
can be seen in the diagram, 8 out of 23 morphs have 
been falsely recognized as genuine images by 50 and 
more percent of testees and only 3 morphs have been 
correctly detected by 70 and more percent of testees. 
Even worse is the situation with genuine images, 4 
out of 7 genuine images have been falsely detected 
as morphs by 50 and more percent of testees. 
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Figure 3: Results of the experiment on human capability to 
distinguish morphs (M1-23) from genuine images (G1-7). 

Evaluating the morph detection performance of the 
testees separately, we see that the performance 
strongly fluctuates from one person to another. Only 
9 out of 42 testees have correctly classified more 
than two thirds of test images. Six of them have 
mentioned blurring in the face region as a clue for 
indicating morphs and five of them also pointed to 
slight color differences in the face and the forehead 
regions. 

All in all, this detection performance can be 
considered as close to random guessing enabling us 
to conclude that humans are not able to distinguish 
between splicing morphs and genuine images. This 
justifies the visual faultlessness of our automatically 
generated splicing morphs. 

5.5 Evaluation of Morphs with the 
Reference AFR System 

The second experiment (Exp2) aims at testing how 
many of our splicing morphs can deceive a COTS 
AFR system. Matching of face images is done with 
the Luxand FaceSDK 6.1 later referred to as “the 
matcher”. The matcher produces similarity scores in 
the interval [0,1]. Based on the internal experiments, 
the SDK provides decision thresholds to obtain a 
given level of the FAR. The thresholds, at which the 
FAR yields 1% and 0.1%, are 0.99 and 0.999 
correspondingly. 

First, the matcher is evaluated with the complete 
Utrecht ECVP face dataset to get an idea about the 
distributions of genuine and impostor matching 
scores. 69 genuine scores result from the comparison 
of neutral and smiling faces (or two neutral faces) of 
the same person. 8446 impostor scores result from 
the pair-wise comparison of all images of different 
persons in the database. The distributions of genuine 
and impostor scores are depicted in Figure 4. All 
genuine scores are located in the interval [0.999, 1]. 
The mean value of the impostor scores yields 0.2645 
while the maximum impostor score is 0.9751. In 
other words, the matcher shows the perfect result 
making no mistakes at both thresholds 0.99 and 
0.999. 
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Figure 4: Distributions of genuine and impostor matching 
scores resulting from the cross-matching of original 
images in the Utrecht ECVP face dataset using the Luxand 
FaceSDK 6.1. 

Second, 1326 complete and 2614 splicing morphs 
are matched against all images of the persons who 
participated in these particular morphs. Normally, 
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there are four morph attempts for each morphed 
image: two images with neutral faces (source images 
for morph generation) and two images with smiling 
faces. Notice that some persons do not have a 
smiling photograph and some persons have more 
than one neutral photograph. The distributions of 
matching scores for complete, splicing and manually 
selected splicing morphs are depicted in Figure 5. 
The corresponding values of MAR and rMAR are 
given in Table 1. 
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Figure 5: Distributions of matching scores resulting from 
matching of morphs against original images; the histogram 
bin yields 0.001; the left-most column shows the relative 
number of matching scores in the interval [0, 0.9501). 

Despite their visual imperfection, most of the 
complete morphs are able to deceive the matcher. 
83.27% of complete morph attempts are accepted at 
0.1% FAR and 55.20% are verified against any of 
the genuine images in the test at the same threshold. 
The scores with splicing morphs are substantially 
lower. Only 53.77% of splicing morph attempts are 
accepted at 0.1% FAR and only 3.21% are verified 
against any of the genuine images. These 84 out of 
2614 morphs (3.21%) can be considered perfect, 
having the characteristic that these would neither be 
detected by humans nor rejected by the reference 
AFR system. 

Table 1: Pessimistic and realistic MAR at the decision 
thresholds of 1% and 0.1% of FAR. 

 MAR100 MAR1000 rMAR100 rMAR1000

Complete 
morphs 

93.34% 83.27% 80.39% 55.20% 

Splicing 
morphs 

60.59% 53.77% 11.78% 3.21% 

Selected 
spl.morphs 

65.43% 57.30% 16.94% 5.46% 

In order to check whether the visually pleasing 
splicing morphs can better deceive the reference 
AFR, we have selected 183 out of 2614 and 
calculated MAR100 and MAR1000 for them. As can be 
seen in Table 1, the MAR values become slightly 

higher (see also Figure 5) but the difference in MAR 
values is still too low to assert that the realistic 
appearance of the face in a morphed image 
correlates with the performance of AFR to reject 
morphs. 

5.6 Evaluation of Our Morph Detector 

In the third experiment (Exp3), the performance of 
our morph detector is evaluated in two tests. In the 
first one, the 10-fold cross-validation is performed 
on the training dataset. In the second one, the morph 
detector is tested with four test datasets (T): 
 T1: the remaining 2090 splicing morphs from the 

Utrecht ECVP face dataset; 
 T2: 1326 complete morphs from the Utrecht 

ECVP face dataset; 
 T3: 400 original images from the FEI Face 

Database; 
 T4: 500 splicing morphs from the FEI Face 

Database. 
The confusion matrix of the first test is depicted 

in Table 2. The classification accuracy yields 
98.09% (1028/1048). Only 20 genuine images have 
been misclassified as morphs and none of the 
morphs has been misclassified as a genuine image. 

Table 2: Confusion matrix of the 10-fold cross-validation 
of our morph detector. 

Classified as 
Ground truth 

Genuine Splicing 
morphs 

Genuine 504 (96.18%) 20 (3.82%) 
Splicing morphs 0 524 (100%) 

 

original cropped rotated scaled morphs
0.1

0.15

0.2

0.25

0.3

0.35

 

Figure 6: Distribution of samples for the feature Benf1. 

This result signifies that original and legitimately 
edited images have substantially different feature 
distribution compared to that of splicing morphs 
which is shown in the example of feature Benf1 in 
Figure 6. The distribution of the feature values for 
splicing morphs is narrow with a small variation. 
The distributions of original and legitimately edited 
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images are broader with means significantly 
different from that of splicing morphs. Based on this 
diagram, we assert that the utilized features are not 
suitable to differentiate between the types of 
legitimate image editing but are highly suitable for 
distinguishing between splicing morphs and 
remaining images. 

The results of the second test are depicted in 
Table 3. The MAR values of morphs created from 
Utrecht ECVP face dataset (T1 and T2) yield 12.11% 
for splicing morphs and 12.97% for complete 
morphs, indicating superior morph detection 
performance regarding humans. The classification 
accuracy of 98.44% (886/900) in the test with the 
FEI Face Database (T3+T4) indicates that the 
proposed classifier is capable of correctly classifying 
test images that are significantly different from 
images used for training.  

Table 3: Classification results with four test datasets. 

    Classified as 
Ground truth 

Genuine Morph 

T1 (morph) 253 (12.11%) 1837 (87.89%) 
T2 (morph) 172 (12.97%) 1154 (87.03%) 
T3 (genuine) 386 (96.50%) 14 (3.50%) 
T4 (morph) 0 500 (100%) 

Nevertheless, the conducted test does not enable us 
to make conclusions about the general suitability of 
our proposed classifier. We realize that the 
distribution of Benford features can be different if 
morphs are generated from random face images 
using morphing techniques which are different from 
image warping with a subsequent cross-dissolve. 
Moreover, it is possible to create face images with 
the similar distributions of Benford features using 
legitimate image processing techniques. For 
instance, it is shown in (Wang, 2011) that the 
application of Benford's law to image tampering 
detection is vulnerable to the histogram 
manipulation attack. 

6 CONCLUSIONS 

In this paper, we have proposed (i) the approach to 
automatic generation of visually faultless facial 
morphs, (ii) the approach to morph detection by 
utilizing Benford features calculated from quantized 
DCT coefficients of JPEG-compressed images and 
(iii) evaluated both in three experiments. 

The visual faultlessness of our splicing morphs is 
confirmed in the experiment with humans. The 
MAR of humans yields 44.60% with the FRR of 

43.64% which is close to random guessing (see 
Exp1).  

The suitability of our splicing morphs to deceive 
an AFR system has been tested in Exp2. Considering 
all verification attempts, the MAR100 is 60.59% and 
the MAR1000 is 53.77%. 11.78% of morphs have 
been verified against any of the genuine images at 
1% FAR and 3.21% at 0.1% FAR.  

Our morph detector yields 12.11% MAR with 
splicing and 12.97% MAR with complete morphs 
clearly outperforming humans. The classification 
accuracy of 98.44% with the alternative face 
database indicates that our morph detector is capable 
of correctly classifing test images that are fairly 
different from images used for training (see Exp3). 

In our future work, we are going to visually 
improve morphs that will achieve higher matching 
scores with the reference AFR system. To this end, 
we plan an automatic selection of facial images with 
similar skin color, hair and head geometry along 
with automatic image editing including re-coloring 
and a hair retouch. We also plan engaging an 
alternative AFR system to the morph generation 
process for morph quality control by straight-away 
matching of just generated morphs against genuine 
images.  

Our morph detector will be improved by 
considering the local features derived from blocks 
located at the face contour and in the face region. 
Following clues from the “thinking aloud test”, the 
local analysis of skin texture will be performed to 
detect excessive blurriness in the face region and 
color inconsistencies.  

Due to the severity of the morphing attack and 
the limited capability of AFR systems to reject 
morphs, we believe that much attention should be 
paid to adoption of tampering detection approaches 
from digital image forensics to facial morphing, 
potentially making automatic morphing detection an 
indispensable component of AFR systems. 
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