
The Octopus as a Model for Artificial Intelligence 
A Multi-Agent Robotic Case Study 

Alfonso Íñiguez 
Swarm Technology, LLC Mesa, Mesa, AZ, U.S.A. 

 

Keywords: Autonomous, Robotics, Artificial Intelligence, Multi-Agent, Swarm Intelligence, Parallel Processing. 

Abstract: The aim of this paper is to investigate the curious cognition process exhibited by the octopus, and its 
practical applicability to multi-agent systems. The paper begins by explaining the limitations of using the 
human brain as a model to achieve artificial cognition and proposes an alternative model inspired by the 
octopus’ distributed approach to solving problems. As a case study, a laboratory prototype demonstrates 
awareness, autonomy, solidarity, expandability, and resiliency in a multi-robotic system. The cognition 
model described in this paper is primarily algorithmic and does not explore the model creation process nor 
semantics; rather, it lays the foundation and inspiration for a future realization as a Process for Agent 
Societies Specification and Implementation (PASSI). 

1 INTRODUCTION 

The conventional approach in the attempt to achieve 
artificial intelligence is to use the human brain as a 
model of operation; in fact, there are operational 
similarities between the computer processing unit 
(CPU) and the human brain – both make decisions 
by fetching and processing data from memory, and 
both store the processed data in memory. 

The downside of using the human brain as a 
model for artificial intelligence is scaling; as the 
complexity of the tasks increase, the performance 
demand on the CPU proportionally increases.  

Limitations remain even with the advent of 
coprocessors — intended to offload tasks from the 
CPU. The traditional multiprocessing framework 
(see Figure 1) suffers from two major drawbacks, 
both caused by the architectural requirement that the 
CPU must divide and distribute the threads.  

First, a significant amount of the CPU's 
processing time is consumed in managing the 
coprocessing tasks. The management may include: 
distributing tasks to the coprocessors according to 
their capabilities, waiting for those tasks to be 
completed before reassigning new tasks; and 
responding to interrupts from coprocessors every 
time a task is completed.  

Second, a coprocessor will remain idle as it 
awaits for a thread to be assigned to it by the CPU. 
A multiprocessor system that alleviates the 

management workload on the CPU while keeping 
the co-processors busy is needed.  

 

Figure 1: Traditional multiprocessing framework.  

Given that robotic movement is ultimately 
enabled by its processing capability, the same two 
drawbacks that affect CPU/Coprocessor 
performance limit robotic autonomy. Hence, to 
enable robotic autonomy, it makes sense to begin by 
solving the two computer processing drawbacks. 
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2 OCTOPUS COGNITION 

Written records of octopuses leaving the water have 
existed for over 2,000 years (Balme, 1991). The 
Octopus Alpheus is known to leave the water to 
crawl between tide pools (Norman, 2000). More 
recently, Boyle (1991) wrote, “Octopuses are 
particularly prone to escape from aquarium tanks. 
Loose lids are of little value because the octopuses 
will easily lift them and push their way out of the 
tank” (Boyle 32).  

2.1 Cognition Evidence 

It is not surprising to learn that the octopus is 
considered to be the most intelligent of all 
invertebrates (Linden, 2002); it learns simple mazes 
(Boal, 1996), uses landmark navigation while 
foraging (Mather, 1991), and uses tools (Mather, 
1994).  

2.1.1 Cognition Efficiency 

Experimentation results do not imply that octopuses 
are smarter than human children; however, the 
octopus is a model for efficient cognition given the 
limited amount of available neurons in its brain — 
500 million in the octopus as opposed to almost 100 
billion in Homo sapiens. 

Biologists at the Seattle Aquarium challenged a 
female Enteroctopus dofleini — a giant Pacific 
octopus — with a childproof bottle, the kind that can 
puzzle Homo sapiens. The results were staggering, 
“To open the lid it was necessary to push down on 
the lid at the same time as turning it … the octopus, 
accomplished this task in 55 minutes … Further 
presentations resulted in a decrease of the average 
opening time to 5 minutes” (Anderson, 2006). 

2.1.2 Distributed Cognition 

Distributed neurons allow the octopus’ arms to 
problem-solve autonomously; the “arms are not 
entirely under the control of the octopus' brain . . . 
two thirds of its neurons reside not in its central 
brain but out in its flexible, stretchable arms” 
(Harmon, 2013). 
 The “Octopus’ arms have a mind of their own 
… as a result, the arms can problem-solve how to 
open a shellfish while [the octopus] is busy doing 
something else, like checking out a cave for more 
edible goodies” (Nuwer, 2013). 
 

2.1.3 Arms React after Detachment 

Researchers, working at St. George's University of 
London and the Anton Dohrn Zoological Station in 
Naples, Italy, demonstrated that, "the arms are 
capable of reflex withdrawal to a 'noxious' stimulus 
without reference to the brain." (Harmon 2013a) 
Other experiments show an active nervous system 
after detachment, “the arms can react after they’ve 
been completely severed. In one experiment, severed 
arms jerked away in pain when researchers pinched 
them" (Nuwer, 2013).  

2.1.4 Arm Ambidexterity  

A series of interactions were performed to determine 
if the octopus (Enteroctopus dofleini) had arm 
preference when reaching for objects; the results 
supported the hypothesis of ambidexterity of the 
arms. All arms are equally willing to work; arm 
selection is based on availability and relative 
proximity (Wülker, 1910). 

2.2 Summary of Principles of 
Cognition 

After investigating the behavior of the octopus and 
the embedded cognition of its arms, we can clearly 
see that the octopus — when viewed as a processing 
system — is a superb model for efficient cognition.  

Let’s now generalize the cognition principles 
governing the octopus’ system. As a way of keeping 
the principles as generic as possible, the arms will be 
referred to as “members” and the octopus will be 
called “system.”  

2.2.1 Principle 1: Member Awareness 

Each member must be aware of its surroundings and 
abilities. This principle is derived from the fact that 
each arm can react to its environment even when 
detached from the head. 

2.2.2 Principle 2: Member Autonomy 

Each member must operate as an autonomous 
master (not as a slave); this is essential to self-
coordinate allocation of labor. This principle is 
derived from the fact that the arms are not entirely 
under control of the octopus’ head. 

2.2.3 Principle 3: Member Solidarity 

Each member must cooperate in solidarity; when a 
task is completed each member should 
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autonomously look for a new task (leveraging its 
current position). This principle is derived from the 
observed ambidexterity of the arms. 

2.2.4 Principle 4: Member Expandability 

The system must permit expansion where members 
are dynamically aggregated. This principle is 
derived from the fact that octopuses can regenerate 
lost arms with ease (Harmon, 2013b). 

2.2.5 Principle 5: Member Resiliency 

The system must be self-healing; when members are 
removed, the remaining members should undertake 
the unfinished tasks. This principle is derived from 
the fact that losing an arm is not considered 
traumatic; octopuses occasionally lose an arm in 
nature and function normally while the limb 
regenerates (Levy, 2014). 

The attributes described above may also be 
referred to as the Five Principles of Swarm 
Intelligence (Íñiguez, 2016). 

2.3 Octopus’ Cognition Model 

After defining the principles of the octopus’ arm 
behavior, the next step in abstracting the octopus’ 
cognition model is to define an architectural 
representation (see Figure 2).  

 

Figure 2: Octopus’ Cognition Model. 

 

3 APPLICABILITY OF THE 
COGNITION MODEL  

Notice the differences between the traditional 
multiprocessing framework of Figure 1 and the 
octopus’ cognition model of Figure 2. There are two 
main differences: 

First, the coprocessors of the traditional model 
became masters instead of slaves.  

Second, the CPU, which is equivalent to the 
octopus’ head, does not directly communicate with 
the coprocessors; instead, the coprocessors 
autonomously read the octopus’ intentions, i.e. seek 
tasks from the task pool.  

 

Figure 3: Solidarity Cell Architecture. 

3.1 Transposing the Cognition Model 

The transposing of Figure 1 into Figure 2 resulted in 
Figure 3. A fundamental principle of operation of 
the proposed model is the cooperation in solidarity; 
since each member is a processing cell in the 
system, we will refer to this cognition model by the 
name of Solidarity Cell Architecture (SCA). 

The SCA model solves the two limitations of the 
traditional model previously described in the 
introduction. In the SCA model the CPU does not 
spend a significant amount of time micromanaging 
coprocessors — just as the octopus’ head does not 
spend time micromanaging the arms — and the 
coprocessors do not remain idle waiting for tasks to 
be assigned. 
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3.2 Further Description of the 
Solidarity Cell Architecture 

In general terms, the SCA model is to be described 
as a method for processing information in parallel; 
the system uses autonomous computer processing 
cells to perform tasks needed by a central processing 
unit. Each cell in the system is connected through a 
switching fabric, which facilitates connections for 
data transfer and arbitration between all system 
resources. A cell has an agent, which is a software 
module that may be transferred through the 
switching fabric to a task pool containing the tasks. 
The agent searches within the task pool for available 
tasks that match the cell's instruction type. A task 
may be broken into threads that are to be executed 
sequentially or independently depending on recipes 
constructed by the central processing unit. 
Interdependent tasks within the task pool may be 
logically combined as needed by the recipe. A 
notification is sent from the task pool to the central 
processing unit when a task or task thread is 
completed. 

Therefore, it is an object of this new architecture 
to provide a method for parallel processing in a 
multiprocessor system using coprocessors — or 
autonomous robots — that proactively seek threads 
to process (Íñiguez, 2013). 

3.3 Applicability into Robotics 

A recurring challenge in robotics is to build a biped 
robot that has the balancing ability of humans. A 
mechanism to account for continuous balancing is 
needed; as the robot walks, climbs, or bends, it 
needs to swing its arms autonomously to keep its 
balance.  

Figure 4 shows the conceptual balancing 
mechanism; the shoulders and elbows — a, b, c, and 
d —are equipped with actuators that continuously 
and autonomously send wireless software agents to 
seek tasks from the intention’s task pool – the 
intention’s task pool is a module in which the 
system’s central brain deposits its desire to maintain 
balance. In this example, the intention’s task pool is 
analogous to a cerebellum in charge of coordinating 
and maintaining balance. However, as opposed to a 
traditional cerebellum that sends commands to the 
body, the biped robot follows the octopus’ model, in 
which the arms autonomously send inquiring agents 
to the task pool. 

The breakthrough advantage of this 
implementation is that the central brain system can 
delegate the task of maintaining balance to an

 
Figure 4: Mechanism to account for continuous balancing. 

electronic gyroscope that constantly deposits the 
balancing requirements into the intention’s task 
pool.  

If the biped robot begins to lean to the left, then 
the gyroscope will deposit an intention in the task 
pool named “I need somebody to help me move my 
center of gravity to the right.” The shoulders and 
elbows continuously send agents looking for tasks; 
when an agent finds a task in the task pool, it returns 
to its actuator to execute the requirement. The 
process is repeated continuously achieving human-
like balancing without direct intervention from the 
central brain system.  

4 ROBOTIC CASE STUDY 

As a way to demonstrate the SCA model with a 
proof-of-concept prototype, we adapted the biped 
robot of Figure 4, into the streamlined laboratory 
representation shown in Figure 5. Free-moving 
wireless-connected tank robots represent the 
shoulders and elbows. Hence, the designations of a, 
b, c, and d originally used by the shoulders and 
elbows in Figure 4 are now given to the tank robots 
in Figure 5. 

The intention is implemented by a gyroscope that 
places “move left” or “move right” tasks into the 
task pool.  
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Figure 5: Proof-of-concept laboratory experiment. 

The original octopus cognition model can be 
transposed into the robotic architecture without 
modification; the only difference between Figure 2 
and Figure 6 is the terminology. 

 

Figure 6: Block representation of the laboratory prototype. 

4.1 Prototype Implementation 

To build the prototype, we selected to work with off-
the-shelf components. The microcontrollers are 
ArduinoTM boards, the robots are a customized 
version of MakeblockTM toy tanks, and the wireless 
communication is through XbeeTM (Zigbee) 
transceivers. We have a YouTube video illustrating 
the interaction between the tank robot and the 
gyroscope: 
https://www.youtube.com/watch?v=jq1EfxkneJI 
 

 

Figure 7: Toy robot interacting with the gyroscope. 

4.2 Complete System Implementation 

The demonstration of the proof-of-concept prototype 
exhibiting the five principles of cognition — also 
known as the five principles of swarm intelligence 
— is also available via YouTube: 
https://www.youtube.com/watch?v=axxXz2BM0yw 

 

Figure 8: The Five Principles of Swarm Intelligence. 

5 CONCLUSION 

Various companies and academic institutions are 
actively researching the field of swarm intelligence; 
a search on the topic reveals two distinct 
approaches: 
 
a) Each member is controlled through a central 
computer, e.g. Intel’s 100 drones (Geiver, 2016). 
b) Each member behaves autonomously without a 
central computer; e.g., Harvard University’s 1024 
Robot Swarm (Hotz, 2014). 
 

Both approaches have merits and limitations 
(Íñiguez, 2016). 

In the case of a, members are slaves in a system 
controlled by a central computer with sufficient 
channels of communication. The results can be 
visually spectacular — as illustrated by Intel’s 
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drones. However, since a central computer dictates 
the movement of each member, there is limited 
flexibility to adapt to changing environments, such 
as: x) members lost to unforeseen events, y) 
members added to speed up the mission, or z) 
members autonomously self-allocating labor.  

Of course, the intricacy of the central software 
may be increased to account for x, y, and z, but that 
would make the central computer responsible for 
real time response, it would increase vulnerability 
due to single point of failure, and it would deviate 
from the concept of swarm intelligence which is 
defined as the collective behavior of decentralized, 
self-organized systems.  

In the case of b, members have the autonomy to 
adapt without a central dictator. Considering that 
each member possesses modest processing power — 
as illustrated by Harvard University’s swarm of 
robots — the results are truly impressive; 
nevertheless, this type of behavior falls into the 
realm of swarm flock. It does meet swarm 
intelligence’s basic definition of collective behavior 
of decentralized, self-organized systems, but it still 
lacks the ability to autonomously distribute and 
undertake allocation of labor.  

If neither a nor b meets the requirements of 
autonomous allocation of labor, then we need a 
different approach.  

As demonstrated in the proof-of-concept 
protopype, the Solidarity Cell Architecture 
effectively achieves the principles of awareness, 
autonomy, solidarity, expandability, and resiliency; 
it also solves the two major drawbacks described in 
the introduction, i.e., CPU micromanagement and 
coprocessor idleness, present in the traditional 
multiprocessing framework.  
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