
Ensuring Action: Identifying Unclear Actor Specifications in Textual
Business Process Descriptions

Ulf Sanne1, Hans Friedrich Witschel1, Alessio Ferrari2 and Stefania Gnesi2
1Fachhochschule Nordwestschweiz, Riggenbachstr. 16, 4600 Olten, Switzerland

2ISTI, CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

Keywords: Business Process Management, Quality Assessment, Natural Language Processing.

Abstract: In many organisations, business process (BP) descriptions are available in the form of written procedures, or
operational manuals. These documents are expressed in informal natural language, which is inherently open
to different interpretations. Hence, the content of these documents might be incorrectly interpreted by those
who have to put the process into practice. It is therefore important to identify language defects in written
BP descriptions, to ensure that BPs are properly carried out. Among the potential defects, one of the most
relevant for BPs is the absence of clear actors in action-related sentences. Indeed, an unclear actor might lead
to a missing responsibility, and, in turn, to activities that are never performed. This paper aims at identifying
unclear actors in BP descriptions expressed in natural language. To this end, we define an algorithm named
ABIDE, which leverages rule-based natural language processing (NLP) techniques. We evaluate the algorithm
on a manually annotated data-set of 20 real-world BP descriptions (1,029 sentences). ABIDE achieves a recall
of 87%, and a precision of 56%. We consider these results promising. Improvements of the algorithm are also
discussed in the paper.

1 INTRODUCTION

In several contexts, which range from private compa-
nies to public administrations, business process (BP)
descriptions are available in natural language. In-
deed, although more formal graphical notations have
emerged to model BPs, such as BPMN (Business
Process Modelling and Notation) or YAWL (Yet An-
other Workflow Language), most of the legacy pro-
cess knowledge – when not tacit – is still conveyed in
paper-like documents, which have the form of proce-
dures or operational manuals. In addition, even when
graphical models are available, these are often com-
plemented by textual descriptions (Schumann et al.,
2014). Indeed, as noted by Ottensooser et al. (Otten-
sooser et al., 2012) and by Navrocki et al. (Nawrocki
et al., 2006), the understandability of a BP model is
higher when complemented with text. On the other
hand, given the informal nature of natural language,
textual descriptions might be unclear. In particular,
Sommerville highlights that, if a process description
does not assign a clear responsibility for tasks that are
part of the process – i.e., if the actor is unclear – this
might result in several organizational vulnerabilities
(Sommerville, 2007), namely: (a) unassigned respon-

sibility – i.e., the task is not performed, since nobody
is in charge; (b) duplicated responsibility – i.e., the
task is performed by more than one actor, with du-
plicated effort; (c) uncommunicated responsibility –
i.e., the task remains undone, since the actor in charge
of the task is not aware of his/her responsibility. Al-
though this problem might be addressed with the in-
troduction of, e.g., BPMN models, in which activity
icons and swim lanes support the specification of ac-
tors, the problem might remain in the text that com-
plements such models.

Several studies were performed in the literature to
improve the quality of BP descriptions expressed as
models, to ensure their correctness (Morimoto, 2008),
and to improve their understandability (Reijers and
Mendling, 2011). Furthermore, studies were also per-
formed to identify defects in the textual labels of BP
models (Leopold et al., 2013), and to generate textual
descriptions from BP models (Leopold et al., 2014).
However, none of the studies addresses the problem
of the quality of the description of BP written by hu-
man editors.

This paper aims at filling this research gap. In par-
ticular, we focus on the detection of unclear actors
in BP specifications written in natural language. To

140
Sanne, U., Witschel, H., Ferrari, A. and Gnesi, S.
Ensuring Action: Identifying Unclear Actor Specifications in Textual Business Process Descriptions.
DOI: 10.5220/0006040301400147
In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016) - Volume 3: KMIS, pages 140-147
ISBN: 978-989-758-203-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



this end, we designed and implemented an algorithm
named ABIDE (unclear Actor detection in BusIness
process DEscription). The algorithm leverages a set
of heuristics, and makes use of rule-based natural lan-
guage processing (NLP) techniques to identify state-
ments with unclear actors, including cases of miss-
ing actor – i.e., when the actor is not specified and
thus a case of unassigned or uncommunicated respon-
sibility might result –, meaningless actor – i.e., the
term that identifies the actor does not have sense in
the context of the document (again, unassigned re-
sponsibility may be the result) –, and ambiguous ac-
tor – i.e., the term that identifies the actor can be in-
terpreted in different ways, which might lead to du-
plicated responsibility. To evaluate ABIDE, we em-
ployed a set of 20 real-world BP descriptions (1,029
sentences), which were previously annotated for clar-
ity defects by human operators. Then, we defined
two classical baseline algorithms – never warn and
warn randomly – against which we compared the per-
formance of ABIDE in predicting the manual anno-
tations. ABIDE outperforms the two baselines, and
achieves a recall of 87% and a precision of 56% on
the data. To our knowledge, this is the first work that
addresses the problem of unclear actors in BP descrip-
tions, and we consider these results a promising start-
ing point.

2 RELATED WORK

Our research is related to research in the area of de-
scription of business processes – in particular regard-
ing the assignment of roles and responsibilities – and
to research on clarity of natural language descriptions
in general.

2.1 Principles for Describing
Responsibilities in Business
Processes

Formal notations for the description of business pro-
cesses include means to express responsibility for ex-
ecuting an action – for instance, BPMN (OMG, 2011)
foresees swimlanes to represent roles or actors re-
sponsible for any activity. In military orders, the 5-W
principle is used to describe an action (Lind and Lu-
bera, 2009), including, besides the what, where, when
and why also the who, i.e. who is responsible for an
action.

Concerning the assignment of responsibilities,
previous research has distinguished different types of
responsibilities. The so-called RACI charts (Smith

and Erwin, 2005) summarize the common ways how
people can be involved in a particular activity. The ab-
breviation RACI stands for responsible, accountable,
consulted and informed. In our work, we concentrate
on responsibility. Indeed, from the business process
perspective, consulted persons are not actors, but re-
sources used in activities (Ciabuschi et al., 2012). In-
formed actors do not actively contribute, which turns
them into stakeholders rather than actors (Voinov and
Bousquet, 2010). Finally, accountability is rather a
legal than a functional term.

Within RACI, the definition of “responsible” is as
follows: “The actor technically responsible. It means
that he or she is in charge of carrying out the activ-
ity under given circumstances and with given means
and resources. Responsibility can be shared.” In our
research, we investigate to what extent responsibility
for an activity – as given by this definition – is clearly
defined by a textual BP description.

2.2 Text Clarity

There is extensive literature that promotes principles
ensuring clarity, conciseness and the absence of tech-
nical jargon in written communication. Examples
of such literature include The Plain English Guide
(Cutts, 1996) or the reference book Style: Toward
Clarity and Grace (Williams and Colomb, 1995) –
containing practical examples and guidelines of how
to write clearly.

In terms of clarity defects, ambiguity has been
studied extensively in scientific work. Ambigu-
ity of terms is an open problem in the computa-
tional linguistic community, and is traditionally as-
sociated to the so-called word-sense disambiguation
(WSD) task (Navigli, 2009; Ide and Véronis, 1998).
Several approaches exist that address this problem,
which use unsupervised (Agirre and Edmonds, 2007;
Véronis, 2004), supervised (Lee and Ng, 2002) and
knowledge-based approaches (Banerjee and Peder-
sen, 2003; Navigli and Velardi, 2005).

Ambiguity as a quality defect has been largely
studied in the field of requirements engineering. In
software engineering, requirements need to be under-
stood by different stakeholders and should be as lit-
tle ambiguous as possible to avoid misunderstanding
among the stakeholders. Therefore, several studies
have been performed to categorise and detect ambi-
guities in NL requirements.

Part of the works are focused on the identification
of typical ambiguous terms and constructions (Berry
and Kamsties, 2005; Berry et al., 2003; Gnesi et al.,
2005; Wilson et al., 1997; Gleich et al., 2010). One of
the seminal works on ambiguity in requirements is the

Ensuring Action: Identifying Unclear Actor Specifications in Textual Business Process Descriptions

141



one of Berry et al. (Berry et al., 2003), which has been
implemented in tools such as QuARS (Gnesi et al.,
2005) and ARM (Wilson et al., 1997) – which detect
lexical ambiguities, based on vague, weak or subjec-
tive expressions (e.g., “as soon as possible”, “reason-
ably”). Another research direction tries to translate
text into some kind of formal representation in order
to automatically detect problems with its interpreta-
tion (Ambriola and Gervasi, 2006; Kof, 2010). Work
on syntactic ambiguity in requirements has focused
on anaphoric (e.g., (Yang et al., 2011)) – i.e., associ-
ated to the interpretation of pronouns – and coordina-
tion ambiguities (e.g., (Chantree et al., 2006)) – i.e.,
associated with coordinating conjunctions.

To the best of our knowledge, no research has
been conducted to address quality defects related to
the (lack of) clarity of actor specifications in textual
business process descriptions. For the reasons out-
lined above, we consider this a relevant gap that our
research tries to close.

3 DATA-DRIVEN PROBLEM
AWARENESS

In order to better understand “actor unclear” defects
in textual business process descriptions, we first com-
piled a corpus consisting of documents that describe
procedures in public administrations.

In order to select the documents, we first identi-
fied websites that include pointers to publicly acces-
sible BP descriptions (e.g., the US Nuclear Commis-
sion Website 1, the UK Health and Safety Website 2,
the US Court Website 3) and then selected a set of 20
documents from those Websites, containing a total of
1,029 sentences. In doing so, we excluded documents
requiring special expertise (e.g. that of a lawyer), as
well as high-level regulations.

We then recruited 17 annotators and made sure
that all documents from the data set were annotated by
at least two annotators. We instructed the annotators
by means of examples of defective sentences and told
them to tag in a sensitive way, i.e. be rather strict in
tagging sentences as defective. The tagging resulted
in 126 sentences being annotated as having an unclear
actor. This may only occur when the sentence de-
scribes a BP activity, i.e., something that would be
translated into an activity shape in BPMN, such as

1http://www.nrc.gov/about-nrc/policy-making/
internal.html

2http://www.hse.gov.uk/foi/internalops/
3http://www.uscourts.gov/rules-policies/

current-rules-practice-procedure

a Task or a Process. Hence, our first objective was
to identify which were these types of sentences, and
in which way they differed from other types of sen-
tences. By manually analysing the data-set, we iden-
tified 8 types of sentences in the textual BP descrip-
tions. Activity sentences describe an instruction to
be performed by some actor involved in the BP. Ex-
ample: The LEAP Academy employee will submit to
the Commissioner of Education an enrollment report
for the forthcoming year by June 1. Business rules
ban or enforce actions or results of actions. Exam-
ple: The EPBR application shall adhere to the tem-
plate in annex A. Motivational statements explain
the purpose or goal of a process. Example: The for-
mal second opinion (FSO) procedure is an important
part of ensuring that OSD maintains high standards
of assessment decision-making. Introductory sum-
maries summarize briefly a set of activities and other
process features in advance, without claiming to com-
prise all necessary information. Example: After sub-
mission, each application will be subject to a two-step
selection procedure. Repeating summaries provide
a brief repetition of what has been explained before,
to reinforce the reader’s memory or highlight impor-
tant aspects. Example: After completion of all steps
described above, the project manager has now es-
tablished a full list of relevant stakeholders end their
concerns in the project. Activity meta-information
constitutes additional information about an activity,
which does not belong to the activity description it-
self. Example: The required realtime coordination of
the distributed deployment team is possible, since the
team is equipped with mobile communication devices.
Background information describes background or
context. Example: The City of Austin has established
a major event initiative that is supported by the Police
Department, EMS and Fire Department. Definitions
explain a term for later use. Example: The Service
Conference is a meeting in which the applicant and
the other parties involved discuss about the applica-
tion.

For our task, we considered only the sentences of
the first type, since they were those that could po-
tentially include an unclear actor defect. Hence, we
manually identified activity sentences in the data-set.
The analysis resulted in 255 sentences, including the
previously annotated unclear actor defects (126 sen-
tences). From now on, this annotated set of sentences
will be referred to as the gold standard.

We then analysed the defects that had been anno-
tated in order to understand which categories of prob-
lems exist and what solutions might help to resolve
them. The result of this analysis was the identifica-
tion of three main problem classes, namely:

KMIS 2016 - 8th International Conference on Knowledge Management and Information Sharing

142



• Missing Actor: the sentence does not include any
explicit actor;

• Meaningless Actor: the sentence includes an ex-
plicit actor, but a human reader may not under-
stand what is meant by the term used to identify
the actor;

• Ambiguous Actor: the sentence includes an ex-
plicit actor, but there is more then one way to un-
derstand the meaning of the term used to describe
the actor.
Examples for each class are reported in Table 1.

The different heuristics that compose ABIDE are de-
signed to address these classes of defects.

4 A RULE-BASED ALGORITHM
FOR DEFECT DETECTION

4.1 NLP Technologies Adopted

Before describing the heuristics that we defined to
identify the defects, it is useful to discuss shortly
the natural language processing (NLP) technologies
that we adopted to extract information from the doc-
uments, and that will be referred in the following
sections: The preprocessing starts with a sentence
segmentation of the text, followed by tokenization,
i.e. partitioning of the text into separate tokens, such
as words, numbers and punctuation. Next, Part-
of-Speech (POS) Tagging is performed which as-
sociates to each token a Part-of-Speech, e.g., noun
(NN), verb (VB), adjective (JJ), etc. The POS tag-
ging forms the basis for a shallow parsing that iden-
tifies noun phrases (NP, “noun chunking”) and verb
phrases (VP, “verb chunking”) in sentences. This will
allow later to identify e.g. chunks that refer to actors.
Finally, we apply a Gazetteer which searches for oc-
currences of terms defined in a list of terms. It can be
used to check for e.g. the presence of vague terms in
the documents.

Based on these preprocessing steps, out heuris-
tics were implemented within the tool GATE (Gen-
eral Architecture for Text Engineering (Cunningham,
2002)) in the form of so-called JAPE Rules. Such
rules allow defining high-level regular expressions
over tokens and other elements in a text. They iden-
tify patterns of elements that match the rule. Since
JAPE rules can be rather long to report, we will use a
more concise and intuitive pseudo-code to present the
heuristics which is inspired by the JAPE grammar.

In JAPE, and in our rules, we use the usual sym-
bols from the syntax of regular expressions to express
e.g. logical conjunction or disjunction.

4.2 Heuristics for Missing Actor

The first heuristics that we describe allows to identify
sentences in which the actor is missing. For sentences
in active form, an actor is missing only when a verb
in imperative form is used, e.g., in Delete the applica-
tion if the two-months period has expired. However,
in these cases, the actor is expected to be the reader
of the sentence. Hence, we do not consider these sit-
uations as cases in which the actor is missing. For
sentences in passive form, the actor is missing when
the sentence does not include a “by” clause to express
a subject, e.g., The procedure shall be carried out be-
fore the end of March 2015.

The former type of sentences are all those sen-
tences that include the following pattern:

PMIS = (Token ∈ Aux)
(Token.POS ==V BN|V BD)(Token)∗

(¬“by”)
(1)

The pattern matches any case in which we have a
term that indicates the presence of at least an auxiliary
verb (Token ∈ Aux, i.e.,“am”, “are”, “were”, “being”,
“is”, “been”, “was”, “be”) followed by a past partici-
ple (VBN) or past tense (VBD). Moreover, the rule
checks the absence of the Token “by” in the same sen-
tence which is an indicator of the potential specifica-
tion of an actor. The notation (Token)∗ indicates that
the verb might be followed by zero or more Tokens,
before the Token “by” is found. All the sentences in-
cluding the previous pattern are marked as Defective
by ABIDE.

4.3 Heuristics for Meaningless Actor

Even when a sentence includes an actor, the term used
to name the actor might not be understandable by
the reader, i.e., the actor is meaningless. To iden-
tify sentences with meaningless actors, ABIDE uses
the following heuristics. First ABIDE searches for
potential actors in the sentence. To this end, the
algorithm extracts subject-verb-object (SVO) triples
from the sentence, and names as potential actors all
the nouns playing the role of subject in the sentence.
Then, ABIDE checks whether all the potential actors
expressed in the sentence can be understood by the
reader. This is done by examining whether each of the
actors candidates in the sentence belongs to a dictio-
nary of terms and whether it is not an acronym. In par-
ticular, in our implementation, the algorithm checks
a) whether the term can be found in Wikipedia and
b) whether it is an acronym, i.e. consists of all up-
per case characters. The rationale of this approach is
the following: in the case of a), although the reader

Ensuring Action: Identifying Unclear Actor Specifications in Textual Business Process Descriptions

143



Table 1: Sub-classes of the actor unclear problem.

Problem class Description Example(s)
Actor missing An activity is described without

referring to an actor
The request for purchase form will be forwarded to
Purchasing (passive)

Actor meaningless The term referring to an actor can-
not be interpreted by the expected
target audience

The DCM and SCC shall supply copies of relevant
information [...]

Actor ambiguous The way an actor is referred to can
be interpreted in more than one
way

Finally, they must be dated, and signed by the rel-
evant person within the institution [...]

does not necessarily know the meaning of the term
expressing the actor, he/she can access Wikipedia and
associate a meaning to the actor. For b), we assume
that readers may not be familiar with acronyms if they
are not previously introduced in the text (or even then
might quickly forget their meaning) – our algorithm
does not check previous introduction of the full form
of acronyms, an extension that may be added as future
work.

To extract SVO triples, the algorithm leverages
shallow parsing, and checks each sentence for the fol-
lowing pattern:

PSVO = (NP)(V P)(NP) (2)

The pattern matches any triple in which we have a
noun chunk followed by a verb chunk and by a noun
chunk. The first noun chunk is expected to include the
subject of the sentence. However, it might be com-
posed of more than one Token, as e.g., The principal
HDEC. For all the nouns in the first NP in PSVO –
referred as Subject in the following – the algorithm
checks whether the noun can be found in Wikipedia.
To this end, the following pattern is applied:

PUNK = (Token.POS =∼ NN∗,
Token ∈ Sub ject,

Token /∈Wikipedia|Acronym(Token))
(3)

The pattern matches any Token representing a
noun (i.e., all Tokens which have a POS starting with
NN4), which is included in Subject, and that either
does not belong to the Wikipedia dictionary or is
recognised as an acronym – where Acronym(·) is a
predicate that is true if a token consists only of up-
per case characters (possibly separated by periods).
All the sentences including the previous pattern are
marked as Defective by ABIDE.

4.4 Heuristics for Ambiguous Actor

If the actor has a meaning that can be found in
Wikipedia, this does not imply that the actor is not

4The notation =∼ matches regular expressions

ambiguous. Hence, we define three additional heuris-
tics to check for ambiguous actors. Three main cases
of ambiguous actor are identified by ABIDE:
1. Ambiguous Noun: an actor might be ambiguous

if the term that identifies the actor can have differ-
ent meanings in different linguistic contexts. For
example, the term Assessor can be the assistant to
a judge or magistrate, in a legal context, and or an
an expert who calculates the value of property, in
the real-estate appraisal domain.

2. Ambiguous Pronoun: an actor might be ambigu-
ous if a pronoun – e.g., he, it, him, her – is used
to refer to more than one noun, as in the sentence:
The delegate assesses the presence of the candi-
date, and he provides his signature. Here, the pro-
noun he can be referred to the delegate or to the
candidate. These phenomena are normally called
anaphoric ambiguities (Yang et al., 2011).

3. Vague Modifier: the name of an actor might be
associated with a vague modifier as in The rele-
vant authority, or The proper office.
To detect the cases described above, ABIDE lever-

ages the Sub ject element extracted from the PSVO
pattern described in Sect. 4.3. In particular, to de-
tect cases of ambiguous nouns (case 1), it looks up
the Sub ject element in a list of ambiguous terms.
For our experiments, we have compiled a list of
such terms by analysing the previously annotated
gold standard (see Section 3). We identified sen-
tences describing an activity that had been tagged
as defects and checked whether they contained un-
clear terms in their subjects. We included such terms
in the list if we reckoned that they might occur in
BP description across several domains. The current
list is as follows: AmbiguousTermList = {“person”,
“responsible”, “office”, “staff”, “employee”, “com-
pany”, “unit”, “those”, “all”, “somebody”, “team”}.
Of course such a list – being derived from a fairly
small corpus – cannot be claimed to be comprehen-
sive. We believe that it can be extended and tuned
for a domain when our approach is used in practice.
Another way to extend it automatically would be to

KMIS 2016 - 8th International Conference on Knowledge Management and Information Sharing

144



use bootstrapping approaches when descriptions are
quality-checked and hence manually annnotated in a
real-life setting. The following pattern summarises
the approach to detect ambiguous nouns:

PAMBN = (Token.POS =∼ NN∗,
Token ∈ Sub ject,

Token ∈ AmbiguousTermList)
(4)

To check for ambiguous pronouns (case 2),
ABIDE simply checks whether the Sub ject element
includes a pronoun. This might lead to false posi-
tive cases. However, more complex machine learn-
ing methods are required to handle anaphoric ambi-
guities (Yang et al., 2011), which can however leave
some ambiguity undiscovered. To detect ambiguous
pronouns, the following pattern is applied:

PAMBP = ((Token.POS == PP|
Token.POS =∼ PR∗),

Token ∈ Sub ject)
(5)

The pattern matches any Token representing a per-
sonal pronoun (PP), or other types of pronouns (PR∗),
which is included in Sub ject.

Finally to check for vague modifiers (case 3),
ABIDE checks whether the Sub ject element includes
one of the terms included in a list of vague modi-
fiers. In our implementation, we used the list adopted
by QuARS (Gnesi et al., 2005), which includes 446
vague terms. We refer this set with the name Vague.
We first implemented the following pattern:

PAMBV 1 = (Token ∈Vague,Token ∈ Sub ject) (6)

After some first experiments with our data set, we
realised that the relevance of the cases of vague mod-
ifiers was rather high, and that the low accuracy of the
shallow parsers adopted was preventing ABIDE from
finding cases of ambiguous subjects. We therefore re-
laxed our rule by using the following pattern:

PAMBV 2 = (Token ∈Vague) (7)

In the following, we only used the pattern PAMBV 2.
ABIDE marks as Defective any sentence that matches
one of the following patterns: PAMBN , PAMBP , PAMBV 2.

5 EVALUATION

To evaluate the ABIDE algorithm, we used the gold
standard data set introduced in Section 3. It consists
of 255 sentences that describe an activity within a
business process. Of these, 126 were manually tagged
as defective. We first describe the evaluation mea-
sures and baselines, then report results and finally
analyse potential improvements.

5.1 Baselines and Evaluation Measures

Our goal was to run ABIDE on the gold standard
and compare its annotations of defective sentences
to the manual ones, using measures such as pre-
cision, recall and F-measure. In order to be able
to judge the quality of these results, we compared
them to two baseline taggers: Baseline NONE is
a simple tagger that predicts no defect for every
sentence. It corresponds to having no quality control
for BP descriptions (a common approach in many
organisations). Baseline RANDOM annotates a
given sentence as defective with a given a priori
probability p. In our case, since roughly 50% of
all gold standard sentences are defective according
to human judgement, we used p = .5. We also
considered a “Baseline ALL”, which would mark all
sentences as defects – however, we conjecture that
applying that baseline in practice will not lead to a
perfect recall (i.e., to all defects being spotted) since
the human who will do the quality assurance and
who then has to look at every sentence will surely
overlook defects. Since this effect is hard to quan-
tify, we have not used such baseline in the experiment.

Standard measures such as precision and recall
give equal weight to both types of mistakes that
ABIDE can make – i.e., false positives and false neg-
atives. In practice, the impact of a false positive can
be substantially different from the impact of a false
negative.

One way to take this difference into account is to
use a version of the F-measure that places greater em-
phasis on, e.g., recall. Another option is a cost-based
evaluation where one estimates the negative impact
(cost) caused by each ABIDE decision. Figure 1 de-
picts the costs that we estimate to arise for our sce-
nario.

Figure 1: A cost matrix for prediction of defects.

Whenever ABIDE predicts a defect, a warning is
raised and a responsible person has to inspect the cor-
responding sentence. We assume that this causes an
average loss of time (i.e., cost) of C minutes – the
responsible has to re-consider the formulation of the
sentence and sometimes possibly to clarify the situa-
tion.

When ABIDE fails to identify a defective sentence

Ensuring Action: Identifying Unclear Actor Specifications in Textual Business Process Descriptions

145



Table 3: Categories of false positive passive sentences.

Error pattern Example Frequency
Passive in a part of the sentence which does
not describe the activity

The FSO OM shall use the information to consider
if the acceptance criteria are met.

18

X ensures that Y is done The Senior Administrator [...] ensures that all re-
quired registration documentation is filed [...].

8

X is required/recommended/requested to do
Y

Suppliers are expected to note interest in the con-
tract and request the ITT documents.

4

(i.e. when a false negative occurs), the sentence re-
mains in the final process description. We optimisti-
cally assume that process executors who read the sen-
tence will not work on false assumptions, but will al-
ways spot the unclarity and attempt to clarify. Such
clarification – that may involve speaking to colleagues
or consulting other sources – causes a loss of time
(cost) that we estimate to be at least as high as the
above-mentioned cost C for handling raised warnings.
Process descriptions usually have to be read – at least
once – by all persons that are regularly involved in
process execution. If the number of such persons is
N, then, based on the above arguments, the cost of a
false negative is at least NC. In our evaluation runs,
we used C = 1 and N = 5 or N = 10, i.e. we assumed
a situation with 5, respectively 10 process executors
working based on a common process description.

5.2 Results

Table 2 shows the results of ABIDE and the two base-
lines in terms of precision, recall, F-measure and cost.

Table 2: ABIDE results.

Measure ABIDE NONE RANDOM
Precision 0.56 1 0.5
Recall 0.87 0 0.5
F1 0.69 0 0.5
Cost (N = 5) 285 630 448
Cost (N = 10) 355 1260 768

Although ABIDE is far from perfect in terms of
precision, it clearly outperforms the baselines in terms
of both F-measure and cost, indicating that a quality
control based on ABIDE can help to save cost.

5.3 Qualitative Analysis

In order to derive potential future improvements of
ABIDE’s precision, we made an analysis of false pos-
itives, attempting to categorise them in terms of lin-
guistic patterns. It turned out that interesting “false
positive patterns” can be observed primarily in the
area of passive sentences (see Section 4.2).

Table 3 shows the three categories of false posi-
tive passive sentences that we identified in the data,
each with its frequency in our gold standard and an
example.

In the first category, one often finds sentences
where the activity to be performed is described in ac-
tive voice, but – in the same sentence – e.g. a condi-
tion of that action is described in passive voice (as in
the example given above in Table 3).

Since these error classes account for roughly one
third of all false positives in our experiment, it might
be worth extending ABIDE’s rules, e.g. by checking
whether passive is really used in the activity-related
part of a sentence (category 1, first line in Table 3) or
whether one of the patterns of category 2 or 3 (last
two lines in Table 3) is present in a sentence.

6 CONCLUSIONS

In this paper, we have shown that it is feasible to
build an algorithm that will support the quality con-
trol for business process descriptions in terms of how
clearly they refer to responsible actors. We have im-
plemented the algorithm ABIDE – based on some
rather simple rule-based heuristics – that will detect
sentences describing an activity, but with unclear or
no reference to a responsible actor. We have shown
that this algorithm outperforms the baselines in terms
of its precision and recall and that it will help to save
cost when applied in quality control.

In future, as indicated in Section 5.3, there are still
several extensions and fine-tunings of ABIDE that we
plan to address, in particular in the area of passive
sentences, in which false positives may be avoided by
considering some linguistic patterns that our qualita-
tive analysis has revealed. We further plan to evalu-
ate ABIDE in a real-life setting by discussing its re-
sults with persons responsible for writing and check-
ing business process descriptions.

KMIS 2016 - 8th International Conference on Knowledge Management and Information Sharing

146



ACKNOWLEDGEMENT

This work is supported by the European Union FP7
ICT objective, through the Learn PAd Project with
Contract No. 619583.

REFERENCES

Agirre, E. and Edmonds, P. G. (2007). Word sense disam-
biguation: Algorithms and applications, volume 33.
Springer Science & Business Media.

Ambriola, V. and Gervasi, V. (2006). On the systematic
analysis of natural language requirements with Circe.
ASE, 13.

Banerjee, S. and Pedersen, T. (2003). Extended gloss over-
laps as a measure of semantic relatedness. In IJCAI,
volume 3, pages 805–810.

Berry, D. M. and Kamsties, E. (2005). The syntactically
dangerous all and plural in specifications. IEEE Soft-
ware, 22(1):55–57.

Berry, D. M., Kamsties, E., and Krieger, M. M. (2003).
From contract drafting to software specification: Lin-
guistic sources of ambiguity.

Chantree, F., Nuseibeh, B., Roeck, A. N. D., and Willis,
A. (2006). Identifying nocuous ambiguities in natural
language requirements. In Proc. of RE’06, pages 56–
65.

Ciabuschi, F., Perna, A., and Snehota, I. (2012). Assem-
bling resources when forming a new business. Journal
of Business Research, 65(2):220–229.

Cunningham, H. (2002). GATE, a general architecture
for text engineering. Computers and the Humanities,
36(2):223–254.

Cutts, M. (1996). The plain English guide. Oxford Univer-
sity Press.

Gleich, B., Creighton, O., and Kof, L. (2010). Ambi-
guity detection: Towards a tool explaining ambigu-
ity sources. In Proc. of REFSQ’10, volume 6182 of
LNCS, pages 218–232. Springer.

Gnesi, S., Lami, G., and Trentanni, G. (2005). An automatic
tool for the analysis of natural language requirements.
IJCSSE, 20(1).

Ide, N. and Véronis, J. (1998). Introduction to the special
issue on word sense disambiguation: the state of the
art. Computational linguistics, 24(1):2–40.

Kof, L. (2010). From requirements documents to system
models: A tool for interactive semi-automatic transla-
tion. In Proc. of RE’10.

Lee, Y. K. and Ng, H. T. (2002). An empirical evaluation of
knowledge sources and learning algorithms for word
sense disambiguation. In Proceedings of the ACL-02
conference on Empirical methods in natural language
processing-Volume 10, pages 41–48. Association for
Computational Linguistics.

Leopold, H., Eid-Sabbagh, R.-H., Mendling, J., Azevedo,
L. G., and Baião, F. A. (2013). Detection of naming
convention violations in process models for different
languages. Decision Support Systems, 56:310–325.

Leopold, H., Mendling, J., and Polyvyanyy, A. (2014). Sup-
porting process model validation through natural lan-
guage generation. Software Engineering, IEEE Trans-
actions on, 40(8):818–840.

Lind, H. and Lubera, M. (2009). Battle Management Lan-
guage - An Implementation for a Military Scenario
Editor.

Morimoto, S. (2008). A survey of formal verification
for business process modeling. In Computational
Science–ICCS 2008, pages 514–522. Springer.

Navigli, R. (2009). Word sense disambiguation: A survey.
ACM Computing Surveys (CSUR), 41(2):10.

Navigli, R. and Velardi, P. (2005). Structural seman-
tic interconnections: a knowledge-based approach
to word sense disambiguation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on,
27(7):1075–1086.

Nawrocki, J. R., Nedza, T., Ochodek, M., and Olek, L.
(2006). Describing business processes with use cases.
In 9th International Conference on Business Informa-
tion Systems, BIS, pages 13–27.

OMG (2011). Business Process Model and Notation
(BPMN V 2.0).

Ottensooser, A., Fekete, A., Reijers, H. A., Mendling, J.,
and Menictas, C. (2012). Making sense of business
process descriptions: An experimental comparison of
graphical and textual notations. Journal of Systems
and Software, 85(3):596 – 606.

Reijers, H. A. and Mendling, J. (2011). A study into the
factors that influence the understandability of busi-
ness process models. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on,
41(3):449–462.

Schumann, R., Delafontaine, S., Taramarcaz, C., and
Evéquoz, F. (2014). Effective Business process doc-
umentation in federal structures. In 44. Jahrestagung
der Gesellschaft für Informatik, pages 1043–1057.

Smith, B. and Erwin, J. (2005). Role & Responsibility
Charting (RACI).

Sommerville, I. (2007). Models for responsibility assign-
ment, pages 165 – 186. Springer.

Véronis, J. (2004). Hyperlex: lexical cartography for in-
formation retrieval. Computer Speech & Language,
18(3):223–252.

Voinov, A. and Bousquet, F. (2010). Modelling with
stakeholders. Environmental Modelling & Software,
25(11):1268–1281.

Williams, J. and Colomb, G. (1995). Style: Toward Clarity
and Grace. Chicago guides to writing, editing, and
publishing. University of Chicago Press.

Wilson, W. M., Rosenberg, L. H., and Hyatt, L. E. (1997).
Automated analysis of requirement specifications. In
Proc. of ICSE’97, pages 161–171.

Yang, H., Roeck, A. N. D., Gervasi, V., Willis, A., and
Nuseibeh, B. (2011). Analysing anaphoric ambigu-
ity in natural language requirements. Requir. Eng.,
16(3):163–189.

Ensuring Action: Identifying Unclear Actor Specifications in Textual Business Process Descriptions

147


