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Abstract: The incorporation of feedback in the proactive event-driven decision making can improve the 
recommendations generated and be used to inform users online about the impact of the recommended action 
following its implementation. We propose an approach for learning cost functions from Sensor-Enabled 
Feedback (SEF) for the continuous improvement of proactive event-driven decision making. We suggest 
using Kalman Filter, dynamic Curve Fitting and Extrapolation to update online (i.e. during action 
implementation) cost functions of actions, with the aim to improve the parameters taken into account for 
generating recommendations and thus, the recommendations themselves. We implemented our approach in 
a real proactive manufacturing scenario and we conducted extensive experiments in order to validate its 
effectiveness. 

1 INTRODUCTION 

Proactive, event-driven decision making is an 
approach for deciding ahead of time about the 
optimal action and the optimal time for its 
implementation (Engel et al., 2012). Proactivity is 
leveraged with novel information technologies that 
enable decision making before a predicted critical 
event occurs (Bousdekis et al., 2015). A proactive 
event-driven Decision Support System (DSS) should 
integrate different sensor data, provide real-time 
processing of sensor data and combine historical and 
domain knowledge with current data streams in 
order to facilitate predictions and proactive 
recommendations (Engel et al., 2012; Bousdekis et 
al., 2015). The emergence of the Internet of Things 
paves the way for enhancing the monitoring 
capabilities of enterprises by means of extensive use 
of sensors generating a multitude of data (Bousdekis 
et al., 2015). The manufacturing domain can take 
substantial advantage from proactive event-driven 
decision making in order to turn maintenance 
operations from “fail and fix” to “predict and 
prevent” (Bousdekis et al., 2015). In addition, the 
incorporation of feedback in the decision process 
can, on the one hand, improve the recommendations 
generated by the proactive event-driven DSS and, on 

the other hand, be used to inform users online about 
the impact of the recommended action following its 
implementation. However, the noise existing in 
manufacturing sensors makes proactive event-driven 
decision making process vulnerable to inaccuracies. 
Until now the embodiment of a feedback 
functionality in proactive, event-driven decision 
making has not been examined. 

Our research objective is to examine how a 
feedback loop can be implemented in a proactive 
event-driven DSS so that data generated post action 
implementation can be used to improve the decision 
making process. Specifically, by focusing on 
decision making processes that have a cost footprint 
on the manufacturing process, we aim to investigate 
how the cost functions of actions that are taken into 
account for the provision of recommendations can 
be updated and improved each time a recommended 
action is implemented. Furthermore, we examine 
what kind of data processing conducted by the 
feedback loop is appropriate for informing online 
users about the actual and the predicted cost of the 
action during its implementation. Our approach is 
followed by an application in a real industrial 
environment and by extensive experiments for 
validation. 

The rest  of  the  paper  is  organized  as  follows: 
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Section 2 presents the related and background 
works; Section 3 outlines our approach, while 
Section 4 illustrates its application in a proactive 
manufacturing scenario in the area of production of 
automotive lighting equipment and presents 
extensive experimental results in comparison to 
Curve Fitting on noisy data, that prove the 
effectiveness of our approach. Section 5 discusses 
the results and concludes the paper. 

2 RELATED AND BACKGROUND 
WORKS 

2.1 State-of-the-Art 

There are several research works dealing with the 
utilisation of feedback in Machine Learning 
proposing algorithms based on Reinforcement 
Learning (Lewis et al., 2012), iterative control 
techniques (Lee and Lee, 2007), particle swarm 
optimization (Tang et al., 2011) and incremental 
learning (Chen et al., 2012). However, there is not a 
methodology which enables the sensor noise 
removal and the extraction of the function that these 
sensor data follow in a way that can continuously 
improve the recommendations provided by a 
proactive event-driven system. Moreover, although 
there are several applications in image processing 
and robotics, learning from feedback has not been 
used in order to update and improve costs of actions 
that are expressed as a function of time. So, an 
approach is needed for the continuous improvement 
of a proactive event-driven system in terms of the 
cost information that it handles, no matter which 
decision method it uses.  

For removing the noise from sensors and having 
data closer to the real one, a Kalman Filter can be 
used. Kalman Filters have been widely used for 
removing noise in applications such as voltage 
measurement, object tracking, navigation and 
computer vision applications. Moreover, there are 
some applications of Kalman Filters in prognosis of 
manufacturing equipment (Sai Kiran et al., 2013). 
However, a Kalman Filter is only able to provide the 
corrected data based on the sensor measurements 
and not to extract an estimation of the function that 
these data follow. Curve fitting has been widely used 
for extracting the linear, polynomial or exponential 
function that a series of data follow and  it can be 
combined with extrapolation. However, when curve 
fitting and extrapolation are applied to highly noisy 
data, the level of confidence about the result is low, 

since there is high uncertainty in both the actual 
value of the measurement and the prediction that 
extrapolation produces. 

We argue that Kalman Filter, Curve Fitting and 
extrapolation can be synergistically combined in 
order to provide Sensor-Enabled Feedback (SEF) to 
the decision making algorithms of a proactive event-
driven DSS about the actual cost functions that are 
taken into account for the business performance 
optimization and the provision of recommendations. 
Although there are some research works proposing 
such a combination, they address different problems 
and in a different context (Sai Kiran et al., 2013), 
while they assume the availability of historical data 
or extensive domain knowledge (Yunfeng 2013).  

2.2 Kalman Filter 

Kalman Filter is an algorithm that uses a series of 
measurements observed over time, containing 
statistical noise and other inaccuracies in order to 
provide estimations about the current values 
(Kalman 1960). A Kalman filter is an optimal and 
recursive estimator since it infers parameters of 
interest from inaccurate observations as they arrive. 
Moreover, it provides reliable results and is suitable 
for online / real-time processing (Ertürk 2002). It is 
suitable for linear systems, while, in cases of highly 
non-linear systems, the Unscented Kalman Filter is 
an accurate estimator (Kandepu et al., 2008). 
Kalman Filter can be used for either uniform or non-
uniform sampling.  

2.3 Curve Fitting and Extrapolation 

Curve fitting is a numerical process that is used to 
represent a set of experimentally measured (or 
estimated) data points by some hypothetic analytical 
functions (Vohnout 2003). Curve fitting can be 
applied in several types of functions, e.g. linear (first 
degree polynomial), polynomial, exponential. A 
well-known curve fitting technique for linear 
functions is the Linear Regression (Montgomery et 
al., 2012). In the general form, for polynomial 
functions, a widely used technique is Levenberg–
Marquardt algorithm (Lourakis 2005). For 
exponential functions, a useful algorithm is Nelder-
Mead algorithm (Bűrmen 2006). Extrapolation 
refers to the use of a fitted curve beyond the range of 
the observed data and is subject to a degree of 
uncertainty (Brezinski and Zaglia, 2013). 
Extrapolation is implemented based on the curve 
fitting results. Curve fitting and extrapolation can be 
applied dynamically in a way that their output is 
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updated in real-time as long as new data are gathered 
from sensors. 

3 OUR APPROACH  

The overall approach for learning cost functions 
from SEF for the continuous improvement of 
proactive event-driven DSS is shown in Figure 1. 
The proactive event-driven DSS provides a 
recommendation about the optimal action and the 
optimal time for its implementation on the basis of a 
prediction of a future undesired event, so that the 
utility function is maximised (Engel et al., 2012). 
For this reason, the decision making algorithms 
embedded in the system take into account the 
prediction but also domain knowledge, such as the 
costs of actions as a function of time. The specific 
algorithms used are not described here for brevity 
but can be found in Bousdekis et al. (2015).  

Cost functions are provided typically by domain 
experts during the configuration of the system. In the 
case of manufacturing, the total cost function is 
typically an  aggregation of different cost 
components such as labour cost, cost due to 
downtime, cost due to scrapped parts, cost due to 
warranty claims, cost of spare parts, etc. (Amorim-
Melo et al., 2014). During the implementation of the 
action, data regarding the cost functions can be 
collected from different sensors (hardware, 
software-e.g. ERP production plan- or human 
sensors); their sampling may vary from the one cost 
component to the other, while each cost component 
may follow a different type of function (e.g. fixed, 
linear, polynomial, exponential). The type of cost 
functions may be affected either by the cost model 
itself (e.g. labour cost is a linear function which 

corresponds to a pay rate of X euros per hour) or by 
a business process that causes a cost increase (e.g. 
the number of defects per unit time affects the cost 
function due to scrapped parts). 

The process of learning cost functions from 
feedback is shown in Figure 2. The figure provides a 
more detailed explanation of the “Learning Cost 
Functions from Feedback” block of Figure 1. For 
each cost component, sensors generate noisy data 
with a specific frequency either with uniform or with 
non-uniform sampling. These noisy data include the 
input of the Kalman Filter which removes the noise 
and provides estimation about the current state (the 
real current value of a cost component). In cases of 
fixed and linear cost functions, the linear Kalman 
Filter is used, while, for polynomial and exponential 
cost functions, the Unscented Kalman Filter is used 
(Kandepu et al., 2008). The Kalman Filter’s output 
is provided as input to Curve Fitting, which is 
applied during the implementation of the action and 
is updated after every measurement. In case of fixed 
and linear cost function, a linear regression 
algorithm can be applied. In case of polynomial cost 
function, a Levenberg–Marquardt algorithm can be 
applied, while in case of exponential one, a Nelder-
Mead algorithm is suitable. The type of function has 
been inserted into the system during its 
configuration. Furthermore, at each measurement 
time step, extrapolation is applied on the function 
estimated by Curve Fitting in order to estimate the 
future state of the system (i.e. future evolution of 
cost function) until a pre-defined threshold. This 
threshold can deal with the level of cost (e.g. the 
action is going to stop in case of unpredictably high 
costs, over a cost threshold) or the period of time (e.g. 
the action is going to stop after a specific period of 
time passes) or an average value of either cost or time.  

 
Figure 1: Overall Approach. 
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The process for learning cost functions is an 
iterative process which takes place each time sensor 
measurements exist. The user is informed online 
about the estimated cost of action during its 
implementation as shown in Figure 1. So, the user 
becomes aware of the actual cost of the action and 
its evolution until the end of the action. After the 
implementation of the action, the updated cost 
function of this action feeds into the proactive event-
driven DSS in order to be used in the next 
recommendation in which this action is involved. 

 
Figure 2: The process for learning cost functions from 
feedback. 

4 IMPLEMENTATION OF OUR 
APPROACH 

4.1 Application in a Real Industrial 
Scenario 

We validated our approach in a manufacturing 
scenario in the area of production of automotive 
lighting equipment. The production process includes 
the production of the headlamps’ components. These 
processes gather many data through embedded 
quality assessment equipment using sensors and 
measuring devices. A proactive event-driven DSS 
embedding various decision methods would be able 
to be developed based on a relevant architecture in 
order to provide proactive recommendations 
(Bousdekis et al., 2015). The proposed approach 
could be coupled with such a proactive event-driven 
DSS so that: (i) the user is informed online about the 
estimated actual and future cost of action during its 
implementation, and (ii) the updated cost function of 

the specific action is used in the next recommendation 
in which this action is involved. However, the cost 
functions of actions that are taken into account for the 
provision of recommendations are inserted in the 
system only once, during the configuration stage 
(Bousdekis et al., 2015) and the sensor measuring the 
scrapped parts generates noisy data.  

In the current scenario, there are two alternative 
actions that can be recommended: the re-
configuration of the moulding machine during its 
function (which results in higher scrap rate) or the 
same action with downtime. The decision method of 
the system calculates that the cost of production loss 
due to downtime will be higher than the cost of 
scrapped parts during moulding machine’s function. 
So, the “re-configuration of the moulding machine 
during its function” is the action that is 
recommended along with the optimal time for its 
implementation. This action may cause a 
malfunction of the moulding machine which can 
lead to an increase of scrapped parts during the 
implementation. So, in this case, one cost component 
exists: the cost due to the production of scrapped parts 
when an action is implemented. The cost due to the 
production of scrapped parts is represented by a linear 
function. Each scrapped part has a cost of 100 € with 
a constant rate at each time step equal to 1 scrapped 
part per minute, as shown in Equation 1.  

Cost Function = 100 * number of scrapped 
parts * t (1)

So, in this case, the noise exists in the number of 
scrapped parts that the sensor measures during the 
implementation of the action. Each time a part is 
produced, the sensor sends a signal about whether it 
is good or scrapped. When there is a signal of a 
scrapped part, the cost of a unit part is added to the 
cost till that time. The production rate of the 
machine does not change, so there is a uniform 
sampling since each time a part is produced, a 
measurement is taken by a sensor. Based on domain 
knowledge, the action will last approximately 2 
hours. The function that has been given during the 
configuration of the system is shown in Equation 2:  

Cost = 100 * t (2)
Based on technical specifications and domain 

knowledge, the sensor noise covariance for this 
setup is equal to 6, therefore the cost noise 
covariance will be:  

Cost Noise Covariance = 6 * 100 € (3)
This has been calculated according to the formula:  

Cost Noise Covariance = Sensor Noise 
Covariance * unit cost (4)
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The formulation of Kalman Filter is similar to a 
position-constant velocity problem (Won et al., 
2010), but instead of position and velocity, there is 
cost and rate of cost change. So, the equations of 
Kalman Filter are modified accordingly. The 
proposed approach was implemented in Python 
programming language. Figure 3 shows the 
evolution of cost according to the noisy 
measurements and according to the corrected 
measurements after the implementation of Kalman 
Filter. Since Kalman Filter cannot extract the 
function, our approach applies dynamic curve fitting 
in each iteration and in the final result. So, in this 
example, linear regression is applied on the basis of 
the points extracted from Kalman. The final result is 
shown in Figure 4, where the output of the Kalman 
Filter are data that approach a linear function and is 
close to the line that linear regression creates. 

The output of linear regression in the corrected 
data is shown in Table 1. The equation is derived 
from the results of Linear Regression about the slope 
and the intercept (Montgomery et al., 2012). In this 
example, R2 is high and approaches 1, so the data 
are fitted almost perfectly to the regression line. P-
value approaches 0, which means that the null 
hypothesis can be rejected. Standard error is 
0.225229389344, so the distance that the values fall 
from the regression line is relatively low. The 
sample size is equal to 120 as measurements are 
taken every minute for 2 hours. 

The final results, after the implementation of the 
action, feeds into the proactive event-driven DSS 
and updates the cost function of the specific action 
which will be used in the next recommendation in 
which this action is involved. At the same time, the 
user is informed online about the estimated cost of 
action during its implementation. This means that he 
/ she is able to see the actual cost and its evolution 
until now (through dynamic curve fitting) as well as 
the estimated cost until a time threshold which in 
this example is 2 hours (through extrapolation). 
Figure 5 shows the dynamic curve fitting and 
extrapolation technique at a specific time step of the 
action implementation. 

Since the objective is to extract the actual cost 
function, we compare the results of our approach 
with applying linear regression directly on the basis 
of noisy data. This result is shown in Figure 6. The 
output of linear regression in the corrected data is 
shown in Table 2. R2 is lower than the one in our 
approach, so the data are fitted worse to the regression 
line. P-value also approaches 0, but is slightly higher 
than the one in our approach. Standard error is 
1.79130743211, so the distance that the values fall 

from the regression line is higher. The linear 
regression is applied in the same sample size. 

 
Figure 3: Cost evolution during the implementation of the 
action. 

Table 1: Output of curve fitting (linear regression) in the 
corrected data for the scenario. 

Equation 98.55 * t + 37.64 
R2 0.999384074129 

P value 2.80148856911e-191 
Standard Error 0.225229389344 

Sample size 120 

 
Figure 4: Curve Fitting (Linear Regression) on the basis of 
corrected data. 

 
Figure 5: Dynamic Curve Fitting and Extrapolation 

 
Figure 6: Curve Fitting (Linear Regression) on the basis of 
noisy data. 

ICEIS 2016 - 18th International Conference on Enterprise Information Systems

170



Table 2: Output of linear regression in the noisy data for 
the scenario. 

Equation 96.45 * t + 63.34 
R2 0.961777688176 

P value 1.69862696613e-85 
Standard Error 1.79130743211 

Sample size 120 

4.2 Experimental Results 

4.2.1 Indicative Simulation Experiment 

In order to validate the effectiveness of our 
approach, we conducted simulations with various 
noise levels and linear functions and we compared 
the Mean Squared Error (MSE) and the Mean 
Absolute Error (MAE) (Willmott, and Matsuura, 
2005). The results show that our approach works 
much better than applying linear regression on the 
basis of noisy data. In other words, the resulting cost 
function of our approach is closer to the true one 
than the one of the linear regression applied to noisy 
data. Figure 7 shows the results of one of the 
simulation experiments. It shows the true function, 
the measured noisy data and the data after the 
implementation of Kalman Filter. 

 
Figure 7: Result of a simulation experiment. 

We applied Linear Regression to all the three 
functions and the results for each one are shown in 
Figure 8, in Figure 9 and in Figure 10. The output 
results of Linear Regression are shown in Table 3. 
Obviously, in the true function all the data fit  
 

 
Figure 8: Curve Fitting (Linear Regression) on the basis of 
the true data for the simulation example. 

 
Figure 9: Curve Fitting (Linear Regression) on the basis of 
the noisy data for the simulation example. 

 
Figure 10: Curve Fitting (Linear Regression) on the basis 
of corrected data for the simulation example. 

Table 3: Output results of Linear Regression in the 
simulation example. 

 True Measured Kalman 
Equation 100 * t 98.65 * t + 

78.76 
98.66 * t - 22.79 

R2 1.0 0.973573107 0.999678 
P value 0.0 5.92e-95 6.407e-208 

Standard 
Error 

0.0 1.496 0.1629 

Sample size 120 120 120 

Table 4: Comparison of MSE and MAE. 

 Measured Kalman 
MSE 433872.211071 12492.8947745 
MAE 542.908521255 85.4088944024 

perfectly to the regression line. The application of 
Linear Regression on the basis of the data processed 
by Kalman Filter gives better results. The plot data 
are less scattered and more accurate due to the 
application of Kalman Filter. This can also be 
concluded by Table 4, which shows the values of 
MSE and MAE of the two comparing approaches. 

4.2.2 Overview of Experimental Results 

In the simulation experiments, we applied Curve 
Fitting on the basis of the measured noisy data and 
on the basis of the corrected data (after the 
implementation of Kalman Filter) for various Cost 
Noise Covariances and Cost Functions. The results 
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show that our approach provides more accurate 
results. This was concluded by comparing the 
resulting equations of the two approaches with the 
true one. Thus, MSE and MAE were compared for 
different Cost Functions and Cost Noise 
Covariances, as shown in Figure 11 and in Figure 12 
respectively. MSE and MAE of our approach is 
always much lower for various Cost Noise 
Covariances and for different Cost Functions. 

5 CONCLUSIONS AND FUTURE 
WORK 

We propose an approach for learning cost functions 

from SEF for the continuous improvement of 
proactive event-driven decision making. We suggest 
using Kalman Filter to update online cost functions 
of actions, with the aim to improve the parameters 
taken into account for generating recommendations 
and thus, the recommendations themselves. More 
specifically, our approach utilizes the capabilities of 
Kalman Filter for removing noise from sensor data, 
dynamic curve fitting on the basis of the corrected 
data for extracting at each time step the cost function 
and extrapolation on the basis of the corrected data 
for predicting the evolution of cost until the end of 
the implementation of the recommended action in an 
accurate and reliable way. The SEF is received 
during  the   recommended   action   implementation.   

 
Figure 11: MSE for different Cost Functions and Cost Noise Covariances. 

 
Figure 12: MAE for different Cost Functions and Cost Noise Covariances. 
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The role of SEF is twofold: (i) The user is informed 
online about the estimated cost of action during its 
implementation, and (ii) The updated cost function 
of the specific action is used in the next 
recommendation in which this action is involved. 
The proposed approach was tested in a real 
industrial environment. In addition, simulation 
experiments were conducted in order to prove its 
effectiveness. Curve Fitting and extrapolation on 
less noisy data (after the implementation of Kalman 
Filter) gives more reliable results comparing to its 
application to the sensor noisy measurements. In 
other words, applying curve fitting in more accurate 
and less noisy data can give a better insight about 
the function that these data follow and can provide 
more reliable predictions about the future values 
through extrapolation. Regarding our future work, 
we aim to add more cost models and validate our 
approach for different functions for both uniform 
and non-uniform sampling. Cost components may be 
gathered from different sensors in a different 
frequency, while some of them may conduct 
uniform sampling and others non-uniform sampling. 
We aim to examine the combination of all these 
sensors and the aggregation of the total cost at each 
time step. 
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