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Abstract: Due to the increasing pervasiveness of mobile technologies, sensitive user information is often stored on
mobile devices. Nowadays, mobile devices do not continuously verify the identity of the user while sensitive
activities are performed. This enables attackers full access to sensitive data and applications on the device, if
they obtain the password or grab the device after login. In order to mitigate this risk, we propose a continuous
and silent monitoring process based on a set of features: orientation, touch and cell tower. The underlying
assumption is that the features are representative of smartphone owner behaviour and this is the reason why
the features can be useful to discriminate the owner by an impostor. Results show that our system, modeling
the user behavior of 21 volunteer participants, obtains encouraging results, since we measured a precision in
distinguishing an impostor from the owner between 99% and 100%.

1 INTRODUCTION

Smartphones have become ubiquitous computing
platforms, allowing users to access the Internet and
many online services anytime and anywhere. As
a personal device, a smartphone contains important
private information, such as text messages, always-
logged-in emails, contact list etc. As a portable de-
vice, a smartphone is much easier to get lost or stolen
than conventional computing platforms. In order to
prevent the private information stored on smartphones
from falling into the hands of adversaries, the au-
thentication of mobile devices has become an impor-
tant issue. Most of the methods for authenticating
users on mobile devices define an entry point into the
system. Login-time pins and textual and graphical
passwords (Akula and Devisetty, 2004; Davis et al.,
2004; Dhamija and Perrig, 2000) are the most popu-
lar mechanisms for authenticating smartphone users.
With the growing popularity of touch interface based
mobile devices, the touch-surface has become the
dominant human-computer interface. This has led to
the need for authentication techniques better suited to
a touch interface, such as Sae-Bae and Memon (Sae-
Bae and Memon, 2013). These mechanisms suffer
from two drawbacks: (i) they are static, that means
they authenticate the user only at the beginning of the
session and does not offer any protection against illicit
access post login, i.e. in the case of abandoned device

or when a remotely controlled program runs on the
device, (ii) passwords and pins require user’s atten-
tion to their entry and therefore they are not suitable
for continuous authentication, and finally (iii) pass-
words can be stolen or forgotten. In order to over-
come this one-step authentication, the continuous au-
thentication, also called active authentication was in-
troduced, where the identity of the user is verified dur-
ing all the usage of the device. Continuous authenti-
cation methods complement the entry point methods
by monitoring the user after a successful login.

Research on continuous authentication started in
1995 when Shepherd (Shepherd, 1995) and Mon-
rose et al. (Monrose and Rubin, 1997) showed some
impressive results on continuous authentication us-
ing keystroke dynamics. Continuous authentication
is prevalently realized by checking two subsets of
biometric authentication, physiological and behav-
ioral. These authentication methods identify the user
through measurable physical or behavioral character-
istics.

Physiological biometric authentication measures
physical characteristics of users body that make them
unique. Physiological methods include fingerprint
scanning, facial recognition, hand geometry recog-
nition or retinal scans (Bhattacharyya et al., 2009).
One drawback of physical biometrics is that they need
specific hardware to collect the biometric data. This
hardware entails additional costs and a layer to the
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login process. Another drawback is that all of the
physical biometric methods still produce an error rate
which is not acceptable for real applications (Bailey
et al., 2014).

Behavioral biometric authentication makes use of
behavioral profiles of a user resulting from both psy-
chological and physiological differences from person
to person. Behavioral methods include keystroke dy-
namics (Joyce and Gupta, 1990; Brown and Rogers,
1993), mouse dynamics (Ahmed and Traore, 2005;
Shen et al., 2010), voice recognition (Bhattacharyya
et al., 2009), signature verification (Bhattacharyya
et al., 2009) and Graphical User Interface (GUI) us-
age analysis (Gamboa and Fred, 2004). Due to the
variability of the human body and mind, the adoption
of this type of biometrics has lagged behind physio-
logical biometrics.

In this paper we propose a method to silently and
continuously verify the identity of a mobile user. Our
method defines the user profile by merging together
information about:
• how the user handles the device;

• how the user touches the keyboards;

• daily habits of the user.
Using well-known machine learning algorithms we
classify the features set obtained from real devices
employed in real environment to test the effectiveness
of the features extracted.

The experiment demonstrated that the fusion of
these three classes of features is able to detect impos-
tors with a precision of 0.995, a false acceptance rate
of 0.7% and a false rejection rate of 0.3%, which are
values largely better than the values gathered with the
antagonist methods for the continuous authentication
that can be found in literature.

The main advantages of our method are :
• these biometrics can be captured by using the de-

vice built-in sensors without additional hardware;

• the features can be gathered with a good degree of
precision and are not influenced by external fac-
tors (noises, air impurity);

• they can be collected while the user is using the
mobile phone: the user is not required to enter any
image or voice (this is the reason why our method
is called silent);

• the performances obtained are significantly better
than those reported in literature.
The paper proceeds as follows: Section 2 de-

scribes and motivates our detection method; Section 3
illustrates the results of experiments; Section 4 dis-
cusses related work; finally, conclusions are drawn in
Section 5.

2 THE METHOD

In this section we discuss the approach we propose.
Basically, we extract a set of features, captured di-
rectly on the device, representing the user behaviour.

We consider the following elements of the human
behaviour in order to characterize mobile users:

• How users hold the devices: each user is inher-
ently characterized by the way she holds the de-
vice. The inclination is determined by the user’s
arm and eyes, in order to make the experience of
device use comfortable. Indeed the way in which
the device is held depends on both the anatomic
aspects and the personal habits, including the con-
fidence degree with the device;

• How users write on the device keyboard: in addi-
tion to the combination of eyes and arm position,
an user is also characterized by the way she types.
It is a consequence of the first aspect we expose,
e.g. an user that keeps the device with one hand
will have a different typing style from an user that
keeps the device with two hands;

• User daily habits: this feature captures the fre-
quency a user is located in a certain place. For
instance, people usually work in the same place,
and this is the reason why the device is connected
for many hours a day with the same cell tower.

Starting from these considerations we define the
information we need to collect to characterize mobile
users: information about orientation (How users hold
the devices), about touch (How users write on the de-
vice keyboard) and about cell (User daily habits).

In order to obtain Orientation information we use
the orientation sensor, which uses a device’s geo-
magnetic field sensor in combination with a device’s
accelerometer. Using these two hardware sensors,
an orientation sensor provides data for the following
three dimensions (i.e., the orientation features):

• Azimuth, i.e. the degrees of rotation around the
z axis. This is the angle between magnetic north
and the device’s y axis. For example, if the de-
vice’s y axis is aligned with magnetic north this
value is 0, and if the device’s y axis is pointing
south this value is 180. Likewise, when the y
axis is pointing east this value is 90 and when it
is pointing west this value is 270.

• Pitch, i.e. the degrees of rotation around the x
axis. This value is positive when the positive z
axis rotates toward the positive y axis, and it is
negative when the positive z axis rotates toward
the negative y axis. The range of values is 180
degrees to -180 degrees.

SECRYPT 2016 - International Conference on Security and Cryptography

98



• Roll, i.e. the degrees of rotation around the y axis.
This value is positive when the positive z axis ro-
tates toward the positive x axis, and it is negative
when the positive z axis rotates toward the nega-
tive x axis. The range of values is 90 degrees to
-90 degrees.

The orientation sensor derives its data by process-
ing the raw sensor data from the accelerometer and
the geomagnetic field sensor. Because of the heavy
processing that is involved, the accuracy and precision
of the orientation sensor is diminished (specifically,
this sensor is only reliable when the roll component is
0). As a result, the orientation sensor was deprecated
in Android 2.2 (API level 8).

With Orientation information, we are referring to
Pitch, Roll and Azimuth features.

The Touch information is retrieved using a 1 pixel
per 1 pixel size window, placed at the top left cor-
ner of the touch-screen. When a touch event occurs
the hardware layer sends a signal to a component
called dispatcher, that is able to perform a check us-
ing the User Identifier. The check verifies who gen-
erated the information: if the check fails, the infor-
mation is lost. The check was introduced in 2012
from API 17. We want to gather information ev-
erywhere in uncontrolled environment, and we used
the WATCH OUTSIDE TOUCH parameter. Android
documentation says “Note that you will not receive
the full down/move/up gesture, only the location of
the first down”1. We obtain the timestamp for each
touch event and by a difference with the last touch
event we retrieve the Touch Gap, i.e. the Touch infor-
mation.

The Cell information is retrieved by using get-
Cid() and getLac() methods provided by the GsmCel-
lLocation class.

The getCid() method returns the GSM Cell ID
(CID), an unique number used to identify each Base
transceiver station (BST), while the getLac() method
returns the location area code. A location area is a set
of base stations that are grouped together to optimise
signalling. To each location area, a unique number
called location area code (LAC) is assigned. The LAC
is broadcast by each base station, known as a BST in
GSM, or a Node B in UMTS, at regular intervals.

Regarding the Cell information we consider as
features the CID and the LAC.

In order to collect the features we implemented
three components:

• an Android application: the application is able to
retrieve the user-oriented features we previously

1https://android.googlesource.com/platform/frameworks/na
tive/+/master/include/android/window.h

described, the application works at user-level and
it does not require root privileges. The applica-
tion was developed to retrieve the full feature set:
(i) Orientation information, (ii) Touch informa-
tion and (iii) Cell information;

• Drop Server: we deployed a server to collect all
the information retrieved by various devices with
the Android application installed;

• NoSQL database: once the information is re-
trieved, it is stored in a non-relational database
(namely, MongoDB) for facilitating the analysis.
We chose this type of database because of the
great amount of data accumulated from the de-
vices, but also for its schema-less feature. We de-
veloped a script to read JSON files obtained from
the devices and to insert them into the database.
Using MongoDB we created one collection for
each device and we stored every received features
in an heterogeneous collection associated to it,
it stored JSON files using an own format called
BSON.

We use the Accessibility Service that must be en-
abled by users in order to collect the sensitive infor-
mation we need.

3 THE EVALUATION

We designed an experiment in order to evaluate the
effectiveness of the proposed technique.

More specifically, the experiment is aimed at ver-
ifying whether the features are able to classify a be-
haviour trace as performed by the owner or by an im-
postor. The classification is carried out by using a
classifier built with the features discussed in the pre-
vious section. The evaluation consists of two stages:
(i) a comparison of descriptive statistics of the pop-
ulations of traces; and (ii) a classification analysis
aimed at assessing whether the features are able to
correctly classify the owner’s and the impostor’s be-
haviour traces.

We observed 21 users for 10 days: the evaluation
time window began on September 1, 2015 and fin-
ished on September 11, 2015. At the end of the ob-
servation window we gathered approximately 1 GB
of raw data. Unfortunately two devices presented is-
sues with the sensors and we were forced to conduct
analysis on the remaining 18 users. Another user was
not considered in the final results because the device
suffered of incompatibility.

Table 1 shows the observed devices used to evalu-
ate our method.
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Table 1: Devices involved in the evaluation with owner characterization.

# Device OS API AGE SEX USED
1 Samsung Galaxy S3 KitKat 19 19 Female Y
2 LGE Nexus 5 Marshmallow 23 22 Male Y
3 Samsung Galaxy S5 Lollipop 21 26 Male Y
4 Samsung Galaxy S3 KitKat 19 27 Male Y
5 Samsung Mini 2 Gingerbread 10 33 Male Y
6 Samsung Note 3 Lollipop 21 26 Male Y
7 Samsung S5 Dual Lollipop 5.1 22 28 Male Y
8 Samsung S4 Jelly Bean 18 56 Male Y
9 Samsung Galaxy S4 Jelly Bean 17 24 Male Y

10 LGE Nexus 5 Lollipop 22 23 Female Y
11 Samsung Galaxy A5 Jelly Bean 21 27 Male N
12 LGE G2 Jelly Bean 17 29 Male Y
13 Samsung Galaxy S2 Jelly Bean 16 30 Male Y
14 Samsung Corby Froyo 8 26 Male N
15 HUAWEI P6 Jelly Bean 17 24 Male Y
16 HUAWEI P1 Ice Cream 14 22 Female Y
17 OnePlus A0001 Lollipop 22 27 Male Y
18 HUAWEI Honor 6 KitKat 19 24 Female Y
19 HUAWEI P7 KitKat 19 27 Male Y
20 HUAWEI P8 Lite KitKat 19 25 Female Y
21 HUAWEI Y530 Jelly Bean 18 21 Male N

3.1 Descriptive Statistics

The analysis of box plots related to the six features
helps to identify whether the features are helpful to
discriminate the behaviour of users.

Figure 1 shows the box plots related to Pitch fea-
ture for each user involved in the evaluation, while
figure 2 shows the box plots related to Roll feature
and figure 3 shows the box plots related to Azimuth
feature. All these box plots do not exhibit signifi-
cant differences among the different users. A similar
consideration can be done for the features related to
the touch information, represented in figures 4, and
5. The things change when we consider the LAC
box plots illustrated in figure 6. As a matter of fact,
users exhibit an evident diversity among each other,
which is represented by the different level of medians
for each user and by the variability of the box plots’
width. The analysis of descriptive statistics suggests
that both orientation and touch information singularly
taken could be insufficient to discriminate the owner
from the impostor. The classification analysis will
complete the picture, by indicating that the combina-
tion of all the measures can successfully help to iden-
tify correclty the impostors.

3.2 Classification Analysis

We classified the features extracted using Weka2, an
open source machine learning library, using two clas-

2http://www.cs.waikato.ac.nz/ml/weka/

sification algorithms: J48 and RandomForest.
Five metrics were used to evaluate the classifica-

tion results: precision, recall, ROC Area, FAR and
FRR.

The precision has been computed as the propor-
tion of the examples that truly belong to class X
among all those which were assigned to the class. It
is the ratio of the number of relevant records retrieved
to the total number of irrelevant and relevant records
retrieved:

Precision = t p
t p+ f p

where tp indicates the number of true positives
and fp indicates the number of false positives.

The recall has been computed as the proportion
of examples that were assigned to class X, among all
the examples that truly belong to the class, i.e. how
much part of the class was captured. It is the ratio of
the number of relevant records retrieved to the total
number of relevant records:

Recall = t p
t p+ f n

where tp indicates the number of true positives
and fn indicates the number of false negatives.

The Roc Area is defined as the probability that a
positive instance randomly chosen is classified above
a negative randomly chosen.

The last two metrics we consider are used in bio-
metrics in order to verify the instance of a security
system incorrectly identifying an unauthorized per-

SECRYPT 2016 - International Conference on Security and Cryptography

100



Figure 1: Box plots related to the pitch feature for each user involved in the experiment.

Figure 2: Box plots related to the roll feature for each user involved in the experiment.

son: False Acceptance Rate and False Rejection Rate.

The false acceptance rate (FAR) is the measure
of the likelihood that the biometric security system
will incorrectly accept an access attempt by an
unauthorized user. A system’s FAR typically is stated
as the ratio of the number of false acceptances (fa)
divided by the number of impostor attempts (ia):

False Acceptance Rate = f a
ia

The FAR spans in the interval [0,1]: closer to 0
the FAR is the better is the capability to recognize
correctly the impostor.

In biometrics, FRR, or false rejection rate is the
instance of a security system failing to verify or iden-
tify an authorized person. Also referred to as a type
I error, a false rejection does not necessarily indi-
cate a flaw in the biometric system; for example, in
a fingerprint-based system, an incorrectly aligned fin-
ger on the scanner or dirt on the scanner can result in
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Figure 3: Box plots related to the azimuth feature for each user involved in the experiment.

Figure 4: Box plots related to the touch gap feature for each user involved in the experiment.

the scanner misreading the fingerprint, causing a false
rejection of the authorized user. The false rejection
rate is the measure of the likelihood that the biomet-
ric security system will incorrectly reject an access
attempt by an authorized user. A system’s FRR typ-
ically is stated as the ratio of the number of false re-
jections (fr) divided by the number of owner attempts
(oa).

The FRR is defined as:

False Rejection Rate = f r
oa

The best FRR has the value of 0, while the worst
FRR has the values of 1.

The classification analysis consisted of building
classifiers in order to evaluate features accuracy.

For training the classifier, we defined T as a set
of labelled behaviour traces (BT, l), where each BT
is associated to a label l ∈ {impostor, owner}. For
each BT we built a feature vector F ∈ Ry , where y
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Figure 5: Box plots related to the CID feature for each user involved in the experiment.

Figure 6: Box plots related to the LAC feature for each user involved in the experiment.

is the number of the features used in training phase
(1≤y≤6).

For the learning phase, we use a k-fold cross-
validation: the dataset is randomly partitioned into k
subsets. A single subset is retained as the validation
dataset for testing the model, while the remaining k-
1 subsets of the original dataset are used as training
data. We repeated the process for k=10 times; each
one of the k subsets has been used once as the valida-
tion dataset. To obtain a single estimate, we computed

the average of the k results from the folds.
We evaluated the effectiveness of the classification

method with the following procedure:

1. build a training set T⊂D;

2. build a testing set T’ = D÷T;

3. run the training phase on T;

4. apply the learned classifier to each element of T’.

We performed a 10-fold cross validation: we re-
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peated the four steps 10 times varying the composi-
tion of T (and hence of T’).

We classify using three different sets of features:
• S1: orientation features;
• S2: orientation and touch features;
• S3: orientation, touch and cell-id features.

The aim of the classification with the S1 feature
set is to achieve a behavioral pattern in order to suc-
ceed in identifying the owner or an impostor consid-
ering the device orientation. The S1 features set is
composed by: pitch, roll and azimuth that represents
an orientation event.

The second feature set, i.e. S2, adds to the S1 fea-
ture set the touch feature, i.e. the touch-gap.

The third features set, i.e. S3, adds to S2 fea-
tures set the cell-event characterized by Cell-Id and
Location-Area of a precise cell tower.

Each classification was performed using 20% of
the dataset as training dataset and 80% as testing
dataset.

We defined Cu,s as the set of the classifications we
performed, where u identifies the user (1≤u≤18) and
s represents the features set used in the classification
(s = {S1,S2,S3}).

For sake of clarity we explain with an example the
method we adopted: when we perform C2,1 classifica-
tion, we label the traces related to the user #2 as owner
traces, and the traces of the other user as impostor us-
ing the S1 features set (i.e., just the orientation fea-
tures) for classification.

Table 2 shows the results obtained with this pro-
cedure using the S1 features set.

The orientation features are too weak for identify-
ing the owner. As a matter of fact the greatest preci-
sion obtained is 0.979, but most values are smaller
than 0.96. Additionally, FAR and FRR show very
high values, i.e. around 0.1. By considering orien-
tation and touch features together, the performances
do not improve significantly, as Table 3 shows.

Performances improve when we accomplish the
classification with all the features grouped together,
as shown in Table 4. For most users, precision and
recall are over 99%.

Table 5 shows the average results obtained using
the S1, S2 and S3 features set, in order to facilitate the
comparison among the different features.

We obtain the following average values when clas-
sifying the behavioral traces by using the RandomFor-
est classification algorithm:

• a precision of 0.910 and a recall of 0.859 using the
S1 feature set;

• a precision of 0.896 and a recall of 0.895 using the
S2 feature set;

Table 2: Classification Results: Precision, Recall, ROC
Area, FAR and FRR for classifying Owner and Impostor
traces for each user involved in the experiment, computed
for S1 feature set with the J48 and RandomForest(RF) algo-
rithms.

User Alg. Precision Recall ROC FAR FRR
1 J48 0.873 0.892 0.903 0.136 0.117

RF 0.906 0.910 0.970 0.104 0.084
2 J48 0.776 0.740 0.824 0.230 0.2476

RF 0.854 0.880 0.935 0.165 0.128
3 J48 0.835 0.820 0.886 0.194 0.139

RF 0.901 0.910 0.964 0.120 0.079
4 J48 0.835 0.790 0.882 0.154 0.175

RF 0.879 0.820 0.947 0.130 0.112
5 J48 0.871 0.840 0.908 0.100 0.162

RF 0.908 0.920 0.964 0.097 0.086
6 J48 0.907 0.910 0.938 0.083 0.104

RF 0.946 0.930 0.983 0.053 0.056
7 J48 0.774 0.780 0.837 0.284 0.175

RF 0.872 0.770 0.953 0.154 0.104
8 J48 0.814 0.830 0.856 0.222 0.154

RF 0.857 0.840 0.938 0.186 0.106
9 J48 0.885 0.880 0.921 0.132 0.097

RF 0.932 0.950 0.972 0.080 0.056
10 J48 0.939 0.940 0.956 0.073 0.060

RF 0.961 0.978 0.991 0.0041 0.036
11 J48 0.896 0.880 0.922 0.131 0.079

RF 0.929 0.916 0.981 0.089 0.055
12 J48 0.823 0.840 0.868 0.224 0.136

RF 0.979 0.972 0.954 0.152 0.091
13 J48 0.924 0.934 0.946 0.089 0.064

RF 0.955 0.961 0.989 0.053 0.034
14 J48 0.882 0.800 0.917 0.121 0.115

RF 0.930 0.918 0.978 0.076 0.0063
15 J48 0.885 0.840 0.926 0.122 0.109

RF 0.936 0.922 0.982 0.073 0.056
16 J48 0.859 0.870 0.903 0.157 0.126

RF 0.915 0.900 0.974 0.099 0.070
17 J48 0.862 0.853 0.896 0.161 0.117

RF 0.915 0.899 0.974 0.099 0.071
18 J48 0.873 0.862 0.917 0.129 0.125

RF 0.921 0.934 0.973 0.089 0.071

• a precision of 0.995 and a recall of 0.995 using the
S3 feature set.

We notice that the precision diminishes when
moving from S1 to S2, although the latter includes
more features than S1. The best feature set in dis-
criminating between impostor and owner traces is the
S3 feature set.

In order to measure the performance of our
method, we report in Table 6 the average time em-
ployed for the classification task. The machine used
was an Intel Core i5 desktop with 4 gigabyte RAM,
equipped with Linux Mint 15.

The J48 algorithm is faster in classification task
than RandomForest, anyway all the classifications
employ less than a second.
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Table 3: Classification Results: Precision, Recall, ROC
Area, FAR and FRR for classifying Owner and Impostor
traces for each user involved in the experiment, computed
for S2 features set with the J48 and RandomForest(RF) al-
gorithms.

User Alg. Precision Recall ROC FAR FRR
1 J48 0.876 0.869 0.899 0.134 0.114

RF 0.902 0.909 0.968 0.111 0.086
2 J48 0.776 0.765 0.832 0.234 0.234

RF 0.825 0.811 0.911 0.185 0.166
3 J48 0.832 0.839 0.877 0.191 0.146

RF 0.880 0.842 0.950 0.143 0.098
4 J48 0.840 0.856 0.895 0.180 0.142

RF 0.877 0.893 0.948 0.140 0.108
5 J48 0.874 0.872 0.911 0.120 0.133

RF 0.908 0.910 0.970 0.099 0.084
6 J48 0.896 0.905 0.928 0.265 0.111

RF 0.926 0.938 0.975 0.065 0.084
7 J48 0.785 0.800 0.837 0.265 0.169

RF 0.850 0.877 0.933 0.195 0.110
8 J48 0.881 0.897 0.917 0.162 0.082

RF 0.903 0.916 0.956 0.142 0.057
9 J48 0.882 0.891 0.918 0.139 0.098

RF 0.927 0.919 0.970 0.087 0.060
10 J48 0.925 0.918 0.956 0.091 0.060

RF 0.949 0.954 0.988 0.059 0.045
11 J48 0.862 0.879 0.896 0.191 0.092

RF 0.900 0.904 0.964 0.137 0.071
12 J48 0.820 0.841 0.866 0.228 0.138

RF 0.872 0.889 0.946 0.163 0.093
13 J48 0.917 0.908 0.939 0.106 0.061

RF 0.942 0.938 0.985 0.070 0.047
14 J48 0.840 0.890 0.890 0.156 0.165

RF 0.889 0.901 0.957 0.118 0.105
15 J48 0.880 0.897 0.918 0.129 0.112

RF 0.919 0.924 0.975 0.096 0.067
16 J48 0.850 0.872 0.892 0.167 0.135

RF 0.897 0.937 0.964 0.124 0.085
17 J48 0.811 0.824 0.873 0.208 0.170

RF 0.862 0.877 0.941 0.173 0.106
18 J48 0.853 0.849 0.901 0.165 0.129

RF 0.893 0.927 0.96 0.122 0.093

4 RELATED WORK

There are two categories of biometrics for user iden-
tification: physiological (such as fingerprints, facial
features) and behavioral biometrics (such as speak-
ing, typing, walking). Physiological biometrics usu-
ally requires special recognition devices. Some phys-
iological biometrics, like face and voice can be de-
tected by smartphones, but usually entail expensive
computation and energy costs and have a high error
rate. For example, in Koreman et al. (Koreman et al.,
2006), the (equal error rates) EER for face recog-
nition is around 28% and for voice is around 5%.
Keystroke is a popular behavioral biometric: Joyce

Table 4: Classification Results: Precision, Recall, ROC
Area, FAR and FRR for classifying Owner and Impostor
traces for each user involved in the experiment, computed
for S3 features set with the J48 and RandomForest(RF) al-
gorithms.

User Alg. Precision Recall ROC FAR FRR
1 J48 0.992 0.997 0.994 0.011 0.006

RF 0.994 0.999 0.999 0.007 0.006
2 J48 0.995 0.992 0.995 0.007 0.002

RF 0.996 0.997 1.000 0.007 0.001
3 J48 0.999 0.999 0.999 0.001 0.001

RF 0.999 0.999 0.999 0.001 0.001
4 J48 0.977 0.969 0.983 0.025 0.021

RF 0.981 0.988 0.998 0.021 0.017
5 J48 0.993 0.996 0.996 0.013 0.001

RF 0.992 0.995 0.995 0.017 0.001
6 J48 0.995 0.990 0.998 0.005 0.005

RF 0.996 0.996 1.000 0.004 0.004
7 J48 0.996 0.995 0.997 0.005 0.004

RF 0.996 0.996 1.000 0.006 0.002
8 J48 0.992 0.994 0.997 0.014 0.002

RF 0.903 0.909 0.956 0.142 0.057
9 J48 0.997 0.998 0.997 0.005 0.001

RF 0.999 0.999 1.000 0.082 0.000
10 J48 0.998 0.998 0.999 0.002 0.001

RF 0.999 0.999 1.000 0.010 0.001
11 J48 0.999 0.999 0.999 0.002 0.001

RF 0.999 0.999 0.999 0.002 0.001
12 J48 1.000 1.000 1.000 0.000 0.000

RF 1.000 1.000 1.000 0.000 0.000
13 J48 0.985 0.989 0.990 0.021 0.008

RF 0.989 0.987 0.999 0.017 0.004
14 J48 0.999 0.999 1.000 0.001 0.001

RF 0.999 0.999 0.999 0.001 0.001
15 J48 0.987 0.988 0.992 0.016 0.010

RF 0.992 0.994 1.000 0.013 0.004
16 J48 0.997 0.998 0.999 0.004 0.001

RF 0.999 0.999 1.000 0.003 0.001
17 J48 0.991 0.990 0.995 0.013 0.06

RF 0.994 0.993 1.000 0.007 0.004
18 J48 0.997 0.998 0.998 0.030 0.030

RF 0.997 0.998 1.000 0.003 0.002

Table 5: Classification Results: average value for Precision,
Recall, ROC Area, FAR and FRR for classifying Owner
and Impostor traces, computed for S1, S2 and S3 features
set with the J48 and RandomForest(RF) algorithms.

Feat. Alg. Precision Recall ROC FAR FRR
S1 J48 0.861 0.859 0.900 0.152 0.128

RF 0.910 0.859 0.900 0.098 0.072
S2 J48 0.855 0.854 0.897 0.165 0.127

RF 0.896 0.895 0.959 0.124 0.087
S3 J48 0.994 0.994 0.996 0.008 0.004

RF 0.995 0.995 0.999 0.007 0.003

and Gupta (Joyce and Gupta, 1990) presented a sur-
vey on the large body of literature on authentication
with keystroke dynamics.

Some researchers proposed authentication token
based mechanisms to identify legal users,e.g., wire-
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Table 6: The performance evaluation for classifying the S1,
S2 and S3 feature set, with the J48 and RandomForest(RF)
algorithms.

Feature Set Algorithm Time
S1 J48 0.47 s

RF 0.56 s
S2 J48 0.51 s

RF 0.72 s
S3 J48 0.68 s

RF 0.84 s

less token (Nicholson et al., 2006). However, they re-
quire additional hardware and are not convenient for
daily smartphone usage. On the smart phones with
touch screens, PINs, pass-phrases, and secret drawn
gestures are the commonly used authentication meth-
ods (Dunphy et al., 2010).

Recently, there is a growing body of work that
uses the features of touch behavior to verify users.
Several existing approaches have used the touch be-
havior biometrics for various security purposes. De
Luca et al. (De Luca et al., 2012) propose a pass-
word application, by which the user draws a stroke on
the touch screen as a input password. Pressure, coor-
dinates, size, speed and time of the stroke are used
to identify the valid user. Overall the accuracy of
this method is 77% with a 19% FRR and 21% FAR.
Zheng et al. (Zheng et al., 2014) use four features
(acceleration, pressure, size, and time) to distinguish
the true owner and impostor to enhance the secu-
rity of passcode. Their identification system achieves
3.65% EER. A user enters a password by tapping sev-
eral times on a touch surface with one or more fin-
gers. PassChord failed to authenticate for 16.3% of
the time. There are some other works addressing the
user identification issue with touch features, e.g., Seo
et al. (Seo et al., 2012). With pure touch data, there
may be a high error rate.

Riva et al. (Riva et al., 2012), rather than explor-
ing a new authentication scheme, address the problem
of deciding when to surface authentication and for
which applications. Their approach combines mul-
tiple signals (biometric, continuity, possession) to de-
termine a level of confidence in a users authenticity.
They built a prototype running on modern phones to
demonstrate progressive authentication and used it in
a lab study with nine users. Their system is able to re-
duce the number of required authentications by 42%.

Kwapisz et al. (Kwapisz et al., 2010) use ac-
celerometer data to identify or authenticate cell phone
users. They aggregate the raw time-series accelerom-
eter data into examples, since most classification al-
gorithms cannot operate directly on time series data.
Each of these examples is associated with a specific
cell phone user, thus forming labeled training data.

For user authentication they build separate models for
each user in order to determine whether an example
came from that user or from someone else, obtaining
an accuracy value equal to 87.6% using the J48 classi-
fication algorithm of identification of 10-seconds ex-
amples.

Frank et al. (Frank et al., 2013) propose a set of 30
behavioral touch features that can be extracted from
raw touchscreen logs and demonstrate that different
users populate distinct subspaces of this feature space.
They collected touch data from users interacting with
a smart phone using basic navigation maneuvers, i.e.,
up-down and left-right scrolling. They propose a clas-
sification framework that learns the touch behavior of
a user during an enrollment phase and is able to ac-
cept or reject the current user by monitoring interac-
tion with the touch screen. Their classifier achieves
a median equal error rate of 0% for intra-session au-
thentication, 2%-3% for inter-session authentication
and below 4% when the authentication test was car-
ried out one week after the enrollment phase.

Killourhy et al. (Killourhy and Maxion, 2009)
collect a keystroke-dynamics data set, in order to
measure the performance of a range of detectors so
that the results can be compared soundly. They col-
lected data from 51 subjects typing 400 passwords
each, evaluating 14 detectors from the keystroke-
dynamics and pattern-recognition literature. The
three top-performing detectors achieve equal-error
rates between 9.6% and 10.2%.

Bo et al. (Bo et al., 2014) build a touch-based
biometrics model of the owner by extracting some
principle features, and then verify whether the cur-
rent user is the owner or guest/attacker. When us-
ing the smartphone, some unique operating dynam-
ics of the user are detected and learnt by collect-
ing the sensor data and touch events silently. When
users are mobile, the micro-movement of mobile de-
vices caused by touch is suppressed by that due to
the large scale user-movement which will render the
touch-based biometrics ineffective. To address this,
we integrate a movement-based biometrics for each
user with previous touch-based biometrics. We con-
duct extensive evaluations of our approaches on the
Android smartphone, showing that the user identifi-
cation accuracy is over 99%.

Murmuria et al. (Murmuria et al., 2015) pro-
pose the continuous user monitoring using a machine
learning based approach comprising of an ensem-
ble of three distinct modalities: power consumption,
touch gestures, and physical movement. They eval-
uated the method using a dataset retrieved by mon-
itoring 73 volunteer participants using the same de-
vice (Google Nexus 5) with Android 4.4.4 version on

SECRYPT 2016 - International Conference on Security and Cryptography

106



board. In the evaluation, they obtain an equal error
rate between 6.1% and 6.9% for 59 selected users.

Gascon et al. (Gascon et al., 2014) analyze typing
motion behavior captured while the user is entering
text. The authors developed a software keyboard ap-
plication for the Android OS that stores all sensor data
for further learning and evaluation. In a field study
with more than 300 participants, they reached a false
positive rate of 1% and a total positive rate of 92%.

Clarke et al. (Clarke and Mekala, 2006) discuss
the application of biometrics to a mobile device in
a transparent and continuous fashion and the subse-
quent advantages and disadvantages that are in con-
tention with various biometric techniques. In order
to facilitate the use of signature recognition trans-
parently, their method must verify users based upon
written words and not signatures. From the experi-
ment conducted they were found that current signa-
ture recognition systems could indeed perform suc-
cessful authentication on written words. Based upon
20 participants an average FAR and FRR of 0% and
1.2% respectively were experienced across 8 common
words.

Brocardo and Traore (Brocardo and Traore, 2014)
introduce a very novel approach for continuous au-
thentication which is based on micro messages, by ex-
tracting lexical, syntatic, and application specific fea-
tures. This technique should guarantee a shorter au-
thentication delay, essential for reducing the vulnera-
bility window of the device. This system obtained an
EER of 9.18%, but the main limitation is that it can be
applied only to messages, so it cannot be used if the
user does not write messages.

Wu et al. (Wu et al., 2015) propose a method pro-
filing behavioral biometrics from keystrokes and ges-
tures, that also acquires the specific properties of a
one-touch motion during the users interaction with the
smartphone. The authors demonstrate that the man-
ner by which a user uses the touchscreen that is, the
specific location touched on the screen, the drift from
when a finger moves up and down, the area touched,
and the pressure used reflects unique physical and be-
havioral biometrics.

Piuri et al. (Piuri and Scotti, 2008) presented a
set of techniques to extract the fingerprint ridge struc-
ture by image processing in images acquired by low-
cost cameras and webcams. The approach allows the
use of webcams and low-cost cameras as interopera-
ble devices for fingerprint biometrics. Results show
that even in normal illumination conditions and by
using sensors of about 1Mpixel (or above), the ridge
structure can be effectively extracted. The limited res-
olution of current CCDs can produces several artifacts
in the extracted ridge structure, but experiments have

shown that the presence of artifacts can be reduced by
using higher image resolutions.

Kotroupolos and Samaras (Kotropoulos and
Samaras, 2014) obtain the user’s profile from
recorded speech signals. They obtained as top accu-
racy 97.6% which is smaller than the one obtained
with our experiment.

The main novelty of our method with respect to
the existing literature stands in the set of features se-
lected and in the significant performance obtained.

5 CONCLUSION AND FUTURE
WORK

Current authentication mechanisms in mobile envi-
ronment use as mechanisms to identify the device
owner pins at login time and textual and graphical
passwords. These mechanisms do not offer any pro-
tection against access post login. In this paper we pro-
pose a method to continuously and silently authenti-
cate the user by extracting a set of features able to
characterize the user behavior. The method is silent
because it builds the profile of the user’s behavior
while the user is using the mobile phone, without re-
quiring any further entry by the user, like voice or fa-
cial image. Results are significantly better than those
reported in literature: we obtain a precision and a re-
call greater than 0.99 collecting data from 18 volun-
teer participants in a 10-day time window. Addition-
ally we measured a FAR of 0.7 % and a FRR of 0.3%.

We plan to improve our experiment in several
ways. With respect to data collection, we intend to in-
crease the number of experimental subjects involved,
and to collect further features per user, as well as the
frequent pattern of applications used by the user.
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