
End to End Specification based Test Generation of Web Applications

Khusbu Bubna
International Institute of Information Technology, Bangalore, India

Keywords: Web Applications, Statechart, Model Checking, Selenium.

Abstract: Using formal specifications to generate test cases presents great potential for automation in testing and en-
hancing the quality of test cases. However, an important challenge in this direction is the design specifications
which are at a more abstract level than the implementation, with many important implementation level de-
tails missing. To generate executable test cases, these implementation details must be included at some stage.
Though there has been a lot of work in test generation from specification, all the existing methods suffer from
this problem: either the test cases are not executable, or the process involves a non-trivial, manual step of trans-
lating the abstract test cases to concrete test cases. In this work, we present an approach of specification based
test generation for web applications that overcomes the above challenge: test generation is completely auto-
mated and the test cases are fully executable on a test execution framework (e.g. Selenium RC). Further, our
methodology allows generation of multiple sets of concrete test cases from the the same formal specification.
This makes it possible to use the same abstract specification to generate test cases for a number of versions
of the system. Throughout the paper, a case study of Learning Management System is used to illustrate our
approach.

1 INTRODUCTION

As web applications are becoming more and more
ubiquitous, modelling and testing web applications
correctly is becoming necessary. Formal specifica-
tion languages are used to clarify customer’s require-
ments by removing ambiguity, inconsistency and in-
completeness in the software requirements and de-
sign process. Thus, they are helpful in reducing the
requirement errors in the early stages of the soft-
ware development life cycle. Formal specifications
are mostly used in critical systems where the cost of
failure is catastrophic. Formal specifications can be
used in several ways of design cycle, static verifica-
tion and test generation being the most notable.

This paper presents the ACT (Abstract to
Concrete Tests) tool, which uses a novel approach
of generating concrete test cases from abstract test
cases by using data shared across different interac-
tions of the web application with the web server.
A formal specification language ‘Statecharts’ (Harel,
1987) was used to model the navigation behaviour
aspect of web applications. Then abstract test cases
were generated from the State chart model in our ACT
tool. Abstract test cases cannot be directly executed
on the implementation since they are defined using el-
ements and objects of the State chart model, and must

be first transformed to concrete test cases. So finally,
concrete executable Selenium RC JUnit test cases are
generated from these abstract test cases in our ACT
tool which can be directly executed on the imple-
mentation. The remainder of the paper is organized
as follows. Section 2 gives a brief review of related
work, while Section 3 explains the proposed method-
ology used by our ACT tool. Section 4 illustrates the
State chart specification for modeling the navigation
behaviour of web applications. Section 5 illustrates
the generation of test path from the State chart model.
Section 6 illustrates how abstract test cases are gener-
ated using Symbolic execution and SMT solver. Sec-
tion 7 illustrates the translation of abstract test cases
to concrete test cases. Section 8 concludes the paper
and Section 9 gives scope for future work.

2 RELATED WORK

A number of formal, informal and semi-formal mod-
els like automata (K. Homma and Togashi, 2009),
Statechart (M. Han, 2006), UML and OCL (Conallen,
1999)(Ricca and Tonella, 2001), UML based web
engineering, alloy, directed graph and control flow
graphs, SDL, term rewriting systems, XML have been

296
Bubna, K.
End to End Specification based Test Generation of Web Applications.
In Proceedings of the 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering (ENASE 2016), pages 296-302
ISBN: 978-989-758-189-2
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

proposed in various studies (M. H. Alalfi, 2009) for
modeling web applications. The authors in (Conallen,
1999)(Ricca and Tonella, 2001) have proposed UML
class diagram and the authors in (M. Han, 2006) have
proposed statechart for modeling web navigation. A
methodology for generation of concrete executable
tests from abstract test cases using a test automation
language, the Structured Test Automation Language
(STAL) was proposed in (N. Li, 2013). The authors in
(N. Li, 2013) have proposed a mapping between iden-
tifiable elements in the model to JUnit executable java
code. The author in (Torsel, 2013) have presented an
approach using domain specific languages to model
the navigation aspect of the web application and have
used a UI mapping XML file to generate concrete
test cases for Selenium and Canoo web test tools.
(A.A. Andrews, 2005) used finite state machines for
web application testing. In (A. Marcetto and Ricca,
2008), an approach that utilizes recorded user inter-
action data to construct a state machine model espe-
cially for testing AJAX functionality is presented. In-
put data is provided from the collected requests and
test oracles have to be created manually. The gen-
erated test sequences are translated into the test case
format of the Selenium test automation tool. The au-
thors in (H. S. Hong and Sokolsky, 2001) have used
model checking to generate test cases for control flow
and data flow coverage criteria. (Harel, 1987)

3 SYSTEM ARCHITECTURE

Figure 1 gives an overview of the approach that the
ACT (Abstract to Concrete test) tool uses for gener-
ating concrete Selenium RC JUnit test cases from the
formal State chart web navigation model. The nav-
igation behaviour of our case study web application
is modeled using the formal specification language
’State chart’. The front end which generates test paths
from the State chart model can be a test path generat-
ing algorithm like model checking or graph coverage
algorithm. Abstract test cases are generated from the
test paths with the help of the State chart specification.
Then the abstract test cases generated are converted to

Figure 1: Proposed Test Generation Method used by our
ACT tool.

Selenium RC JUnit concrete test cases using the Map-
pings XML file. Each of these steps are explained in
elaborate details in the remaining sections.

4 MODELLING WEB
NAVIGATION USING STATE
CHARTS

From among the various finite state based formal
specification languages, we have used Statecharts
(Harel, 1987) for modeling the navigation behaviour
of web applications.

Figure 2 shows the State chart specification of our
case study, the Learning Management System (LMS)
used within our institute. In the Statechart specifica-
tion shown in Figure 2, Inactive state denotes that the
web application has not yet started operating. The
composite state Active denotes that the web applica-
tion is in an operating state. Inside Active state, each
web page was modelled as a separate state. When the
user navigates from one webpage to another, there is
a transition between the corresponding states. LMS
Login Page denotes the Login page of Learning Man-
agement System. Here we have used the mathemat-
ical notations of sets and first order predicate logic
constructs in guards and actions of the transitions in
State chart model.

In a web application, the value which is entered
by the user in one interaction of the web application
with the web server is often used back in another in-
teraction of the web application with the web server.
For example, as shown in the State chart model of
Figure 2, admin can register a student in the LMS
System by entering values in the username and pass-
word input fields in the Add Student User Page. A
necessary requirement for a student to login in the
LMS Login Page is that the student must be regis-
tered beforehand and so must have a valid student
username and password. Thus there is a data flow
between Add Student User Page page and LMS Lo-
gin Page. The variables valid_student_usernames and
valid_student_passwords are defined in the transition
from state Add Student User Page to Successfully Stu-
dent Added Page and are used in the transition from
state LMS Login Page to My Courses web page.

The variables valid_student_usernames,
valid_student_passwords, valid_teacher_usernames
and valid_teacher_passwords are shared between
different interactions of the web application with the
web server and across different users using the web
application. When the web application has started
operating, these variables are initialized to the null

End to End Specification based Test Generation of Web Applications

297

!!!
!
!
!

!
Inactive!

Initialize!/!
valid_student_usernames=null/^/
valid_student_passwords=null/^/
valid_teacher_usernames=null/^/
valid_teacher_passwords=null/^/
valid_admin_username=``admin’’/^/
valid_admin_password=``admin’’/

shutdown!

LMS!Login!Page!

My!Courses!!

My!Courses!

Admin!Home!!
Page!

Add!Users!

Add/
Users.clicked/

Add/
Student.clicked/

Add!Student!
!User!Page!

Add!Teachers!!
User!Page!

Add/Teacher.clicked/

Successfully!
Student!Added!

Page!

Add.clicked/
[!username1!∉!valid_student_usernames!∧!
password1!∉!valid_student_passwords!]!/!
!
valid_student_usernames/:=/
valid_student_usernames/∪/username///∧/
valid_student_passwords/:=/
valid_student_passwords/∪/password//

Successfully!
Teacher!Added!!

Page! Error!Page!

Add.clicked/
/
[!username1!∈!
valid_student_usernames!!∧!
password1!∈!
valid_student_passwords!]!

Add.clicked/
/

[!username1!∈!!
valid_teacher_usernames/∧!
password1!∈!
valid_teacher_passwords!]!

Add.clicked/
[!username1!∉ !"#$%_!"#$ℎ!"_!"#$%&'#"!∧!
password1!∉ !"#$%_!"#$ℎ!"_!"##$%&'#!]!/!

!
valid_teacher_usernames/:=/valid_teacher_usernames///

∪ !"#$%&'#!! ∧/
valid_teacher_passwords/:=/valid_teacher_passwords/

∪/password!

Login.clicked/
[!username2!∈!valid_student_usernames!!∧!
password2!∈!valid_student_passwords!!]!
!

!
Login.clicked/

[!username!=!valid_admin_username!/∧!/
!!!!password!=!valid_admin_password!]!

Login.clicked/
[!username3!∈!!valid_teacher_usernames!/∧/
!!!password3!!∈!!valid_teacher_passwords!]!
!

CSISEI270!Design_and_Analysis!!
_Of_SafetyICritical_Systems!

SEI230_Software!
_Testing!

Design/and/Analysis/
of/
Safety/Critical/
Systems.clicked/

News!Forum! General!Discussion!
Forum!

Grades!Page!

Slides!Folder!
page!!

Grades.clicked/

News/
Forum.clicked/

Software/
Testing.clicked/

General/
Discussion/
Forum.clicked/

Slides/
Folder.clicked/

Test!Driven!!
Developemnt!
Assignment!Page!

TDD/
Assignment.clicked/

Logout.clicked/

Active!
Login.clicked/

[!username2!∉!valid_student_usernames/⋁!!!
!!password2!!∉!valid_student_passwords!!!]!

!

Logout.clicked/

Login.clicked/
[!username!∉!valid_teacher_usernames/⋁!!!
!!password!!∉!valid_teacher_passwords!!!]!
!

Figure 2: Formal Model showing Web Navigation of Learning Management System using UML State chart model.

set. For example as shown in the State chart diagram
of Figure 2, variables valid_student_usernames,
valid_student_passwords, valid_teacher_usernames
and valid_teacher_passwords are initilized to null set
in the transition from state Inactive to state Active.
On a successful registration of either a teacher or a
student, the values of these variables are updated and
when either a student or a teacher logs in the LMS
Login page, the value of these variables are accessed
to check if a student or teacher is already registered
or not.

Our ACT tool, as illustrated in the remaining sec-
tions can store and share data across different interac-
tions of the web application with the web server and
can generate Selenium RC JUnit concrete test cases
utilizing this data.

5 GENERATION OF TEST PATHS
FROM STATE CHART MODEL
USING MODEL CHECKING

The front end step in the ACT tool which generates
test paths can be any test path generating algorithm

like graph coverage algorithms. But model checking
which is a formal verification technique can also be
used to generate test paths by formulating a tempo-
ral logic specification as a trap property to be verified.
The straight forward way to represent a State chart
as a transition system is to flatten its hierarchy. In
our approach, the hierarchical State chart navigation
model was first flattened and then transformed into
an SMV program. The trap properties for navigation
were written in CTL formulas and then the Symbolic
Model Verifier (NuSMV) tool is executed which gen-
erates the counter examples. For example, the CTL
Trap Specification Property for specifying that state
SE-230_Software_Testing is reachable from the ini-
tial state is:

CTL Trap Specification Property:
! EF(state=SE-230_Software_Testing)

This trap property will generate a counter example
which is our test path. For this counter example there
will be two paths. One from LMS Login Page to My
Courses Page to SE-230 Software Testing Page. And
the second test path will be the loop from LMS Login
Page to Successfully Student Added Page then to My
Course Page to SE-230 Software Testing page. Here

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

298

we will restrict the length of the loop in the counter
example by using bounded model checking and set
the length of the counter example to a fixed size. The
CTL Trap properties for generating test paths are writ-
ten for various requirements of the web application,
like the top page of a web application should be reach-
able from all the pages of the web application. In ad-
dition, we also wrote CTL trap properties for node
coverage criterion.

6 ABSTRACT TEST CASES
GENERATION USING
SYMBOLIC EXECUTION AND
SMT SOLVER

After the test paths are generated from the State chart
model, symbolic execution is carried out to gener-
ate input values to guide the execution along the test
paths. The path predicate corresponding to the test
path is computed. This, in turn, is given to an SMT
solver to generate concrete input values. These val-
ues are used to generate the abstract test cases. The
algorithm used to generate the abstract test cases us-
ing symbolic execution is shown in the block diagram
in Figure 3.

6.1 Path Predicate Formation &
Computation of Concrete Values

This section illustrates the method of forma-
tion of path predicates and the generation
of concrete values using the example of the
counter example generated from the CTL Trap
Property !EF(state=SE-230_Software_Testing).
The variables valid_student_usernames and
valid_student_passwords in the State chart model
in Figure 2 are internal program variables and are
internally maintained as sets. These variables are
initialized to null in the transition from state Inactive
to composite state Active as shown in Figure 2. The
path predicate formed for the transition from Add
Student User Page to Successfully Student Added
Page is
(username1 6= ””) ∧ (password1 6= ””) ∧
(username1 /∈ �)∧ (password1 /∈ �).

Sets valid_student_usernames and
valid_student_passwords are consequently up-
dated to username1 and password1. So the path
predicate for the transition from state LMS Login
Page to My Courses is

((username1 6= ”” ∧ (password1 6= ””) ∧
(username1 /∈ φ)∧ (password1 /∈ φ)∧

ABSTRACT TEST
CASE GENERATION

Path

Spec
Symbolic
Execution

Path
Predicate
Extraction

SMT
Solver

Form Test
Case

Abstract
Test
Case

Symbolic
Execution

Trace
Path

Predicate

Concrete
Values

Figure 3: Abstract test case generation using Symbolic ex-
ecution.

(username2 ∈ username1) ∧ (password2 ∈
password1))

So the final path predicate for the counter example
! EF(state=SE-230_Software_Testing) is:

((username1 6= ”” ∧ (password1 6= ””) ∧
(username1 /∈ φ)∧ (password1 /∈ φ)∧ (username2 ∈
username1)∧ (password2 ∈ password1))

Here username1 and password1 are the symbolic
variables corresponding to the Add_Student_User
page, and username2 and password2 are the symbolic
variables corresponding to the LMS Login page. An
SMT solver like CVC3 (Key,) would determine if
the path predicate is satisfiable, and if yes, then it will
generate satisfying values for the symbolic variables
occurring in the formula and hence the concrete input
values would be generated.

Suppose, if a counter example is generated for the
path from state Inactive to state Error Page through
states LMS Login, Admin Home Page, Add Users
and Add Student User Page, then the path predicate
formed will be:

(username1 ∈ φ)∧ (password1 ∈ φ)
which will be a contradiction i.e. unsatisfiable

predicate. Hence, this path will be rejected as infeasi-
ble.

6.2 Abstract Test Cases Generation

Finally the abstract test cases are generated by plug-
ging in concrete input values which are computed in
the symbolic execution stage at appropriate points in
the counter examples. The phases in the counter ex-
amples which have corresponding GUI elements in
system implementation are extracted in sequence and
their user input fields are replaced by concrete values
computed in symbolic execution stage.

End to End Specification based Test Generation of Web Applications

299

Table 1: Some CTL Trap Temporal Logic Properties that were used for generating test paths for LMS system in NuSMV tool.

Test Criterion CTL Trap Property Description

Node coverage ! EF (state=SE-230_Software_Testing)
A CTL Trap property for node coverage
for state SE-230 Software Testing Page.

The top page is
reachable from all the
pages

AG((state=SE-230_Software_Testing) →
EF(state=LMS_Login_Page))

LMS Login Page is reachable from
SE-230 Software Testing Page.

! AG((state=Add_Student_User_Page) →
EF(state=LMS_Login_Page))

LMS Login Page is reachable from Add
Student User Page.

Every page is reachable
from the top page

! AG ((state=LMS_Login_Page) → EF
(state=SE-230_Software_Testing))

SE-230 Software Testing Page is
reachable from LMS Login Page page.

! AG ((state=LMS_Login_Page) → EF
(state=Add_Student_User_Page))

Add Student User Page is reachable from
LMS Login Page.

username=“admin”
password=“admin”
Login.clicked
Add Users.clicked
Add Student.clicked
username1=“MS2013009”
password1=“abc”
Add.clicked
Logout.clicked
username2=“MS2013009”
password2=“abc”
Login.clicked
Software Testing.clicked.

Figure 4: An example of an abstract test case generated for
the counter example generated from the CTL Trap Tempo-
ral Logic Property !EF(state=SE-230_Software_Testing).

7 TRANSLATION OF ABSTRACT
TEST CASES TO CONCRETE
TEST CASES

The last step is deriving concrete executable test cases
from these abstract test cases so these concrete test
cases can communicate directly with the system under
test. The abstract test cases generated from the State
chart model are on the same level of abstraction as the
model since the State chart model they are generated
from contains only partial information of the imple-
mentation under test. In Figure 5, even through the
input values are concrete, the test case is still abstract
because firstly variables like username1, password1,
etc. needs to be mapped to the implementation enti-
ties . And, secondly many of the inputs that may be
needed may not be there in the original specification
and are only available after the exact implementation
is finished.

For generating concrete test cases from the ab-
stract test cases generated in the previous step, the
ACT tool uses a mapping between phrases used in
the State chart specification model to Selenium Re-
mote Control JUnit test code which helps to translate

an abstract test to concrete Selenium RC JUnit test.
Figure 8 shows a part of XML file that was created to
give a mapping between the phrases in the State chart
model of Figure 2 to Selenium RC JUnit java code for
our case study of Learning Management System. The
mappings XML file is created manually.

Since, the State chart model contained only partial
information of the final implementation. So, now the
additional information that were abstracted out from
the State chart model has to be added in the Map-
pings XML file in order to generate the concrete Se-
lenium RC Junit test cases. From the source code
implementation of the case study of HMS, we found
that in the Add Student User page there were addi-
tional input fields like Name and Department which
were abstracted out in the State chart specification of
Figure 2. So these fields were also included in the
Mappings XML file. Using the generated abstract test
cases from the previous step and the mappings XML
file created manually and fed as input to the ACT tool,
a set of concrete Selenium RC Junit test cases is gen-
erated in this step. Figure 5 shows one of the concrete
Selenium JUnit test case generated from our ACT tool
for the case study of Learning Management System.

8 EXPERIMENTAL RESULTS

For two other web based enterprise applications de-
veloped within our institute, a Hospital Management
System (HMS) and a Student Information System
(SIS), we modeled our web applications using the
proposed method.

Table 2 shows the lines of code (LOC) of the two
systems, the number of nodes in the flattened State
chart (N f lat), the number of mappings and the number
of abstract test cases(or counter examples) used for
the various test coverage criterion. A total of 14 ab-
stract test cases were used for HMS system and a total
of 53 abstract test cases were used for SIS System for

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

300

Table 2: Results of test generation on two other case studies Hospital Management System and Student Information System.

Web Applications N f lat LOC No. of Mappings
No. of abstract tests
(counter examples)

Hospital Management System
(HMS)

6 133 20

Node coverage 6
Top page is reachable from all the pages 4

Every page is reachable from the top page 4
Total 14

Student Information System
(SIS)

19 15,770 56

Node coverage 19

Top page is reachable from all the pages 17

Every page is reachable from the top page 17

Total 53

<mappings>
<mapping>

<phrase>state</phrase>
<value>Add_Student_User</value>
<code>

selenium=new DefaultSelenium(“localhost”,4444,”firefox/”
+“Applications/Firefox.app/Contents/MacOS/”

+“firefox-bin”,“https://lms.iiitb.ac.in/moodle”);”
selenium.start();
selenium.open(“/course/view.php?id=19”);

</code>
</mapping>
<mapping>

<phrase>username1</phrase>
<value>u1</value>
<range>non blank</range>
<code>selenium.type (“css=input[id=’username’,]”,u1);</code>

</mapping>
<mapping>

<phrase>Name</phrase>
<value>n</value>
<code> selenium.type(“css=input[id=’name’]”,n); </code>

</mapping>
<mapping>

<phrase>Department</phrase>
<value>dp</value>
<code> selenium.type(“css=input[id=’department’]”,dp);</code>

</mapping>
</mappings>

Figure 5: A part of Mappings XML file showing mappings
between phrases used in State chart specification model of
Figure 2 to their corresponding Selenium RC JUnit code.

various test criterion. Currently, we have modelled
the two case studies of HMS System and SIS System
but we are currently running our ACT tool and try-
ing to calculate the number of concrete test cases that
would be generated.

9 CONCLUSION

Test cases generated from formal specifications are
often at an abstract level. They cannot be executed
directly using a test automation tool, e.g. Selenium.
The existing methods have tried to deal with this prob-
lem using a mapping approach. However, this ap-

public void test1()
{

selenium.start();
selenium.open("https://lms.iiitb.ac.in/moodle/login/index.php");
selenium.type("css=input[id=’username’]", "admin");
selenium.type("css=input[id=’password’]", "admin");
selenium.click("xpath=//a[contains(@href,’https://lms.iiitb.ac.in

/moodle/myadmin/’)]”);
selenium.click("xpath=//a[contains(@href,’https://lms.iiitb.ac.in

/moodle/user/index.php?id=27’)]");
selenium.click("xpath=//a[contains(@href,’https://lms.iiitb.ac.in
selenium.type("css=input[id=’username1’]", "MS2013009");
selenium.type("css=input[id=’password1’]", "abc");
selenium.click("//input[@id=’loginbtn’]");
selenium.click("xpath=//a[contains(@href,’https://lms.iiitb.ac.in

/moodle/login/index.php’)]");
selenium.type("css=input[id=’username2’]", "MS2013009");
selenium.type("css=input[id=’password2’]", "abc");
selenium.click("xpath=//a[contains(@href,’https://lms.iiitb.ac.in

/moodle/my/’)]”);
selenium.click("xpath=//a[contains(@href,’https://lms.iiitb.ac.in

/moodle/course/view.php?id=19’)]");
}

Figure 6: A Selenium RC JUnit concrete test case generated
from our ACT tool for the case study of Learning Manage-
ment System for the test path generated from the CTL trap
property !EF(state= SE-230_Software_Testing).

proach is fundamentally limited in its capability to
translate abstract test cases into concrete test case
due to the presence of data flow relationship between
atomic interactions between the (test-)client and the
server. In this paper, we have presented a precise
characterisation of this problem. Further, we have
provided a test generation methodology which uses
symbolic execution to resolve the data-flow between
atomic interaction. The resulting abstract test cases
are concrete enough so that the mapping method is ef-
fective in completely translating them to concrete test
cases that can be directly executed on Selenium test
runner. Through some of the steps like creation of
Mappings XML file, construction of State chart, etc
are manual but there is fairly a reasonable automation
in the other steps in the ACT tool. Therefore, our ap-
proach is able to achieve a reasonable amount of end
to end automation of the test generation process from
formal specification.

End to End Specification based Test Generation of Web Applications

301

10 FUTURE WORK

Currently we are running our ACT tool on our LMS
system and we are currently trying to find out the
number of concrete test cases that would be generated
for various test criteria. So in our future work, we will
try to find out the relation between the number of con-
crete test cases and the number of abstract test cases
and we will also try to see how the number of concrete
test case and the number of abstract test cases varies
with the size of the State chart model.In our future
work, we will generalise this approach to apply other
forms of formal specification and coverage criteria. In
addition, we intend to apply other forms of front-end
techniques like graph coverage criteria in generating
test paths instead of the model checking approach for
generation of test paths.

REFERENCES

A. Marcetto, P. T. and Ricca, F. State-based testing of ajax
web applications. In Proc. of 2008 Intl. Conf. on Soft-
ware Testing, Verification, and Validation, pages 121–
130.

A.A. Andrews, J. Offutt, R. T. A. Testing web applications
by modeling with fsms”, journal =.

Conallen, J. Modeling web application architectures with
uml. Communications of ACM, 42(10):63–70.

H. S. Hong, I. L. and Sokolsky, O. Automatic test gen-
eration from statecharts using model checking. In
Proc. of FATES’01, Workshop on Formal Approaches
to Testing of Software, Vol. NS-01-4 of BRICS Notes
Series., pages 121–130.

Harel, D. (1987). Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231–274.

K. Homma, S. Izumi, K. T. and Togashi, A. (2009). Model-
ing and verification of web applications using formal
approach. Technical report.

M. H. Alalfi, J. R.Cordy, T. R. Modeling methods for
web application verification and testing: State of the
art. Software Testing, Verification and Relaibility,
19(4):265–296.

M. Han, C. H. Modeling and verification of adaptive navi-
gation in web applications. In Proc. of 6th Intl. Conf.
on Web Engg.

N. Li, J. O. (2013). A test automation language for behav-
ioral models. Technical report.

Ricca, F. and Tonella, P. (2001). Analysis and testing of web
applications. In Proc. of 23rd Intl. Conf. on Software
Engineering, pages 25–34.

Torsel, A.-M. A testing tool for web applications using a
domain-specific modelling language and the nusmv
model checker. In Proc. of 6th Intl. Conf. on Software
Testing, Verification and Validation, pages 383–390.

ENASE 2016 - 11th International Conference on Evaluation of Novel Software Approaches to Software Engineering

302

