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Abstract: Island Models (IMs) divide the whole population into many coevolving subpopulations, which periodically 
exchange fractions of their individuals. Some IMs, exchange probabilistic models built during the 
subpopulations evolution. The use of many coevolving subpopulations helps to preserve the population 
diversity, which makes it less likely to get stuck in the local optima. Another promising research direction in 
the Evolutionary Computation field is the Linkage Learning. The knowledge about gene dependencies can 
be used in many different ways that improve the overall method effectiveness. Therefore, this paper 
proposes the Gene Pattern Based Island Model (GePIM) that uses the multi-population nature of IMs to 
generate the linkage information. GePIM also introduces a new type of migration based on exchanging 
linked gene groups, instead of exchanging the whole individuals or probabilistic models. 

1 INTRODUCTION 

Evolutionary Algorithms (EAs) are well-known 
methods capable of solving hard computational 
problems. Many different EAs were proposed, all of 
them have their pros and cons. During the recent 
years, the research toward proposing universal and 
beneficial mechanisms for EAs has gained an 
increasing attention. Among these universal 
mechanisms, the coevolution of many subpopula-
tions can be found (Chang, 2015; Dahzi et al., 2008; 
Fidrysiak and Przewozniczek, 2015; Fieldsend, 
2014; Kurdi, 2016; Leitão et al., 2015; Kwasnicka 
and Przewozniczek 2011; Przewozniczek et al., 
2015; Skolicki, 2008; Walkowiak et al., 2013; 
Zhang et al., 2007). Island Models (IMs) improve 
the performance of Genetic Algorithms (GAs) by 
better preservation of population diversity (Kurdi, 
2016; Leitão et al., 2015; Skolicki and De Jong, 
2007; Skolicki, 2008). IMs allow for decreasing the 
negative influence of preconvergence (Kwasnicka 
and Przewozniczek, 2011; Watson and Pollack, 
1999; Watson, 2006). Due to the higher diversity, 
more potentially valuable Building Blocks (BBs) 
remain in the population. Usually, the more BBs can 
be processed by a GA-based method, the greater is 
the chance of reaching the breakthrough and finding 
more valuable solutions than in the case of fast 
converging methods. 

As stated above, in general, the better diversity 
preservation improves the overall GA effectiveness. 

However, it does not seem enough to make the 
valuable BBs exist in a population (Kwasnicka and 
Przewozniczek, 2011; Skolicki, 2008). The method 
must also use mechanisms that allow for effective 
BBs processing. As shown in the literature, not all 
BBs are equally effectively processed by classical 
EA operators like crossover. Therefore, the Linkage 
Learning (LL) techniques became popular. The LL 
methods try to discover the possible gene 
dependencies during their run (so-called linkage 
discovery). The knowledge about linkage is used 
later on to improve the method effectiveness. For 
instance, during the crossover operation only linked 
genes can be exchanged between individuals instead 
of using classical single point or uniform crossover 
operators. Therefore, the LL techniques are often 
shown to be beneficial to many different EA types 
(Omidivar et al., 2014). 

IMs use many coevolving subpopulations to 
improve the overall population diversity (Skolicki, 
2008). To ensure the communication between 
separated subpopulations (called islands) the 
migration operator is used. During the migration, all 
subpopulations (isolated for the most of the method 
run) usually exchange individuals with one another. 
In some papers, the probabilistic models that were 
built by separate islands are exchanged (delaOssa et 
al., 2004; Muelas et al., 2014). The migration is, in 
fact, supposed to exchange BBs that are carried by 
migrated individuals or probabilistic models 
(Skolicki, 2008; Watson, 2006). The question is: if 
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we want to exchange BBs why don’t we exchange 
BBs instead of exchanging other data structures that 
are supposed to carry them? Therefore, this paper 
proposes a new type of migration: the Linked Gene 
Groups Migration (LGGM). During the LGGM only 
linked gene groups (which are assumed to be BBs) 
are migrated. To show the potential of the new 
migration operator, the Gene Pattern Based Island 
Model (GePIM) that incorporates the LGGM and the 
LL techniques is proposed. 

The remainder of the paper is organized as 
follows. In the second section, the related work is 
presented. The third section describes GePIM. The 
description of the performed experiments and their 
analysis is presented in Section 4. Finally, the last 
section concludes and summarizes the paper. 

2 RELATED WORK 

In the recent years, the LL became an important part 
of evolutionary computation research. The idea 
behind LL is to find potential gene dependencies 
during an EA run and use this knowledge to improve 
the overall method effectiveness. Many different 
ways have been proposed for linkage information 
gathering, storing, and use. Therefore, the next 
subsections contain a brief introduction to recent 
research on the LL and IMs. 

2.1 Linkage Learning 

One of the first classifications for the LL methods 
was proposed in (Chen et al., 2007a). The LL 
concerns three main fields: the way the good and the 
bad linkage are distinguished, linkage representation 
and linkage storage. According to the first 
classification field, the good and the bad linkage 
may be distinguished only on the base of fitness 
value (unimetric way) or some additional criteria 
may also be taken into consideration (multimetric 
way). The typical unimetric way of good and bad 
linkage distinguish may be found in Multi 
Population Pattern Searching Algorithm (MuPPetS) 
(Kwasnicka and Przewozniczek, 2011). The 
multimetric approach may be found in Bayesian 
Optimization Algorithm (BOA) (Pelikan et al., 
1999; Pelikan et al., 2006). The linkage may be 
represented in a virtual or a physical way. If the 
linkage is represented by graphs, matrices, gene 
patterns (Kwasnicka and Przewozniczek, 2011; 
Pelikan et al., 1999; Pelikan et al., 2006), or other 
data structures then the virtual representation is 
used. If the linkage is being represented as physical 

genes locations in the chromosome (i.e., genes that 
are close to one another are considered to be linked) 
then physical linkage representation is being used. 
The typical example of physical linkage 
representation is messy coding (Goldberg et al., 
1993; Kwasnicka and Przewozniczek, 2011). 
Finally, the linkage may be stored in two different 
ways: centralized and distributed. The centralized 
way is used when linkage information is stored in 
some globally accessible database (i.e., the complete 
linkage information in the database may be accessed 
at any method operation). On the other hand, the 
messy coding is a typical example for distributed 
linkage information storing (each individual possess 
its own linkage information that is used only for the 
operations that include this individual).  

Another classification of LL techniques, also 
called Decomposition Strategies, was proposed in 
(Yu et al., 2009). The three main linkage generation 
ways are pointed: perturbation, interaction adapta-
tion, and model building. In (Omidivar et al., 2014) 
this list was supplemented by random methods. All 
techniques are discussed below. This paper defines 
another decomposition strategy which was not 
distinguished before although the methods that use it 
are present in the literature - the evolution results 
comparison. 

Perturbation. These methods perturb the 
genotype. The fitness value changes caused by 
perturbations are analysed to detect the possible 
interactions between genes. The example of this 
strategy is the Probabilistically Complete 
Initialization (PCI) phase of fast messy GA (fmGA) 
(Goldberg et al., 1993) and Differential Grouping 
(Omidivar et al., 2014). 

Interaction Adaptation. The methods that use 
this linkage discovery technique are capable of 
evolving the gene order in the chromosome. This 
decomposition strategy is used during the 
evolutionary process.  

Model Building. These methods, also called 
Estimation of Distribution Algorithms (EDAs), 
construct the probabilistic model on the base of 
promising individuals in the population. The 
examples of such methods are BOA and hBOA 
(Pelikan et al., 1999; Pelikan et al., 2006). 

Random Methods. These methods use the most 
simple linkage generation strategy – the linkage is 
generated randomly. The new linkage may be 
generated again after some evolutionary method 
iterations (in such case the quality of linkage is not 
controlled at all) (Yang et al., 2008). Another 
possibility is to generate new linkage information 
when the information used so far is found not useful 
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(Chen et al., 2007a; Fidrysiak and Przewozniczek, 
2015). Note that such decomposition strategy is 
quite primitive, but still may be more effective than 
the use of typical linkage-blind operators like the 
uniform or the single point crossover operators 
(Przewozniczek, 2015). 

Evolution Results Comparison. This decom-
position strategy class was not distinguished before 
but seems necessary since the already proposed list 
does not cover all possibilities that may be found in 
the EA literature. The methods that use this 
decomposition strategy compare the individuals that 
are the results of different evolution processes. For 
instance, evolution results produced by various 
islands may be compared (Skolicki, 2008). Another 
way is used in MuPPetS (Kwasnicka and 
Przewozniczek, 2011; Przewozniczek et al., 2015; 
Walkowiak et al., 2013). In MuPPetS, a perturbation 
to a particular genotype is introduced. Then this 
perturbed genotype is optimized by an evolutionary 
process. The linkage information is generated on the 
base of differences between the genotype before 
perturbation and after evolutionary optimization of 
the perturbed genotype. 

Linkage information is used in many different 
ways. The most common one is to improve the 
effectiveness of crossover operators (Chen et al., 
2007a; Fidrysiak and Przewozniczek, 2015; 
Goldberg et al., 1993; Kwasnicka and 
Przewozniczek, 2011). Other ways may include the 
population initialization (Goldberg et al., 1993; 
Kwasnicka and Przewozniczek, 2011; Pelikan et al., 
1999; Pelikan et al., 2006) and gene grouping in 
Cooperative Coevolution (Omidivar et al., 2014). 
Note that some of the proposed LL techniques may 
be hardly useful in practice. For instance, in 
(Omidivar et al., 2014) the proposed LL technique 
assumes that identified groups of genes are fully 
separable. It seems doubtful that a method built on 
such assumptions will be capable of effectively 
solving the real-life problems – usually, the BBs are 
not fully separable (Pelikan et al., 2006; Skolicki, 
2008; Watson and Pollack, 1999). 

2.2 Island Model 

In IMs (Kurdi, 2016; Leitão et al., 2015; Skolicki 
and De Jong, 2007; Skolicki, 2008) the population is 
divided into subpopulations called islands. For each 
island (subpopulation), a separate evolutionary 
process is executed. The evolutionary operations are 
restricted to islands, so individuals from different 
islands cannot interact freely. The islands commu-
nicate with one another usually by migrating whole 

individuals. Such model improves the diversity of 
the whole population and thus makes it less 
vulnerable to preconvergence. 

An interesting direction of research in the IM 
field is the hybridization of IM and EDAs (delaOssa 
et al., 2004; Muelas et al., 2014). EDAs build the 
probabilistic models during their run which are used 
to generate offspring. The IM and EDA hybrids 
exchange probabilistic models instead of exchanging 
individuals. However, the question of how to 
effectively combine the exchanged models remains 
open. Therefore, in this paper, we concentrate on 
exchanging detected building blocks instead of 
exchanging models or individuals. 

In some of the papers another way of 
understanding IMs may be found (Skolicki and De 
Jong, 2007; Skolicki, 2008). IMs may be interpreted 
as a two-level system, where islands are higher level 
individuals and interactions between them are a part 
of high-level evolution. This interpretation is close 
to the idea of Compositional Evolution (Watson, 
2006) defined as “evolutionary processes involving 
the combination of systems or subsystems of semi-
independently preadapted genetic material”. Skolicki 
(Skolicki, 2008) points out that lower evolution level 
of IMs is used to produce BBs while the higher level 
is used to exchange them. Therefore, IMs should be 
suitable to solve problems built from multiple 
subsolutions. Note that similar, two-level method 
construction, is becoming more and more popular 
and is typical not only for GA-based methods. For 
instance, MuPPetS (Kwasnicka and Przewozniczek, 
2011; Przewozniczek et al., 2015; Przewozniczek, 
2016) uses a dynamically changed number of messy 
individual subpopulations, which exchange data 
using LL. In (Alves, 2015; Kwasnicka and 
Przewozniczek, 2011; Kim and Choi, 2015) GA-
based methods, with many coevolving subpopula-
tions, were proposed. The idea of multiple subpopu-
lations may also be found in papers concerning 
Particle Swarm Optimization (PSO) (Chang, 2015; 
Dahzi et al., 2008; Fidrysiak and Przewozniczek, 
2015; Fieldsend, 2014; Zhang et al., 2007), 
Differential Evolution (DE) (Wang et al., 2015; 
Zavoianu et al., 2015), and others (Omidivar et al., 
2014; Yang et al., 2008). 

3 GENE PATTERN BASED 
ISLAND MODEL 

In this section, the description of the proposed Gene 
Pattern Based Island Model (GePIM) is presented. 
As pointed in the former sections, the migration in 
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IMs is used to exchange the BBs between islands. 
Therefore, the main motivation behind GePIM is to 
exchange linked gene groups instead of exchanging 
individuals or probabilistic models. 

3.1 Gepim Overview 

The general GePIM procedure is presented in Figure 
1. The method framework is typical for IMs. The 
main differences are the introduction of LL 
mechanisms and the use of linked genes. 

1: it ←  1; 
2: for each island: 
3:  initialize(island); 
4:  evaluate(island); 
5: while (!stopCondition): 
6:  for each island: 
7:   select(island); 
8:   crossover(island); 
9:   mutate(island); 
10:   evaluate(island); 
11:  if (it % retrievalFreq = 0): 
12:   retrieveLinkage(); 
13:  if (it % migrationFreq = 0):  
14:  

 migrateLinkedGeneGroups(); 
15:   for each island: 
16:    evaluate(island); 
17:  it ←  it + 1; 
18: return bestIndividual; 

Figure 1: The general GePIM procedure. 

As shown in Figure 1, first all subpopulations 
(islands) are randomly initialized. Then all 
subpopulations are processed like in the standard 
GA (sGA). In the case of GePIM, the uniform 
crossover operator is used as it is not dependent on 
gene order. The probability of mutation is checked 
for every single gene separately. If the mutation 
occurs then the gene value is flipped. The linkage 
information retrieval and the LGGM are performed 
with frequencies defined by a user. These two 
operations are described in the next two subsections. 

3.2 Linkage Information Retrieval 

The linkage information is stored in a form of gene 
patterns (Kwasnicka and Przewozniczek, 2011). A 
gene pattern is a set of gene positions that are 
expected to be dependent on one another. A gene 
pattern of length l is denoted as {p1, p2, …, pl}, 
where pi is the ith gene position. For example, the 
gene pattern {1, 4, 6} marks three genes: first, 
fourth, and sixth. Here, gene patterns are created by 
comparing two individuals and selecting only those 

genes that are different. Therefore, lengths of gene 
patterns are not fixed. For example, for the 
comparison of 001100 and 010101 individuals, the 
gene pattern is {2, 3, 6}, because the genotypes are 
different at the second, third, and sixth position. 

Assuming that two individuals have different 
genotypes and are well evolved (they cannot be 
easily improved by a typical evolutionary process), 
some of their genotype differences may have a 
considerable impact on fitness. The existence of the 
specific good gene values only in one individual 
may be caused by difficulties in obtaining such 
sequence. It may be supposed that these genes 
depend on one another. 

Therefore, in IMs, it seems reasonable to 
compare individuals from different islands to 
produce linkage. The objective is to compare 
individuals that are well evolved, so only the best 
individuals from each island are taken into account. 
For each island, two types of the best individual can 
be defined. The first is the current best individual 
(i.e., the best individual in the island’s population).  
The other is the best individual found so far on a 
particular island. The current best individual and the 
best individual found so far can, but do not have to, 
be the same. 

To retrieve the linkage information, comparisons 
between the best individuals from all islands are 
made. Each island provides two best individuals: 
current and the best found so far. All possible pairs 

are checked. Therefore, 2
2NC comparisons are made, 

where N is the number of islands. Each comparison 
produces a single gene pattern. Comparing two best 
individuals from the same island could provide a 
useful gene pattern since they may represent 
different local optima. A single gene pattern may 
contain gene positions from different BBs. 
Especially in the early method stage when all islands 
are the most diversified due to the random 
initialization. Thus, not every gene pattern generated 
in the above way will be a valuable one. Note that in 
every LL method the linkage information does not 
have to be perfect. It is as good as it improves the 
performance of the whole method. A wider 
discussion on this topic may be found in (Kwasnicka 
and Przewozniczek, 2011). 

Each newly created gene pattern is added to a 
global gene patterns storage, called gene pattern 
pool. A size of a gene pattern pool cannot exceed a 
user defined maximum size. If a maximum size is 
reached then every new gene pattern replaces a 
randomly selected gene pattern from the gene 
pattern pool. The above mechanism of replacing 
randomly chosen gene patterns by new gene patterns 
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is adopted from (Kwasnicka and Przewozniczek, 
2011). The motivation behind this mechanism is 
quite straightforward. It is very hard (if not 
impossible) to distinguish the linkage information 
that is useful on the current method stage, from the 
useless one. Therefore, it seems reasonable to assu-
me that useful linkage information will be generated 
more times and will replace the useless one. 

3.3 Linked Gene Groups Migration 
Operator 

During a classic migration, individuals are migrated 
between islands. Note that even if migrated 
individuals provide some new BBs to an island, it 
may be hard to exchange them with other 
individuals. New BBs can be easily destroyed by 
classical crossover operators. For example, if the 
optimal problem solution is 11111111 then even if 
the population contains individuals 01010101 and 
10101010, obtaining the individual representing the 
best solution is highly unlikely. 

The above drawback can be avoided by 
migrating linked genes instead of individuals or 
probabilistic models. Genes marked by a single gene 
pattern are supposed to be linked. To perform the 
Linked Gene Groups Migration (LGGM), two 
islands are selected first. Then, the defined number 
of best-fitted individuals from both islands is 
selected. The individuals that migrate their genes are 
called ‘source individuals’ while the individuals 
from the island that receives the linked genes are 
called ‘receiving individuals’. The source and 
receiving individuals are paired in the way that the 
best source individual sends its genes to the best 
receiving individual, the second best source 
individual sends its genes to the second best 
receiving individual and so on. For each source-
receiving individuals pair, the gene pattern is 
selected randomly from the gene pattern pool that 
contains gene patterns created during the linkage 
information retrieval phase. Finally, all genes from 
the source individual, marked by the chosen gene 
pattern replace proper genes in the receiving 
individual. For example, if the 01010101 is the 
receiving individual, the 10101010 is the source 
individual and the {1, 3, 5, 7} gene pattern was 
selected for this migration then after such operation 
the genotype of receiving individual will be as 
follows: 11111111. 

3.4 Summary 

GePIM is an example of IM, which uses the LL  
 

technique. The linkage information is used during 
(and only during) the LGGM operation. This 
improves the method effectiveness. The method is 
not dependent on gene order since the uniform 
crossover operator is used. 

The GePIM classification as an LL method is as 
follows. GePIM uses the unimodal way of good and 
bad linkage distinguish, the linkage information 
representation is virtual and is stored in a centralized 
way. The evolution results comparison is used as a 
decomposition strategy. 

4 THE RESULTS 

In this section, the results of performed experiments 
are presented. In the first subsection the competing 
methods choice is presented, then the problems used 
for tests and the stop condition are discussed. The 
tuning procedure, obtained results, and their 
discussion are described in the latter subsections. All 
methods were coded in C++. Whenever it was 
possible, the methods shared the same pieces of 
code. All experiments were conducted on HP Elite 
Desk800 3.4 GHz 8GB RAM server with Intel Core 
i7-4770 CPU and Windows 7 64-bit installed. For 
each test case, ten independent runs were executed. 
Complete results, source codes of all competing 
methods, and configuration files are available at: 
http://mp2.pl/download/ai/20160531_gepim.zip. 

4.1 Competing Methods Choice 

Four methods were chosen to compete with GePIM. 
The classical Island Model (IM) was chosen to 
check how significant is the improvement caused by 
changes proposed in this paper. sGA was chosen to 
check if the difference between the simple and more 
evolved methods is significant. Both, classical IM 
and sGA use (same as GePIM) the uniform 
crossover operator and the gene flip mutation 
checked for every gene separately. Finally, BOA 
(Pelikan et al., 1999) and MuPPetS (Kwasnicka and 
Przewozniczek, 2011) methods were chosen as the 
literature review points them as highly effective 
ones. BOA is effective when used for solving the 
deceptive functions concatenations, while MuPPetS 
was shown capable of effective solving both: 
theoretical (Kwasnicka and Przewozniczek, 2011) 
and practical problems (Przewozniczek, 2015; 
Walkowiak et al., 2013). 

BOA (Pelikan et al., 1999) is an LL method that 
builds a Bayesian network to represent gene 
dependencies. At each iteration, a Bayesian network 
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is generated on the base of a set of best individuals. 
In the next iteration, new individuals are created on 
the base of Bayesian network. BOA was shown to 
use a relatively low number of Fitness Function 
Evaluations (FFE) when compared to other 
evolutionary methods. However, in the case of 
BOA, the main part of computation load is 
consumed not for the fitness value computation, but 
on Bayesian tree generation. In this paper the same 
Bayesian network construction algorithm as in 
(Kwasnicka and Przewozniczek, 2011; Pelikan et al., 
1999) is used. The time complexity of this algorithm 
is O(k2kn2N + kn3), where n is the problem size, N is 
the size of the dataset, and k is the maximum 
allowed indegree (the tree depth). 

MuPPetS (Kwasnicka and Przewozniczek, 2011) 
is a relatively new proposition of LL method. It uses 
a flexible number of coevolving virus populations. 
The viruses are messy-coded individuals (Goldberg 
et al., 1993; Kwasnicka and Przewozniczek, 2011), 
but purpose and way of use are different than in the 
classical messy coded individuals case. The number 
of virus subpopulations is increased when the 
method is stuck and decreased after reaching a 
breakthrough. This feature makes the method 
capable of automatically adjusting itself to the 
current evolution state. The linkage information is 
extracted with the use of evolution results 
comparison strategy. 

4.2 The Test Problems and Stop 
Condition 

As discussed in the previous subsection the 
computation load used by BOA is mainly dependent 
on Bayesian network construction, not on fitness 
value computation. Therefore, FFE is not a fair 
computation measure for BOA. A detailed analysis 
of the dependency between FFE and the computa-
tion time used by BOA may be found in (Kwasnicka 
and Przewozniczek, 2011). Therefore, in this paper, 
the computation time (7200 seconds) was used as a 
stop condition. The stop condition was checked after 
each method iteration. Thus, the overall computation 
time could be slightly greater than 7200 seconds. 
The time-based stop condition favors the methods 
that spend most of the computation load for fitness 
value computation. The proper analysis of FFE and 
computation time dependency is given at the end of 
Section 4.4. 

All experiments were executed in a repeatable 
 

environment without any other resource consuming 
processes running. Three different kinds of test 
problems were chosen: the deceptive functions 

concatenations, the Knapsack, and the MAX-2SAT 
problem. 

4.2.1 Mixed Deceptive Functions 
Concatenations 

Eight different deceptive functions were used to 
build the deceptive functions concatenations. They 
are presented in Table 1. The value of the deceptive 
function is dependent on unitation u (the number of 
‘1’s in the genotype). 

Table 1: Used deceptive functions definitions. 

u
3-bit 
(3l) 

3-bit 
(3lh)

3-bit 
(3h) 

3-bit 
(3hh)

5-bit 
(5l) 

5-bit 
(5lh) 

5-bit 
(5h) 

5-bit 
(5hh)

0 0.33 0.98 3.33 9.80 0.4 0.99 4 9.88

1 0.17 0.49 1.67 4.90 0.3 0.74 3 7.41

2 0 0 0 0 0.2 0.49 2 4.94

3 1 1 10 10 0.1 0.25 1 2.47

4 NA NA NA NA 0 0 0 0

5 NA NA NA NA 1 1 10 10

To each deceptive functions concatenation, the 
tale function was added. The tale is the OneMax 
function and is defined as follows: Tale(length) = 
u/length, where u is the unitation and length is the 
tale function gene number. The test cases used in the 
experiments are defined in Table 2 according to 
Table 1 and the tale definition. The number of bits 
necessary to encode the complete problem solution 
was 600 for all used concatenations. 

Table 2: Used deceptive functions concatenations. 

TC no. Definition 

1 50*3l + 30*5l + Tale(300) 

2 50*3lh + 30*5lh + Tale(300) 

3 15*3l + 35*3h + 9*5l + 21*5h + Tale(300) 

4 15*3lh + 35*3hh + 9*5lh + 21*5hh + Tale(300)

5 60*5l + Tale(300) 

6 60*5lh + Tale(300) 

7 18*5l + 42*5h + Tale(300) 

8 18*5lh + 42*5hh + Tale(300) 

The definitions of the above test cases were 
adopted from (Kwasnicka and Przewozniczek, 
2011). Note that frequently, when the deceptive 
functions concatenations are used, the glued 
deceptive blocks are identical (Goldberg et al., 1993; 
Pelikan et al., 1999; Pelikan et al., 2006). Such a 
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practice may be found surprising since deceptive 
functions concatenations are supposed to mimic the 
existence of BBs in the problem. It seems a 
reasonable assumption that, usually, a problem is 
built from many BBs (Watson and Pollack, 1999; 
Watson, 2006). Nevertheless, the assumption that 
these BBs are identical seems unjustified. Therefore, 
mixed deceptive functions concatenations were 
proposed (Kwasnicka and Przewozniczek, 2011). 
The test problems include a tale which is a part that 
should be easy to optimize by any GA-based 
method. Note that it was shown that some of the 
methods (e.g., fmGA) considered effective in 
solving the problems built from deceptive functions 
concatenations are ineffective when the deceptive 
blocks are not identical (Kwasnicka and 
Przewozniczek, 2011). 

4.2.2 The Knapsack Problem 

The Knapsack problem is a common tool used to test 
the effectiveness of methods that use the binary 
coding. Most of the test instances of the knapsack 
problem can be solved in pseudo-polynomial time 
using dynamic programming, but it is possible to 
generate instances that are hard to solve (Pisinger, 
2005). In the performed experiments, only such 
hard-to-solve instances were used. The set of hard 
instances and their solutions was downloaded from 
http://www.diku.dk/~pisinger/largecoeff_pisinger.tg
z. For each instance the solution time that indicates 
its hardness was provided. Six of the hardest 
instances corresponding to the greatest value of the 
solution time were chosen for tests: 
“knapPI_3_500_10000000_76” (test case (TC) no.: 
9; bit length: 500), “knapPI_3_500_10000000_92” 
(10; 500), “knapPI_3_1000_10000000_73” (11; 
1000), “knapPI_4_500_10000000_13” (12; 500), 
“knapPI_4_1000_10000000_22” (13; 1000), 
“knapPI_4_1000_10000000_49” (14; 1000). 

4.2.3 The MAX-2SAT Problem 

The MAX-2SAT problem is the specific kind of the 
MAX-SAT problem, because the given conjunctive 
normal form (CNF) formula is the conjunction of 
clauses of two literals. Instances of the MAX-2SAT 
problem can be generated using a planted solution 
model (Watanabe and Yamamoto, 2010). In this 
model, for each instance, a solution that is very 
likely to be optimal is provided. Thus, a large 
number of instances can be created and 
experimentally checked if they are hard to solve. 
Four instances were generated with the use of 
planted solution model and used during the 

experiments: test case no. 15 (p=0.1243; r=0.0311; 
bit length: 500), 16 (p=0.1492; r=0.0373; 500), 17 
(p=0.0553; r=0.0138; 1000), 18 (p=0.0691; 
r=0.0173; 1000). The p and r variable values 
reported for the MAX-2SAT problem instances are 
the parameters used to generate the instances by the 
planted model. 

4.3 The Tuning Procedure 

All methods were tuned with the use of the same 
tuning procedure. The initial settings were proposed, 
on the basis of the literature review. Then, each 
parameter was optimized separately in a greedy way 
– if a parameter change improves the results then the 
change is accepted. The tuning was made for the 
following deceptive functions concatenations: 5, 6, 
7, 8. These functions are supposed to be the most 
challenging test cases to solve. Therefore, if the 
tuning procedure causes each method to propose the 
results of quality as good as possible for these 
problems, then the methods should also perform 
well for the other test cases. During tuning, two 
independent runs were executed, for each test case. 
Similar tuning procedure can be found in 
(Kwasnicka and Przewozniczek, 2011, 
Przewozniczek et al., 2015). 

The complete initial and final configurations of 
all competing methods are given in Tables 3, 4, 5, 6, 
and 7. The parameter tuning order was the same as 
the parameter order in the tables. 

Table 3: GePIM configuration. 

Parameter Initial value Final value 

Crossover 0.6 0.3 

Population size per island 400 200 

Number of islands 10 30 

Migration frequency 200 50 

Number of migrating 
Individuals 

40 40 

Gene pattern pool size 300 300 

Linkage information retrieval 
freq. 

100 500 

Mutation 1 / length 1 / (3 * length)

As presented in Table 3, the most significant 
change of initial GePIM configuration made by 
tuning was the increase of the LGGM frequency and 
decrease the frequency of linkage gathering. It 
seems that it is more beneficial for GePIM to 
exchange BBs more often and collect the linkage 
information when the current and the overall best 
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individual are well evolved, which should increase 
the gathered linkage quality. 

Table 4: MuPPetS configuration. 

Parameter Initial value Final value

Gene pattern pool size 200 200 

Minimal pattern size 3 3 

Virus generation number 5 10 
Virus population per 
competetive template 

400 180 

Cut probability 0.05 0.16 

Splice probability 0.5 0.16 

Mutation 0.1 0.02 

Remove gene probability 0.1 0.02 

Add gene probability 0.1 0.02 

Table 5: BOA configuration. 

Parameter Initial value Final value 

Population size 80000 50000 

Bayesian tree level 4 4 

Parents percentage 50 40 

Offspring percentage 50 60 

Table 6: Classical IM configuration. 

Parameter Initial value Final value

Crossover 0.7 0.5 

Population size per island 400 400 

Number of islands 10 50 

Migration frequency 200 50 

Number of migrating individuals 40 40 

Mutation 1 / length 1 / length

Table 7: sGA configuration. 

Parameter Initial value Final value 

Crossover 0.7 0.4 

Population size 400 800 

Mutation 1 / length 2 / length 

4.4 The Methods Comparison 

As mentioned, for each test case ten independent 
runs were performed. In Table 8 the average solution 
quality for each test case is presented. In the case of 
deceptive functions concatenations, the quality 
measure was the best solution unitation percentage: 
UnitPerc(Xbest) = u(Xbest)/len, where Xbest is the best-

found individual, u(Xbest) is its unitation, and len is 
the genotype length. Unitation percentage informs 
how similar is the best-found individual to the global 
optimum and is typical for deceptive functions 
concatenations (Fidrysiak and Przewozniczek, 2015; 
Goldberg et al., 1993; Kwasnicka and 
Przewozniczek, 2011; Pelikan et al., 2006). For the 
Knapsack and the MAX-2SAT problems, the quality 
measure was the proportion of the best-found 
solution and the global optimum values. Due to the 
space limitations, the standard deviation was not 
reported. However, for all the test cases the standard 
deviation was rather low (usually below 0.01). The 
average time presented in Table 9 informs how fast 
the final solution was found.  

Table 8: The average solution quality comparison. 

TC 
no.

GePIM 
[%] 

Classical 
IM [%] 

sGA 
[%] 

BOA 
[%] 

MuPPetS 
[%] 

1 99.92 87.87 98.62 100.00 100.00

2 99.25 63.75 58.55 97.90 99.50

3 99.50 87.90 98.28 100.00 99.70

4 99.45 63.12 58.31 95.20 99.20

5 100.00 75.36 98.63 100.00 100.00

6 97.25 52.26 50.07 100.00 98.30

7 100.00 76.07 86.16 100.00 100.00

8 97.75 53.33 50.50 94.20 98.10

9 100.00 100.00 99.96 100.00 99.99

10 100.00 100.00 99.98 100.00 99.99

11 100.00 100.00 99.96 99.01 99.95

12 100.00 100.00 100.00 100.00 100.00

13 100.00 100.00 100.00 99.99 100.00

14 100.00 100.00 100.00 99.99 99.96

15 100.00 100.00 99.91 100.00 99.93

16 100.00 100.00 99.95 100.00 99.93

17 100.00 100.00 99.95 86.70 99.96

18 100.00 99.99 99.94 86.10 99.99

For deceptive functions concatenations Classical 
IM and sGA performed worse than all other three 
methods for every single instance. BOA for two 
cases proposed the solutions of relatively low quality 
(for test case number 8 and 4 the average solution 
quality is only 94.2 and 95.2 respectively). 
Therefore, the best methods for this problem class 
are GePIM and MuPPetS, while MuPPetS is slightly 
better. For the Knapsack and the MAX-2SAT 
problems, all methods report high quality-results, 
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Table 9: The average time comparison. 

TC no. 
GePIM 

[s] 
Classical 

IM [s] 
sGA 
[s] 

BOA 
[s] 

MuPPetS 
[s] 

1-8 300 2624 3040 3622 4886 

9-14 643 2151 1890 4410 2534 

15-18 1035 3253 2941 5485 427 

but GePIM and classical IM are the best. Note that 
BOA reported results of very low quality for 17th 
and 18th test case. To encode solutions to these test 
cases 1000 genes is necessary. For such a large gene 
number, the computation load spent by BOA for 
building the Bayesian network (it is built at every 
iteration) rises significantly and makes the method 
ineffective. Similar situation, in which BOA was 
unable to handle the problems encoded with large 
gene number was already observed and discussed in 
(Kwasnicka and Przewozniczek, 2011). 

The worst solution quality for each test case type 
group is reported in Table 10. The comparison 
confirms that GePIM and MuPPetS are the only two 
methods that guarantee the highest solution quality 
for all problem types. 

Table 10: The comparison of the worst solution quality for 
each test case type. 

 
GePIM 

[%] 
Classical 
IM [%] 

sGA 
[%] 

BOA 
[%] 

MuPPetS 
[%] 

Dec. 
func. 

95.00 51.67 49.83 90.00 96.00

Knap 
sack 

100.00 100.00 99.95 98.89 99.93

MAX-
2SAT 100.00 99.98 99.77 85.96 99.77

To confirm the statistical significance of solution 
quality differences the Wilcoxon statistical test was 
used. The p-values reported by this test are presented 
in Table 11. The tests were performed on the results 
of all runs, rounded if necessary, to the sixth most 
significant position. The results obtained confirm the 
analysis presented above – GePIM significantly 
outperforms all competing methods except MuPPetS 
for the deceptive functions concatenations case. 
In Figure 2 the dependency between the computation 
time and FFE for all competing methods is 
presented. The comparison is done for deceptive 
functions concatenations test cases (80 runs per 
method). Similar comparisons may be found in (Cai 
and Wang, 2015; Kwasnicka and Przewozniczek, 
2011; Przewozniczek et al., 2015; Saha et al., 2010, 
Suganthan et al., 2005). 

 

 

Table 11: The solution quality comparisons on the base of 
p-values reported by Wilcoxon test. 

Null hypothesis: 
GePIM... 

better or 
equal 

worse or 
equal 

equal 

Classical 
IM 

DF 1 0 0 

KS 0.50 0.50 1 

M2S 0.85 0.16 0.33 

sGA 

DF 1 0 0 

KS 1 0 0 

M2S 1 0 0 

BOA 

DF 0.59 0.41 0.83 

KS 0.99 0 0 

M2S 1 0 0 

MuPPetS 

DF 0.24 0.76 0.49 

KS 1 0 0 

M2S 1 0 0 

 

Figure 2: Average FFE per second for deceptive functions 
concatenations. 

As shown in Figure 2 the dependency between 
FFE and computation time is highly repeatable – the 
standard deviation value is low. The sGA is capable 
of doing the highest FFE number per second. This is 
an expected result since sGA does not do many 
computation load consuming operations other than 
fitness calculation. The high number of FFE per 
second is also understandable for MuPPetS and 
Classical IM. GePIM does about 50% of FFE done 
by Classical IM. This difference is a result of 
frequent migrations, which require many sorting 
operations. Finally, the average number of FFE per 
second for BOA is about 30 times lower than in the 
GePIM case, which confirms the previous reasoning 
that the FFE number is not a suitable computation 
load measure for BOA. 
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5 CONCLUSIONS AND FURTHER 
WORK 

In this paper, the proposition of the Linked Gene 
Groups Migration for Island Models was presented. 
The GePIM method, an IM using the proposed 
LGGM was shown to be an effective tool when 
compared to other evolutionary methods. Despite its 
simplicity, GePIM was able to compete successfully 
with MuPPetS and BOA methods. 

The main fields that should be concerned in the 
future work are as follows: 

 the application of GePIM to other problems 
than those considered in this paper, 

 further LGGM development, 
 employing in GePIM other LL techniques 

than used in this paper, 
 combining the LGGM, the LL and dynamic 

subpopulation number control 
(Przewozniczek, 2016). 

The further research in the above directions 
should allow proposing new and more effective 
evolutionary methods. 
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