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Abstract: Trajectory planning is one of the most studied topics in robotics. Among several methods, a sampling-based 
method, Rapidly-exploring Randomized Tree (RRT) algorithm, has become popular over the last two decades 
due to its computational efficiency. However, the RRT method does not suggest an exact way to obtain a 
smooth trajectory along the viapoints given by itself. In this paper, we present an approach using a time-
optimal trajectory planning algorithm, specifically for robotic manipulators without using inverse kinematics. 
After the trajectory smoothing with cubic splines in an environment with obstacles considering not only 
velocity and acceleration but also jerk constraints; the study is simulated on a six degrees of freedom 
humanoid robot arm model and always finds a solution successfully if there is a feasible one.  

1 INTRODUCTION 

Path planning is frequently encountered as one of the 
problems of robotics. It is difficult to talk about a 
definite and optimum planning solution for mobile 
robots, autonomous vehicles, or manipulators.  The 
same applies in the presence of obstacles. Even just 
considering geometric constraints, finding a path in 
an environment where there are obstacles is usually a 
grueling job. Additionally, trajectory planning also 
dealing with dynamic constraints, i.e. kinodynamic 
planning, requires working with higher dimensional 
state vectors. 

A wide range of studies exists in path planning 
including both deterministic and stochastic 
approaches. Deterministic ones such as evaluating all 
possible configurations in discretized configuration 
space, are available and they are mostly complete 
which means they give an exact solution in finite 
amount of time. However, these methods are usually 
computationally inefficient for high-dimensional 
spaces (Canny et al., 1988) and as a matter of fact, 
they often fail since they generally give one possible 
solution which can be infeasible. On the other hand, 
sampling-based heuristic approaches like 
Randomized Potential Fields (Barraquand et al., 
1991), Probabilistic Roadmap Method (Kavraki et al., 
1996) and Rapidly-exploring Randomized Tree 
(RRT) (LaValle and Kuffner, 1999) have become 
popular in the last two decades since they are able to 
give alternative solutions in addition to their low 

computational costs. RRT distinguishes itself on 
planning with nonholonomic constraints. As having 
Voronoi bias RRT (ibid.) is capable of exploring the 
space where obstacles are predefined in task space, 
and if a solution exists, the algorithm commits to 
finding that as the number of samples goes to infinity, 
which is called probabilistic completeness. 

Both kynodynamic RRT and basic RRT 
construction algorithms give jerky paths to user and 
do not suggest a definite method for smoothing after 
having defined viapoints. The connectivity path 
which is the connection of viapoints with straight 
lines is not practical unless the motion is slow 
enough. Otherwise, the dynamic system will be 
mechanically forced in vain. On the other hand, a 
smoothing done by using viapoints has to be in 
conformity with velocity, acceleration and jerk 
constraints. In the remaining of the paper, these 
constraints will be called as kinematic constraints. 
Hauser and Ng-Thow-Hing’s study does not only 
smooth the manipulator trajectories, but also 
compensates the computation time of smoothing 
procedure by using shortcuts respecting velocity and 
acceleration bounds (2010). Based on that study, a 
recent study, Smooth RRT-Connect method (Lau and 
Byl, 2015), is also able to give reliable solutions, 
especially in high-dimensional planning spaces, when 
RRT fails. 

The determination of the space where planning is 
done is a controversial issue. While classical RRT 
algorithm (Kuffner and LaValle, 2000) recommends 
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sampling and planning in configuration space, 
Shkolnik and Tedrake were able to plan in a 
computation time less than 1 minute for 1500 degrees 
of freedom due to their pioneer TS-RRT algorithm 
planning in the task space (2009). Unfortunately, this 
algorithm suggests using Jacobian pseudoinverse to 
overcome the inverse kinematic problem, which is 
not always able to give feasible solutions. The authors 
of this paper also used task space for planning with a 
known inverse kinematic model (2015). Inspired by 
RRT-Connect (Kuffner and LaValle, 2000) which 
explores the configuration space with two trees based 
on start and goal configuration, BiSpace Planning 
(Diankov et al., 2008) combines both planning 
options, i.e. uses both spaces; configuration space to 
grow a tree from initial configuration and task space 
to grow another one from goal configuration. 

In manipulator applications, although planning in 
the task space makes collision checking easier which 
is out of scope of this paper, inverse kinematic comes 
up as a problem. In the literature, there are various 
approaches to this issue. One of them, Bertram et al.’s 
study (2006), as having no need of inverse kinematic 
solution including the goal configuration’s, also 
inspired this paper. This is discussed in detail further 
in this paper. This study was followed by JT-RRT 
algorithm (Weghe et al., 2007), which goes further 
and promises to path plan with goal bias by using 
Jacobian transpose controller for the goal 
configuration; in other words there is a possibility of 
suffering from local minima. On the other hand, 
BiSpace Planning presents inverse kinematic not as 
an obligation but just as an option by sampling the 
neighborhood of configurations (Diankov et al., 
2008). Finally, it is worth mentioning the 7, 12 and 14 
degrees of freedom manipulation planning scenarios 
realized on the PR2 experimental platform by the 
optimized RRT algorithm, RRT* (Perez et al., 2011). 

In our study, we put forward a time-optimal 
solution specific to manipulators, taking into 
consideration viapoints determined by RRT without 
using inverse kinematics. Since we call RRT, the path 
is obstacle avoiding. While planning the trajectory, 
the required initial and final velocity and acceleration 
information with kinematic constraints including 
those of the jerk are respected and the path is 
smoothed by cubic splines. After explicitly presenting 
the methodology in the paper, smoothing of an RRT-
given path is simulated for a 6 degrees of freedom 
robot arm designed by Güleç and Ertugrul (2014). 

2 TRAJECTORY PLANNING 

2.1 RRT Algorithm 

Original RRT (LaValle and Kuffner, 1999; Kuffner 
and LaValle, 2000) aims to find a path between initial 
(qi) and goal (qgoal) states by growing a tree (T) from 
one of these, according to the algorithm in Figure 1. 
For this first algorithm, assuming that configuration 
space (C) is the same as state space (Q), Qfree is 
defined as obstacle free space, i.e. Q\Qobs. Here, it is 
a necessity to predefine Qobs, qi and qgoal. The 
randomized point in Q, qrand, finds its nearest point 
from the set of vertices, qnear. If the distance between 
these two points is less than some constant distance ε, 
then qrand becomes qnew and directly connects to qnear. 
If not, a new ε-long edge is generated between qnear 
and qnew in the direction of qrand. This expansion 
visualized in Figure 2 continues until an added new 
state gets close enough to qgoal. In case of there is no 
solution computation time or number of iterations 
must be restricted. As algorithm works randomly, it 
could be given a second chance to find a path, or if 
there is a possibility of processing, the code can be 
run at the same time for more than one tree 
independent of each other. The NEAREST-
NEIGHBOR function in the algorithm searches the 
closest vertex from the set of vertices to the random 
point according to an appropriate distance metric, e.g. 
Euclidean, Manhattan and Minkowski distances 
(Amato et al., 2000). This process can be accelerated 
by using approximate nearest neighbor (ANN) 
algorithms.  

 

Figure 1: Basic RRT algorithm. 
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Figure 2: The expand operation. 

2.2 Time-optimal Cubic Polynomial 
Joint Trajectories 

Should the viapoints belonging to a path be obtained 
in one way or another, a post-processing is necessary 
for the movement to be smooth. There are several 
methods for smoothing that is supposed to bring 
continuity not only for position but also for velocity 
and acceleration. If the position were to be obtained 
by cubic functions, obviously, velocity will be 
expressed with quadratic, and acceleration with linear 
functions. Jerk, on the other hand, will be constant. If 
the position and time of the viapoints, and the velocity 
and acceleration of the first and last positions, i.e. 
boundary conditions, are known, smoothness can be 
achieved in the trajectory by defining a cubic position 
function, that is piecewise cubic polynomial between 
consecutive viapoints. For this to happen, the 
position, velocity and acceleration values of the cubic 
functions defined in the two consecutive time 
intervals should be the same at the viapoint where 
they intersect. Based on this fact, before the 
emergence of RRT, a methodology for the 
formulation and optimization of cubic polynomial 
joint trajectories is described in (Lin et al., 1983) 
which calls Nelder-Mead Method (Nelder and Mead, 
1965), a direct search method of optimization. 

Nelder-Mead Method gets to work by suggesting 
m+1 number of possible vertices for a cost function 
dependent on m variables. Then, those vertices are 
sorted according to their cost, and the vertex with the 
greatest cost is called Xg. The Xg at each iteration is 
replaced by a vertex of less cost. The process 
described in Figure 3 continues until the cost of Xg  
becomes nearly equal to the smallest cost of the 
current vertices. 
For trajectory planning, let’s take a situation for one 
joint, where we have the  boundary conditions in the 
time interval [t1,tn], and the information of  the 
position [q1,q2,…,qn-1,qn], and time [t1,t2,…,tn-1,tn] at 
the n number of knots. There are n-1 known time 
intervals, [h1,h2,…,hn-2,hn-1] where hi=ti+1-ti. On the 
other hand, n-2 accelerations,[ݍሷଶ, … ,  ሷ௡ିଵ], areݍ
unknown. A piecewise linear acceleration function, 

Qiꞌꞌ(t), which is the second derivative of trajectory 
function Qi(t) can be written as in (1) for every time 
interval hi. Clearly, Qiꞌꞌ(ti+1)= Qi+1ꞌꞌ(ti+1) for i=1,…,n-
2 which are also the unknown accelerations. With the 
equations from initial and final accelerations, there 
will be n linear equations for n-2 unknowns. 

 

Figure 3: Psuedocode for Nelder-Mead Method. ܳ௜ᇱᇱ(ݐ) = ௧೔శభି௧௛೔ ܳ௜ᇱᇱ(ݐ௜) + ௧ି௧೔௛೔ ܳ௜′′(ݐ௜ାଵ),   
for ݐ௜ ≤ ݐ ≤    ௜ାଵݐ

(1)

Lin et al. (1983) suggest adding two free knots, q2 
and qn-1  where they reuse n to express the total 
number of knots including the extra ones. This 
approach provides enough freedom to solve the 
system of equations and promises solution 
uniqueness. 

Later in the same paper (ibid.), assuming time 
intervals as cost variables, Nelder-Mead Method is 
called. Here, the objective function is the total time, 
i.e. sum of time intervals. For the given joint 
positions, n feasible trajectories are suggested where 
a feasible trajectory respects the kinematic 
constraints. Initial vectors of time intervals, ܺ ଶ଴,…, ܺ ௡଴ 
can be derived from Xꞌ as indicated in (3) where Xꞌ is 
the lower bound of the vector of time intervals, ଵܺ଴ is 
the feasible vertex converted from Xꞌ and di’s are 
some distance vectors. An estimation for Xꞌ is given 
in (2) where j is the joint number, VCj is the velocity 
constraint for joint j and qij is the position at ti. ܺᇱ = [ℎଵᇱ , ℎଶᇱ , … , ℎ௡ିଵᇱ ]= [max௝ หݍ௝ଶ − ௝ܥ௝ଵหܸݍ , … , หݍ௝௡ − ௝ܥ௝(௡ିଵ)หܸݍ ] (2)

௜ܺᇱ = ଵܺ଴ + ݀௜ (3)
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Lastly, the paper (ibid.) introduces the feasible 
solution converter (FSC) which converts an infeasible 
vector of time intervals to a feasible one. After 
obtaining ߣ from (4)-(7) where ܥܣ௝ and ܥܬ௝ are the 
acceleration and jerk constraints for joint ݆, 
respectively; FSC replaces time intervals by [ߣℎଵ, ,ℎଶߣ … , ℎ௡ିଵ] and accelerations by [ܳ௝ଶᇱᇱߣ ,ଶߣ/ ܳ௝ଷᇱᇱ ,ଶߣ/ … , ܳ௝(௡ିଵ)ᇱᇱ ݆ ଶ], forߣ/ = 1,2, … , ܰ where ܰ is the number of joints. What we do here is just 
scaling the trajectory. 

ଵߣ = max௝ ቎ max௧∈[௧೔,௧೔శభ]∀௜ ቚܳᇱ௝௜(ݐ)ቚ ௝቏ (4)ܥܸ/

ଶߣ = max௝ ቎ max௧∈[௧೔,௧೔శభ]∀௜ ቚܳᇱᇱ௝௜(ݐ)ቚ ௝቏ (5)ܥܣ/

ଷߣ = max௝ ቎ max௧∈[௧೔,௧೔శభ]∀௜ ቚܳᇱᇱᇱ௝௜(ݐ)ቚ ௝቏ (6)ܥܬ/

ߣ = max(1, ,ଵߣ ଶଵߣ ଶ⁄ , ଷଵߣ ଷ⁄ 	) (7)

2.3 Smoothing RRT Results with Cubic 
Splines 

As mentioned above, while the basic RRT algorithm 
gives a path from an initial point to a goal point, 
another study (ibid.) can fit a smooth curve for a given 
path with boundary conditions and kinematic 
constraints. We first suggest using the basic RRT 
planner in the configuration space. The state vector, 
Q, consists of joint variables. Instead of transferring 
the goal point to the configuration space, µ is defined 
which is the position tolerance for the goal position 
and calculated as the Euclidean norm of deviations in 
3 axes. The distance tolerance creates a spherical goal 
region with a radius of µ. If the randomized tree 
extends into the tolerance region, the exploring stops. 
Traditionally, Euclidean distance is selected as the 
metric for the nearest neighbor algorithm. 

For the curve fitting, as suggested by (ibid.), ݀௜ =[݀௜,ଵ, ݀௜,ଶ, … , ݀௜,௡ିଵ] is calculated as in (8) where ߜଵ, ߜଶ and D are determined according to (9-11). Here, [ℎଵଵ, ℎଶଵ, … , ℎ௡ିଵଵ ] are the elements of ଵܺ଴. ݀௜,௝ = ൜ߜଵ,		 ݅ = ݆ + 		,ଶߜ1 ݅ ≠ ݆ + 1 (8)

ଵߜ = ݊)2√ܦ − 1) (√݊ + ݊ − 2) (9)

ଶߜ = ݊)2√ܦ − 1) (√݊ − 1) (10)

ܦ = 10min ൝0.2݊෍(ℎ௜ଵ − ℎ௜ᇱ)௡ିଵ
௜ୀଵ , (ℎଵଵ
− ℎଵᇱ ), … , (ℎ௡ିଵଵ − ℎ௡ିଵᇱ )ൡ (11)

During the process summarized in Figure 4, the 
newly calculated vertexes will replace the costly 
ones. The criteria for the searching to be found 
adequate and to stop is determined heuristically. 

Figure 4: An approach to time-optimal smoothing of RRT-
given path. 

3 SIMULATION AND RESULTS 

The code for the RRT algorithm and optimization of 
a given path with cubic splines is written in Matlab. 
As a manipulator, ITECH humanoid robot arm which 
has the six revolute joints given in Figure 5(a), has 
been dealt with. Denavit-Hertenberg (D-H) 
parameters and link limits of the robot are given in 
Table 1; and Table 2 shows the velocity constraints 
for all of the joints. Acceleration and jerk constraints 
are 100 degrees/sec2 and 100 degrees/sec3, 
respectively. In the environment, there are predefined 
spherical obstacles with a radius of 75 mm at the 
points [200 450 75.5], [450 0 150], [-190 210 400] 
and [-120 300 -400] in mm. These obstacles have 
been randomly appointed. Initial configuration for the 
simulation is [q1i, q2i, q3i, q4i, q5i,q6i]=[90,0,0,0,0,0] in 
degrees and the goal position is [-125 0 690] in mm. 
The right side view of the initial placement is given 
in Figure 5(b). 

 

Figure 5: a) ITECH humanoid robot arm. b) Initial 
placement of obstacles and the manipulator. 
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The code will work under all circumstances, and 
yield a solution if there is one. All of the computations 
were done using a laptop with a dual core processor 
at 2.4 GHz and 12 GB of RAM. The program has 
been run 100 times and always found a different 
solution. One of the solutions will be presented as the 
illustrative example. 

Table 1: D-H parameters and link limits of the robot arm. 

j aj [mm] αj [rad] dj [mm] θj [rad] limits [rad] 

1 0 - π/2 75.5 θ1* -π  ̶  + π  

2 0 π/2 0 θ2*+ π/2 -π/12  ̶  + 2π/3

3 0 - π/2 225 θ3* -π  ̶  + π 

4 0 π/2 0 θ4* -2π/3  ̶  + 2π/3

5 0 - π/2 214 θ5* -π  ̶  + π 

6 166.31 0 0 θ6*- π/2 -2π/3  ̶  + 2π/3

Table 2: Velocity constraints of the robot arm. 

joint, j 1 2 3 4 5 6 

velocity (o/sec) 20 20 40 40 60  60 
 

Viapoints given by RRT algorithm is given in 
Table 3 and shown in Figure 6. As might be expected, 
these are completely random points in Qfree. For 
smoothing, Xꞌ and ଵܺ଴ are calculated as: 

Xꞌ = [0.0065 0.0065 0.0072 0.0060 0.0318 0.0095 
0.0113 0.0434 0.0434] ଵܺ଴ = [0.1995 0.1995 0.2206 0.1836 0.9741 0.2919 
0.3454 1.3313 1.3313] 

Table 3: RRT-given joint configurations. 

j 1 [o] 2 [o] 3 [o] 4 [o] 5 [o] 6 [o] 

knot 1 90 0 0 0 0  0 

knot 2 94.04 -14.91 4.29 -10.01 6.38 1.50 

knot 3 102.28 -14.24 -1.33 -19.53 8.19 -11.21 

knot 4 109.14 -18.78 -6.41 -25.75 20.54 -12.85 

knot 5 72.73 -46.16 -44.15 -28.50 33.89 -6.06 

knot 6 64.89 -54.08 -22.33 -32.21 18.73 -18.80 

knot 7 77.80 -63.96 -29.63 -44.53 5.90 -33.01 

knot 8 -21.70 -143.59 166.45 -67.69 -152.31 0.01 

Hence; D, δ1 and δ2 are obtained by the help of (9-11) 
as 0.9823, 0.8615 and 0.1669, respectively. After the 
optimization process, the optimized vector of time 
intervals, Xopt, is computed as 

Xopt = [0.0908 0.9278 0.2367 0.2040 0.4296 
0.4943 0.4359 0.5767 0.3503] 

i.e. the optimum total time is 3.7462 seconds. As it is 
seen in Figure 7, boundary conditions and kinematic 
constraints are respected while trajectory planning. 
Lastly, Figure 8 shows the motion frame by frame. 

Since cubic splines are preferred for the smoothing, 
there is an inevitable motion resembling a loop. 
Hence, the results can be considered as time-optimal 
only for cubic spline trajectories. 

 

Figure 6: RRT-given path (dashed line) and smoothed path 
(green line) for the end-effector of the robotic arm. 

 

Figure 7: Jerk, acceleration, velocity, and position profiles 
of the trajectory. 

 

Figure 8: Eight consecutive frames of the motion of robot 
simulated with SimMechanics toolbox of Matlab. 
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4 CONCLUSIONS 

The smoothing of RRT-given paths is a topic still 
being studied. In this study, firstly, for a 6 degrees of 
freedom manipulator, a connectivity path has been 
determined with a sampling-based path planning 
algorithm, RRT, which has been popular for the last 
two decades. Following this, for path smoothing, 
Nelder-Mead Method based time optimization 
method of joint trajectories, which has been 
suggested by Lin et al., has been used. This 
adaptation, in addition to other smoothing practices 
(Hauser and Ng-Thow-Hing, 2010; Lau and Byl, 
2015), has jerk limitation and time optimization 
advantages. The program has been run repeatedly for 
a set-up where there is at least one solution, and each 
time a feasible solution has been found. 

Dynamic issues such as the required torques for the 
motion, dynamic stability and control of the 
manipulator have not dealt with in this study. It is 
being considered to make a motion planning using 
kynodynamic RRT algorithm as future work. Our 
approach can also be implemented for the RRT* 
optimized algorithm. In the RRT-given path 
optimization, Nelder-Mead Method can be compared 
to other algorithms. Lastly, the plan is to test the 
approach on the manufactured robot. 
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