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Abstract: New approach to the study of the spontaneous emission of an atomic system driven by a strong light field is 
developed. This approach is based on the accurate consideration of quantum system interaction with 
vacuum quantized field modes in the first order of perturbation theory, while the strong light field is 
considered classically. The proposed approach is applied to study the dynamics of field-driven atomic 
systems. Among them are Rabi oscillations in two-level system, resonant and nonresonant Raman and 
Rayleigh scattering, interference stabilization of Rydberg atoms. It is demonstrated that analyzing the 
spontaneous emission allows to study the specific features of quantum systems dressed by the field. 

1 INTRODUCTION 

Study of the nonperturbative atomic dynamics in 
strong laser fields is the core problem of nonlinear 
optics (Akhmanov and Nikitin, 1997). Typically this 
dynamics is studied in the semiclassical approach 
(Agostini and Di Mauro, 2004; Couairon and 
Mysyrowicz, 2007; Krausz and Ivanov, 2009; Chin, 
2010). It means that while the atomic system is 
analyzed from quantum-mechanical point of view 
the electromagnetic field is considered still classical-
ly. In (Bogatskaya et al, 2016) the possibility to use 
semiclassical approach for analyzing radiative 
processes in high intensity fields was questioned. It 
was demonstrated that the application of the semi-
classical approach to study emission of the quantum 
system driven by high intensity laser field is 
generally in contradiction with quantum electro-
dynamical calculations. Also it means that 
spontaneous emission from the quantum system is 
neglected. If laser field is strong enough the 
probability of spontaneous transitions is negligibly 
small in comparison with stimulated transitions. 
Nevertheless, any stimulated emission starts from a 
spontaneous background radiation. It means that in 
order to study initial stage of any nonlinear process 
one need to take into account spontaneous processes 
as well. On the other hand it is known atomic 
spectrum can be dramatically reconstructed by the 

strong external laser field (Delone and Krainov, 
1994; Fedorov, 1997). New quantum object with 
essentially different spectrum than the field-free 
atomic spectrum, (so called the dressed atom), 
appears to exist. The simplest example of such 
reconstruction is the AC Stark shift of energy levels 
in relatively weak laser field. Another example of 
the dressed atom is the so called Kramers - 
Henneberger atom that appears to exist in 
superatomic fields (Fedorov, 1997). The sponta-
neous emission from this dressed by the laser field 
atomic system can provide the unique information 
about its energy spectrum. To study the structure of 
dressed atom one needs to take into account the 
interaction with the electromagnetic vacuum. The 
interaction with vacuum modes also should be taken 
into account for analyzing a lot of nonlinear 
processes. A lot of practical applications of theory 
including interaction of the atomic system with both 
classical and vacuum field modes can be found in 
quantum optics (Scally and Zubairy, 1997). 

The aim of this paper is to develop the approach 
for studying first-order spontaneous radiative 
processes in a quantum system driven by a strong 
classical laser field. This approach is based on the 
first order perturbation theory applied to the 
interaction of the atomic system dressed by the 
strong laser field with a lot of quantized field modes 
in the assumption that initially all the modes are in a 
vacuum state. The proposed approach is applied for 
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study of a number of quantum systems such as 
quantum dots, quantum wires, clusters in the 
presence of the intense laser field.  

2 ATOM DYNAMICS IN A 
STRONG LASER FIELD IN 
THE PRESENCE OF  
QUANTIZED 
ELECTROMAGNETIC FIELD 

We analyse the atomic system using the following 
Hamiltonian 

),()(),(0 εε rVHtrHH f


++= , (1)

where ),()(0 trWrHH at


+= ; )(rHat


 is the atomic 

Hamiltonian, )(tEdW


⋅−=  represents the interaction 
of atom with classical laser field in the dipole 
approximation, fH  - Hamiltonian of the set of field 

modes excluding laser field mode, ),( εrV


 stands for 
the interaction of the atom with the quantized 

electromagnetic field, red


=  is the dipole moment, 
r


 is the electron radius-vector and ε  is the set of 
quantized field mode coordinates. 
     We are going to deal with the quantized field 
using perturbation theory. In the case when there is 
no interaction with quantized field modes one can 
write the well-known equation 

),()(
),(

0 trtH
t

tri


 ψψ =
∂

∂
, (2)

which describes the atomic dynamics in a classical 
laser field. Initial condition can be written as  

)()0,( rtr
 φψ == , (3)

where )(r
φ  is some stationary or unstationary state 

of the atomic discrete spectrum or continuum. We 
will suppose also that at the initial instant of time all 
field modes are in the vacuum state { }0 . Provided 

that we know the solution of equation (2), the 
solution of the general equation with the 
Hamiltonian (1) 

( ) ),,()(
),,(

0 trVHtH
t

tri f εε 
 Ψ++=

∂
Ψ∂

, (4)

and initial condition { }0)()0,,( ×==Ψ rtr
 φε  can be 

found by means of the perturbation theory. 
Wave function of zero-order approximation  

 

excluding interaction with the quantum field modes 
reads 

}0{),(),,()0( ×=Ψ trtr
 ψε , (5)

We are going to find the solution of (4) in the form: 

),,(),,(),,( )0( trtrtr εδεε 
Ψ+Ψ=Ψ , (6)

with )0(Ψ<<Ψδ . 
Substituting (6) in (4) in the first order of 

smallness one obtains: 

( ) ),,(),,()(

),,(

)0(
0 trVtrHtH

t
tri

f εεδ

εδ






Ψ+Ψ+
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∂

Ψ∂
 (7)

with the initial condition 0)0,,( ==Ψ tr εδ 
. 

In fact (7) can be formulated as Schroedinger 
equation for the Ψδ  with the source in the right 
hand. For further analysis of eq. (7) let us remind 
that initially we have vacuum in all field modes. 
Therefore in the first order of perturbation theory 

Ψδ  contains only one-photon excitations in a some 
field mode:  

{ } ×=Ψ
λ

λλδψεδ
,

0,0,...0,1,....0,0),(),,(
k

kk trtr


, 
(8)

Here ),( trk


λδψ  is the electron wave function 

provided that one photon with wave vector k


 and 
polarization λ  has appeared. 
As the interaction of the atom with quantized field 
can be written in a form 

λ
λ

λ
λ

λ εε k
k

k
k

k edVrV  −== )(),(
,


, 

(9)

( λεk  is the field operator of mode { }λ,k  and λke


 is 

the polarization vector) for a given mode with one-
photon excitation one can write: 

( )
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∂
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Here )( f
kh λ  is the Hamiltonian of the field mode 

λ,k . Provided that λωλ λλ ,23, ,
)( kkh k

f
k ⋅= , and 

λεε λ ,
2

0 knorm
k = , ( 34 Lknorm λωπε =  is the 

auxiliary normalizing constant, 3L  is the 
normalization volume), the final form of the eq. (10) 
can be written as 
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with the initial condition 0)0,( ==trk


λδψ . 

It is obvious that the expression  

= rdtrtW kk
32

),()( λλ δψ  (12)

represents the probability to find a photon in the 
mode λ,k  as a function of time. Then the total 

probability to emit the photon of any frequency and 
polarization during the transition if →  is  

=
λ

λ
,

)()(
k

kfi tWtW  
(13)

As the spectrum of field modes is dense, we can 
replace the sum in eq. 13 by the integral: 

  Ω= dd
c

LkdL kk λλ ωω
ππ

2
33

3

3

3
3

8

2

)2(
2  (14)

After the integration over angular distribution of 
photons and summation over possible polarizations 
the probability of the spontaneous decay in the 
spectral interval ),( ωωω d+  can be expressed in the 
form 

λωω ωω
π

ω ,/
2

32

3

3
ckWd

c
LdW =×=  (15)

where λ,kW  is given by (12). One should note, that 

the expression (14) does not depend on the 

normalization volume, as 3
, 1~ LWk λ .  

3 RABI OSCILLATIONS IN A 
TWO-LEVEL SYSTEM AND 
TRIPLET MOLLOW 

Let us restrict ourselves to the consideration of two-
level system (energy levels and stationary state wave 
functions 1E  and iϕ , 2,1=i  respectively) inter-

acting with near resonant field of frequency 
)( 1221 EE −=≈ ωω and initially ( )0=t  being in 

the state 1 . 

 
Figure 1: Dressing of two-level system in a resonant 
electromagnetic field. 

In the case of exact resonance 021 ≡−=Δ ωωω  

wave function of the system governed by the 
classical field with electric field tωεε cos0= can be 

represented in a form 

)exp()()(),(
2,1

tEirtCtr n
n

nn
=

−=


 ϕψ  (16)

with tC Ω= cos1  and tiC Ω−= sin2 , where 

2021εd=Ω  is the Rabi frequency. One can easily 

see that in our case dressing means splitting of each 
level into two quasienergy states with energies 

Ω±→ ii EE . The structure of this splitting for the 

case 21ω<<Ω  is performed at fig.1. It means that 

the line of spontaneous emission corresponding to 
the transition )( 12 EEk −== ωω λ  should split up 

into three lines Ω±= 2, ωωω λk , so-called triplet 

Mollow (Mollow, 1969). To confirm this statement 
we will find the solution of general equation (11) in 
a form 

)exp()()(),(
2,1

)( tEirtCtr n
n

n
k

nk 
=

−=


 ϕδψ λ
λ . (17)

Then the equations for amplitudes )( λk
nC  reads 
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Here 
22

21*


normd ε=Ω  is the coupling constant of the 

quantum system with quantized field. First terms in 
(18) mean the transitions between two atomic states 
of the system under the resonant laser field while 
second terms stand for the emission of photons 

2 
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{ }λ,k . General analytical solution of eq. (18) with 

initial conditions 0)0()(
2,1 ==tC kλ  we can write as 
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It represents emission of photons near the 
frequencies Ω±= 2, ωωω λk  and subsequent Rabi 

oscillations of the atomic population probabilities. 
The probability to emit photon { }λ,k  is 

2)(
2

2)(
1)( λλ

λ
kk

k CCtW +=  and is given at fig.2 for 

two different laser pulse durations. As we supposed 
earlier, the initial line splits into three lines that are 
known as triplet Mollow. The intensity of the central 
line is twice  larger in comparison with satellites at 
frequencies Ω±= 2ωω λk . As the duration of the 

pulse increases the splitting of the initial line into the 
triplet Mollow becomes more and more pronounced 
(see solid and dashed curves at fig.2). 

 

Figure 2: Triplet Mollow for short (solid) and long (dash) 
laser pulses. Pulse durations are 104 and 2 104 at.un. 

4 NONRESONANT 
SPONTANEOUS RAMAN AND 
RAYLEIGH SCATTERING 

In this chapter we will study Raman and Raylegh 
scattering of laser radiation by atomic system. To 
obtain the general expression for probabilities of 

Raman and Raylegh scattering let us consider the 
atomic dynamics in classical laser field also in the 
first order of perturbation theory. Then 
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where 
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Substituting (20) and (21) into (11) and assuming 
that i  is the initial atomic state one derives the 

equation for probability amplitude to find the atom 
in f  and the photon in the mode { }λ,k : 
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Second term in the right part of (22) stands for the 
emission of photon { }λ,k  while the first one 
describes the evolution of atomic wave function in 
the classical field after the emission of photon and 
here we will neglect such evolution. From (22) one 
derives: 
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This is the probability of Stoks component of the 
spontaneous Raman scattering corresponding to the 
final state f and emission of a photon 

)( ifk EE −−= ωω λ   (24)

If the final state coincides with the initial one 
if =  we derive the expression for the Rayleigh 

scattering 
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when the frequency of spontaneous photon is the 
same as for laser radiation. Not far from resonanse 
when laser frequency is niωω ≈  with definite value 
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of n , the transition takes place through the only 
intermediate state and summation over all 
intermediate states in expressions (23) and (25) 
should be omitted:  

.)(2

1

22

))((
)(

)(

2
0)(22)(

)(

tEE

ded
tC

kiif

ni

niknif
norm

k
if

×+−−×

−
=∞→

λ

λλ

ωωπδ

ωω
ε

ε







 (26)

5 FOUR-LEVEL SYSTEM  
DYNAMICS IN A PRESENCE 
OF QUANTIZED 
ELECTROMAGNETIC FIELD 

To provide more insight into atomic dynamics in 
discrete spectrum we will study the spontaneous 
emission in four-level system 3,2,1,0  with 

even parities for 2,0  and odd ones for 3,1 . The 

wave function of the system 


=

−=
3

0

)exp()()(),(
n

nnn tEirtCtr
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 ϕψ  (27)

is obtained from the set of equations 

)exp(cos)( 0 titdCCi fn
n
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with initial condition 0)0(,1)0( 3,2,10 ==== = tCtC i . 

Then the equation (11) is also equivalent to a set of 

equations for amplitudes )()( tC k
f

λ  for different { }λ,k  

modes: 
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The positions of energy levels were chosen as 
follows 1.0,2.0,25.0 322110 === ωωω  and hence 

55.030 =ω . Hereafter all values will be given in 

atomic units. Nonzero values of the dipole matrix 
elements were chosen equal to each other 

121323010 ==== dddd . The duration of laser pulse 

was 4104 ×=τ , laser intensity was 10-3, that means 

the Rabi frequency is 4105 −×=Ω . The spectrum of 
spontaneous emission for various spectral intervals 

and different detuning of the laser frequency from 
the frequency of transition 30 →  ( )55.030 =ω  

are presented at fig.3. First we should mention that 
in the laser frequency range 005.030 >−ωω  for 

definite laser pulse parameters both Raman and 
Raleigh processes 230 →→  and 

030 →→  correspondingly have nonresonant 

character and can be studied using the expression 
(23). Near the resonance the situation is changing 
dramatically due to dressing of the upper 3  and 

ground 0  levels by external laser field. As far as 

levels 0 and 3  split into two sublevels the lines of 

Raman also splits into two lines (fig.3a) while the 
Rayleigh scattering line is divided into three lines, 
that corresponds to the Mollow triplet. In the case of 
exact resonance the value of this splitting is equal to 

Ω2  (сurves 1). For the near-resonance case 
001.030 =−= ωωδ  the splitting of states becomes 

asymmetrical and the position of doublet Raman and 
triplet Rayleigh lines changes (curves 2). Further 
increment of the detuning (curves 3) results in the 
formation the ordinary Raman and Rayleigh lines 
with frequencies 30ωω −  and ω  respectively. 

 

Figure 3: Spectral lines of Raman (a) and Rayleigh (b) 
processes in dependence on laser frequency detuning 
( 30ωωδ −= ) from the atomic transition frequency (1 - 

0=δ , 2 - 001.0=δ , 3 - 005.0=δ ). Pulse duration is 

40000, Rabi frequency 4105 −×=Ω . 
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Rest lines with frequency 32ω  and 30ω  can be 

interpreted as spontaneous transitions 23 →  and 

03 →  resulting from the nonresonant excitation 

of level 3  by laser radiation. 

6 STABILIZATION IN A 
PRESENCE OF QUANTIZED 
ELECTROMAGNETIC FIELD 

The interference stabilization (IS) of Rydberg atoms 
was first predicted in (Fedorov and Movsesian, 
1988), analyzed in detail in subsequent works 
(Fedorov et al, 1996; Fedorov and Tikhonova, 
1998), as well as in (Fedorov, 1997). According to 
(Fedorov, 1988), IS occurs due to destructive 
interference of the amplitudes of transitions to a 
continuum from excited Rydberg states coherently 
repopulated by Raman Λ-type transitions during 
laser excitation. It is known that the widths of these 
transitions are determined by Fermi’s golden rule 

2
0 22 επ


nEd=Γ  (30)

Here, nEd


 is the matrix element of the dipole 

moment operator for the ω+=→ nn EEE  

transition and 0ε  is the electromagnetic field 

strength amplitude of the wave. According to 
(Fedorov, 1997), the IS threshold is determined by 
the overlap of ionization widths of Rydberg states 
and can be written in the atomic system of units in 
the form: 

135
0 >ωε  (31)

or by passing to intensities: 310* ω≈> II . For 
example, for the emission frequency of a Ti:Sa laser, 
we obtain from (31) the threshold intensity I* ≈ 2.5 
× 1012 W/cm2. 

The general expression for the quasi-energy 
spectrum of a field-dressed atom in the simplest 
model of two close nondegenerate levels and a 
nondegenerate continuum (1D) was obtained in 
(Fedorov, 1988): 







 Γ−−±Γ−+=±

22
1221 )(

2

1 EEiEEγ  (32)

Here, 2,1E are unperturbed energy levels and Γ is the 

ionization width calculated from (30) and assumed 

the same for both levels. The imaginary part of (32) 
determines the ionization width of shifted levels. A 
structure of broadened quasienergy levels is seen to 
change drastically at 12 EEГ −= , which confirms 

the threshold character of the IS. In the region 
12 EEГ −>  the shift results in a form of a narrowing 

quasienergy level located approximately at 
2/)( 21 EE +  embedded into a widening one. In terms 

of the time evolution of populations this means that 
the decay (ionization) has a two-exponential 
character. I.e., there are short- and long-living parts 
of populations. Existence of the latter is a clear 
manifestation of stabilization. 
 It follows from (32) that in the strong-field limit 

12 EEГ −>  the decay rate of the long living 

stabilized part of population decrease with 
increasing intensity as:  

IEE
strong 1~

2
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Im2

2
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Γ
−=−=Γ +γ  (33)

In this chapter we are going to embed spontaneous 
radiation in the stabilization phenomenon. We 
employ with three-level system where there is a 
ground state 0  and levels 2,1  which are 

supposed to be Rydberg levels of the opposite parity 
with respect to the ground state. The energies of 

levels are chosen 5.00 −=E  for 0 , 3
1 105 −×−=E  

and 3
2 104 −×−=E for levels 2,1  respectively (we 

are working within the atomic system of units). 
In frames of previous consideration we solve 

numerically the following system of equations: 
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(34)

where 
2

04
0 2

2
42

επεπ nE

n
nEnEnn

ddd


==Γ 
′

′′ . 

The first equation is obtained using the method of 
adiabatic elimination of the continuum (Fedorov, 
1997), as well as the approximation of equal 
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Rydberg-continuum dipole matrix elements for all 
Rydberg levels efficiently involved in the process of 
ionization. In our simulations we assume matrix 
elements to be calculated in quasiclassical 

approximation )(1 3/55.1 ωndnE = , where principal 

quantum number n is supposed to be 10 and ω  
equals 0.057 that corresponds to the radiation of Ti-
Sa laser pulse. Fig. 4 shows the spectrum of 
spontaneous emission to the ground state for 
different values of laser intensity. The situation 
described at fig. 6a corresponds to the initial 
population amplitudes of Rydberg levels 

21)0(,21)0( 21 −== СС  (antisymmetrized 

combination). In the absence of laser pulse one can 
see two independent emission profiles from Rydberg 
levels, but with the increase of radiation intensity 
due to the interference of amplitudes of Raman Λ - 
type transitions Rydberg levels reconstructed 
significantly. As a result emission lines gradually 
merge forming new transition with the energy 

)2/)(( 210 EEE +−−  (curve 3 fig. 4a). Such initial 

condition provides pretty resistant atomic system 
with respect to ionization process. The fraction of 
 

 

Figure 4: Reconstruction of the spectrum of the 
spontaneous emission of an atom in the regime of 
interference stabilization. Amplitudes of initially 
populated Rydberg states are opposite (a) and the same 
(b). Intensities of Ti:Sa laser ( 057.0=ω ) are (1 - 0 , 2 -

5105.2 −× , 3 - 4105.2 −× ). Pulse duration is 40000. 

population trapped in Rydberg states in this case is 
very close to unity (fig. 5). Another situation is 
developing for the symmetrized combination of 

population amplitudes 21)0(,21)0( 21 == СС . In 

this case for rather high intensity of laser field when 
12 EEГ −>>  we can clearly observe a two-

exponential dynamics of population decay (fig. 5) 
showing short- and long-living parts of populations. 

Such type of temporal dynamics is pronounced 
in spontaneous emission spectra. Indeed, blue curve 
on fig 4b represents the wide line of emission from a 
rapidly disintegrating background, while the narrow 
depletion in the center of this line results from long-
time decay of the small stable fraction of population. 
The life times of these long- and short-living 

fractions can be estimated as 2
12 )(2 EE −Γ  and Γ/1  

correspondingly. 

 

Figure 5: Temporal dependensies of the trapped 
population for the initially populated simmetrized (1) and 
antisimmetrized (2) states (see the text). Laser intenisity is 

42.5 10 .−×  

7 CONCLUSIONS 

To conclude, general approach to analyze the 
spontaneous emission of an atomic system driven by 
a strong laser field is developed. It based on the first 
order of perturbation theory for the interaction with 
quantized vacuum field modes while the interaction 
with the intense classical laser field is considered 
numerically or analytically beyond the perturbation 
theory. Several problems (Rabi oscillations and 
formation of the Mollow triplet, spontaneous Raman 
and Rayleigh scattering, ionization suppression in 
the regime of interference stabilization) were 
studied. It was demonstrated that the spontaneous 
emission can be effectively used to study the 
reconstruction of the energy spectrum by the laser 
field, and different types of dressing were analyzed.  
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We would like to mention that our approach can 
be used to study the spectrum and dynamics under 
external fluence of artificial atoms, such as quantum 
dots or quantum wires, and the coupling of these 
atoms with photons (Michler et al, 2000; Santori et 
al 2002; Faraon et al, 2008) or with crystalline 
lattice via phonons (Förstner et al, 2003; 
Machnikowski and Jacak, 2004; Ahn, et al, 2005). 
Developed approach can be of significant interest for 
the study of relaxation processes in a lot of modern 
nanoelectronic devices devoted for information 
receiving and processing (Hoang et al, 2012; Jöns et 
al, 2015). 
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