
Energy Cost Minimization with Risk Rate Constraint for Internet 
Data Center in Deregulated Electricity Markets 

Zhongjin Li1, Jidong Ge1, Chuanyi Li1, Hongji Yang2, Haiyang Hu3 and Bin Luo1 
1State Key Laboratory for Novel Software Technology, Software Institute, Nanjing University, Nanjing, China 

2Centre for Creative Computing (CCC), Bath Spa University, England, U.K. 
3School of Computer, Hangzhou Dianzi University, Hangzhou, China 

 

Keywords: Internet Data Center, Risk Rate Constraint, Energy Cost Minimization, Deregulated Electricity Markets. 

Abstract: With the large-scale development of internet data center (IDC), the energy cost is increasing significantly and 
has attracted a great deal of attention. Moreover, existing scheduling optimization methods for cloud 
computing applications disregard the security services. In this paper, we propose a long-term energy cost 
minimization (ECM) algorithm with risk rate constraint for an internet data center in deregulated electricity 
markets. First, we formulate the stochastic optimization problem taking the temporal diversity of electricity 
price and risk rate constraint into account. Then, an operation algorithm is designed to solve the problem by 
Lyapunov optimization framework, which offers provable energy cost and delay guarantees. Extensive 
evaluation experiments based on the real-life electricity price demonstrate the effectiveness of proposed 
algorithm.  

1 INTRODUCTION 

Cloud computing supported by the infrastructure 
called internet data center (IDC) is a large-scale 
distributed computing platform to meet the 
skyrocketing demand of online applications and 
services. Recently, a cloud and non-cloud storage is 
deployed for biomedical scientists to conduct the 
performance comparisons, which show that the cloud 
system outperforms the non-cloud system on 
execution time, consistency, efficiency improvement 
(Chang and Wills, 2015). As an IDC typically 
comprises thousands of servers, energy consumption 
or energy cost is one of the critical problems.  

Recently, IDC operators have developed many 
scheduling strategies to minimize the energy cost by 
exploiting the electricity price dynamics across 
geographically distributed regions (Rao et al., 2010, 
2011). In the real life, electricity price manifests not 
only spatial diversity but also temporal diversity. For 
instance, in North America, due to the different power 
generation profiles, many electricity markets have 
been deregulated in which the electricity prices are 
not constant but vary on an hourly or 15-min basis 
(Shao et al., 2014).  

Besides energy consumption and energy cost, 
security is another critical concern for IDC on a wide 

range of applications. Nowadays, several recent 
works tackle the security problem on clusters (Xie 
and Qin, 2006), grid computing (Song et al., 2006), 
heterogeneous distributed system (Xie and Qin, 2007; 
Tang et al., 2011) and cloud computing (Zeng et al., 
2015; Chang, 2014, 2015; Chang et al., 2015). 
Unfortunately, since distributed computing is built to 
execute a broad spectrum of unverified user-
implemented applications by a vast number of users, 
both applications and users can be sources of security 
threats to computing environments (Yurcik et al., 
2004). However, many existing cloud computing 
environments have not employed any security 
mechanism to counter the security threats (Ali et al., 
2015).  

In this paper, we propose an energy cost 
minimization (ECM) algorithm for an IDC in an 
environment where the electricity price exhibits 
temporal diversity and the workload is dynamic. The 
security services are incorporated into the tasks 
arrived, and the average risk rate constraint of all 
executed tasks must be satisfied. The energy cost 
minimization framework is shown in Figure 1. First, 
all tasks arrived in IDC are enqueued into a FIFO 
queue. Then, the workload shaping method is 
employed to measure the workload based on the task 
itself and security services. Finally, we apply the  
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Figure 1: The energy cost minimization framework. 

ECM algorithm which based on the Lyapunov 
optimization framework to solve the problem. In 
ECM algorithm, our purpose is to minimize energy 
cost by deciding: 1) how many tasks should be 
processed in each time slot; 2) which security levels 
should be selected for these tasks; and 3) how many 
resources should be provided by IDC. 

The main contributions of this paper can be 
summarized as follows: 

 We present an energy cost minimization 
algorithm for IDC while incorporating the 
security services of application. Furthermore, 
the time average risk rate constraint for the 
queue system is satisfied.  

 We exploit the temporal diversity of electricity 
price to minimize the energy cost in 
deregulated electricity markets by scheduling 
workload in a temporal context.  

 We design a polynomial time complexity 
algorithm to solve the problem based on 
Lyapunov optimization technique, which can 
facilitate energy cost versus delay trade-off for 
internet data center.  

The rest of this paper is organized as follows. 
Section 2 summarizes the related work. Section 3 
describes some system models and problem 
formulation. Section 4 introduces the algorithm 
design and performance analysis. The performance 
evaluation approaches and results are conducted in 
Section 5. Section 6 concludes this paper and 
envisages our future work. 

2 RELATED WORK 

Security is one of the critical problems in distributed 
computing environment. However, only few groups 
of researchers investigate the security-driven 
scheduling policy from different points of view. Song 
et al. (2006) develop three risk-resilient strategies and 
a genetic algorithm to provide security assurance in 
grid job scheduling. Xie and Qin (2006, 2007) study 
a family of dynamic security-aware scheduling 
algorithms for homogeneous clusters and 
heterogeneous distributed systems. Tang et al. (2011) 
design a security-driven scheduling architecture that 
can dynamically measure the trust level of each node. 

Zeng et al. (2015) introduce a security-aware and 
budget-aware workflow scheduling strategy (SABA), 
to provide customers with shorter makespan and 
security services. Chang (2014) uses business 
intelligence as a service in the cloud (BIaaS) to permit 
organizations to break the constraints of the desktop. 
Then, a revised and improved technique, 
organizational sustainability modelling (OSM), is 
proposed to consider the application of capital asset 
price modelling (Chang et al., 2015). 

For IDC service providers, high energy 
consumption means enormous electricity cost 
budgets. Qureshi et al. (2009) investigate the feature 
of electricity price in deregulated electricity markets, 
i.e., electricity prices exhibit both temporal and 
spatial variations. Rao et al. (2010) study the problem 
of minimizing the total electricity cost under multiple 
electricity markets environment. Shao et al. (2014) 
take the transmission delay into their design 
consideration and formulate a mixed-integer 
nonlinear programming (MINLP) problem with 
coupled constraint. Luo et al. (2014) study an 
important energy management problem and propose 
a novel two-stage design and the eco-IDC (energy 
cost optimization-IDC) algorithm to exploit the 
temporal diversity of electricity price. Yu et al. (2014) 
propose a risk-constrained decision framework to 
achieve the optimal tradeoff between expected energy 
cost and operation risk. 

A number of recent works introduce new aspects 
in better usage of power in data centers.  Urgaonkar 
et al. (2011) investigate cost reduction opportunities 
that arise by the use of uninterrupted power supply 
(UPS) units as energy storage devices. Yu et al. (2015) 
minimize energy cost by scheduling workload and 
battery jointly, which can fully exploit the temporal 
diversity of electricity price. Guo et al. (2013) 
develop an online algorithm to minimize energy cost 
with batteries, which can utilize the temporal 
diversity of electricity price. Liu et al. (2012) consider 
server management together with cooling and usage of 
renewable energy. Then, they investigate the problem 
of minimizing the long-term energy cost with the 
uncertainties in electricity price, workload, renewable 
energy generation, and power outage state (Liu et al., 
2015). 

However, both energy cost and security are 
critical for IDC. Different from the above works, our 
research investigates the energy cost minimization 
with risk rate constraint for internet data center in 
deregulated electricity markets.  
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3 MODELS AND PROBLEM 
FORMULATION 

In this section, we model an IDC system and 
formulate a long-term energy cost optimization 
problem. For ease of understanding, we summarize 
the major notations and their meanings used in this 
paper in Table 1. 

3.1 IDC Resource Capacity 

We consider a discrete-time system evolving over a 
sequence of equal-length time slots. The IDC 
resources are quantified in unit of basic resource unit 
(Luo et al., 2014). A basic resource unit may include 
a number of microprocessor cores, an amount of 
memory and so on. Thus, an IDC resource capacity is 
in unit of basic resource unit· time slot. When an IDC 
receiving service requests, it needs to allocate a 
certain amount of resource )(tR for them according to 

the workload requirement in time slot t . We also 

assume that there exists minR and maxR such that

maxmin )( RtRR ≤≤  and the scaling time of which can 

be negligible related to unit time slot.  
Generally, an IDC task can be generally classified 

as delay-sensitive, or delay-tolerant (Luo et al., 2014). 
In this paper, we focus on the tasks in delay-tolerant 
requests which include compute-intensive or data-
intensive jobs, such as scientific computing and data 
intensive applications. For example, it is indicated 
that Google often has a large number of “ long 
duration” jobs running on back-end servers (Mishra 
et al., 2010).  

3.2 Security Model 

Since snooping, alteration, and spoofing are three 
common attacks in cloud environments, we consider 
three security services (i.e., authentication service, 
integrity service and confidentiality service) to guard 
against the common threats (Xie and Qin, 2006).  

We consider that each task may require three 
security services with various security levels. For 
example, isl is the set of security levels of task it

provided by IDC operator, which can be specified as 
a K-vector ),...,...,,( 21 K

i
k
iiii slslslslsl = , where k

isl

represents the security level of thk  security service 

and 3=K . An example of security levels of 
cryptographic algorithm for confidentiality is shown 
in Table 2. For the sake of simplicity, we use letters 

a, g and c to represent the authentication, integrity and 
confidentiality respectively. 

Table 1: Notations. 

Symbol Definition 
)(tR  Resource capacity in time slot t ; 

isl  The set of security levels of task it ; 
k
isl  Security level of thk security service; 
kSL  The set of security service; 
)(ta  The number of tasks arriving at IDC; 
)(tb  The number of tasks is processed ; 
k

iSW  Security workload; 

iSW  Total security workload of task it ; 

iEW  Execution workload of task it ; 

iW  Total workload of task it ; 
)( k

ii slr  Risk rate of the thk security service; 
)(tri  The risk rate of task it in time slot t ; 
)(tu  Average risk rate of tasks; 

λ  Average task arrival rate; 
)(tC  Energy cost of IDC in time slot t ; 
)(tp  Electricity price in time slot t ; 
)(tQ  Queue backlog in time slot t ; 
)(tZ  Virtual queue; 
))(( tL Θ  Lyapunov function; 
))(( tΘΔ  Conditional Lyapunov drift. 

 Table 2: Cryptographic Algorithm for Confidentiality. 

Cryptographic 
Algorithms 

csl : Security 
Level 

Processing 
Rate: KB/ms 

SEAL 0.08 168.75 
RC4 0.14 96.43 

Blowfish 0.36 37.50 
Knufu/Khafre 0.40 33.75 

RC5 0.46 29.35 
Rijndael 0.64 21.09 

DES 0.90 15.00 
IDEA 1.00 13.50 

3.3 Task Arrival and Workload 
Shaping 

We consider the IDC which has one service queue for 
delay-tolerant tasks and denote the corresponding 
queue as )(tQ which is assumed to operate in a 

discrete time-slot manner, i.e., ,...2,1,0=t , where
)(tQ represents the queue backlog. In every time slot

t , we denote the amount of newly arrived tasks as

)(ta . The variable )(ta is the stochastic arrival with

λ=)}({ taE , and it is assumed to be non-negative. 
This process is assumed to be independent of the 
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current amount of unfinished tasks in the queue 
system and has finite second moment. Moreover, 
suppose that there exists a maximum maxA such that

maxAta ≤)( for all time slot t . All arriving tasks, 

which are computation-intensive, are queued into the 
FIFO queue that is shown in Figure 1, and CPU 
resource is the bottleneck resource. For simplicity, we 
assume that all tasks arrive at the end of each time 
slot. 

For each task arriving at IDC, it needs security 
services to ensure its successful execution. The 
security service also introduces some time overhead 
to the computing systems. The definitions of time 
overhead of thk security service can be found in 

detail in (Xie and Qin, 2006, 2008). Different from 
the time overhead, each security service is inverted 
into the security workload which is denoted by: 
 

},{),,( cgkdslFSW k
i

k
i

kk
i ∈=  (1)

 

where symbol k
iSW represents the security workload 

(in basic resource unit) of thk security service and
k
id is the data of task it to be protected. The function

),( ⋅⋅kF can be induced from (Xie and Qin, 2006), and 

we can easily get the following property: 
Property 1. The function }),{)(,( cgkF k ∈⋅⋅ should 

satisfy the following conditions: 

 If 0=k
isl or 0=k

id , then           0)0,( =k
i

k slF

or 0),0( =k
i

k dF ; 

 If kk slsl 21 = and kk dd 21 < , then 

),(),( 2211
kkkkkk dslFdslF < ; 

 If kk dd 21 = and kk slsl 21 < , then 

),(),( 2211
kkkkkk dslFdslF < ; 

The three conditions reflect the security service 
workload associated with security levels and the 
protected data. However, the security overhead of each 
authentication service is a constant value which only 
depends on the service type. Hence, the security 
workload of authentication service is computed by Eq. 
(2). 
 

}{),( akslFSW k
i

kk
i ∈=  (2)

We can also have the same property that
0)0( =aF and )()( 21

aaaa slFslF < when aa slsl 21 < . 

Then, the total security workload of task it is 

represented by Eq. (3). 

 ∈
=

},,{ cgak

k
ii SWSW  (3)

Finally, the workload of task it is denoted as follows:  

iii SWEWW +=  (4)

where iEW is the execution workload of task it . So, 

different from the existing work, the workload of a 
task includes two components. 

3.4 Time-average Risk Rate 

In this risk rate model, we derive the risk probability 
to quantitatively analyze the risk rate for a task it with 

different security levels. We assume that the risk rate 
is a function of security levels and the distribution of 
the risk for any fixed time interval follows a Poisson 
probability distribution. The risk rate model is used 
for illustration purpose only. Thus, the task’s risk rate 
of the thk security service can be presented by an 

exponential distribution as follows (Xie and Qin, 
2007; Tang et al., 2011): 

},,{)),1(exp(1)( cgakslslr k
i

kk
ii ∈−−−= λ  (5)

In IDC, the risk coefficient kλ is different from 

one to another. The negative exponent indicates that 
failure probability grows with the difference k

isl−1 , 

where we assume that the maximum security level of 
each security service is 1 (e.g. see Table 2). The risk 
rate of task it in time slot t can be obtained below by 

considering all the security services. Consequently, 
we have the following Eq. (6). 

∏ ∈
−−=

},,{
))(1(1)(

cgak

k
iii slrtr  (6)

Let )(tb represent the amount of tasks processed 

by IDC in time slot t , and ttbBmax ∀≥ ),( denotes the 

maximum number of tasks that can be served in a time 
slot. As the risk rate of each task is only related to the 
security levels, we assume that all tasks served in time 
slot t have the same security services, and hence the 

same of risk rate. Thus, we have 

)}(,...,2,1{),()( tbitrtri ∈=  (7)

This is the fairness for these tasks served in the same 
time slot t . Then, we define the average risk rate u  

of the IDC as follows: 

)()(
)(

1
lim

1

01

0

ττ
τ τ

τ

rb
b

u
t

tt
⋅= 


−

=−

=
∞→

 (8)
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where  −

=

1

0
)(

t
bτ τ and )()(

1

0
τττ rb

t ⋅ −

=
are the total 

number of tasks and risk rates respectively. 
Nevertheless, when ∞→t , the time-average arrival 

rate is equal to the time-average service rate, which is 
represented by Eq. (9). 

 −

=

−

= ∞→∞→
=== 1

0

1

0
)(

1
lim)(

1
lim

tt
a

t
ab

t
b

tt ττ ττ  (9)

We can also know that λ== ataE )}({ . Then, the 
Eq. (8) can be rewritten as follows. 

)()(
11

lim
1

0
ττ

λτ rb
t

u
t

t
⋅⋅=  −

=∞→
 (10)

Denote the average risk rate of tasks in time slot t as

)()(/1)( trtbtu ⋅⋅= λ , and then u represents the time-

average risk rate of )(tu . 

3.5 Energy Cost Model 

At time slot t , IDC operator provides )(tR resource 

capacity for the current queued tasks according to the 
tasks workloads. The power requirement of resource 
capacity is denoted as ))(( tRP . Symbol )(⋅P is the 

power function associated with resource capacity. We 
assume that the power function is known to IDC, and 
there exists a maximum value maxP such that

maxPtRP ≤))(( for all time slot t . Such power 

consumption will in turn incur some monetary cost 
for the data center of the form “power × price”. To 
also model the fact that each IDC may face different 
electricity prices at time slot t in deregulated 

electricity markets, we denote it as )(tp . We assume 

that )(tp is independent in every time slot t and takes 

a value in the finite state space. Then, the energy cost
)(tC of IDC in time slot t is computed by Eq. (11). 

)())(()( tptRPtC ⋅=  (11)

We define maxp as the maximum electricity price 

that the IDC can experience. It is easy to see that if 
we have maxmaxmax pPC ⋅= , then maxCtC ≤)( for all t . 

3.6 Problem Formulation 

In this paper, we are interested in minimizing the 
time-average expected energy cost which is 
represented as follows. 

})({
1

suplim
1

0 −

=∞→
= t

CE
t

C
t τ τ  (12)

 

The electricity price )(tp is changing in each time 

slot. If the IDC processes all the tasks in the queue
)(tQ in spite of the price, it will incur high energy cost 

but low service delay. On the contrary, if the IDC 
serve the tasks only when the electricity price is low, 
then the queue backlog )(tQ will increase rapidly, 

consequently leading to large unacceptable delay. 
Hence, there is a cost-delay tradeoff in conducting the 
tasks execution. To balance such a tradeoff, we 
require the queue to be stable in the time average 
sense, i.e., 

∞<=  −

=∞→

1

0
)}({

1
suplim

t
QE

t
Q

t
τ τ  (13)

where )(tQ represents the time-average queue 

backlog, and the queueing dynamics can be 
characterized by Eq. (14). 

)(]0),()([)1( tatbtQmaxtQ +−=+  (14)

Condition (14) implies that all tasks arriving at the 
queue in IDC will be processed in bounded time. A 
larger value Q means a longer delay for tasks. 

In order to ensure the security of all tasks, the 
time-average risk rate must subject to risk rate 
constraint, that is avuu ≤ , where avu represents a pre-

specified average risk rate constraint. In each time 
slot t , the IDC operator makes an online decision to 

minimize the energy cost under queue stability and 
time-average risk rate constraint. 

Minimize:    })({
1

suplim
1

0 −

=∞→
= t

CE
t

C
t τ τ  (15a)

Subject to:  ∞<Q  (15b)
avuu ≤  (15c)

],[)(,)(
)(

1 maxmin

tb

i i RRtRtRW ∈≤ =
 (15d)

},,{, cgakSLsl kk
i ∈∈  (15e)

)}(,...,2,1,0{)( tntb ∈  (15f)

Inequality (15d) means that the resource capacity 
of IDC in time slot t should be equal or more than the 

task workload needed to be processed. For Eq. (15e), 
there are only limited levels for each security service. 
Let )(tn represent the number of tasks of queue )(tQ

in time slot t , which is the maximum number of tasks 

that can be serviced by IDC. Therefore, parameter 
)(tb has )1)(( +tn choices for the FIFO queue system 

in time slot t .  

Security services are used to prevent the tasks 
from tampering maliciously and accessing illegally. 
However, if users apply better security services for 
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tasks, it will incur longer processing time, which will 
also result in more cost and larger delay. Hence, users 
can select proper risk rate constraint for all the tasks 
execution. 

4 ALGORITHM DESIGN AND 
PERFORMANCE ANALYSIS 

In this section, we design an ECM algorithm along 
with queue stability and average risk rate constraint 
based on the Lyapunov optimization framework 
(Georgiadis et al., 2006). This framework allows us 
to include energy cost into the Lyapunov drift 
analysis, a well-known technique for designing stable 
control algorithms. We now highlight the key steps in 
deriving ECM and then characterize its performance. 

4.1 Algorithm Design 

To ensure that the constraint Eq. (15c) is satisfied, we 
use a virtual queue )(tZ with update equation as 

follows: 

}0,)()({)1( avututZmaxtZ −+=+  (16)

Specifically, from Eq. (16) it is clear that 

av

av

ututZ

ututZmaxtZ

−+≥

−+=+

)()(

}0,)()({)1(
 (17)

and hence  

 −

=
≥+− 1

0
)(

1)0()( tav u
t

u
t

ZtZ
τ τ  (18)

Taking expectations of both sides and using 0)0( =Z  

yields 

uu
t

tZE av ≥+)}({  (19)

It follows from Eq. (19) that if 0/))(( →ttZE , then
avuu ≤ . Stabilizing this virtual queue ensures that the 

time-average value of )(tu is less than or equal to the 

time average risk rate constraint, which ensures Eq. 
(15c) (Neely, 2010). 

Next, we first define the Lyapunov function, 
))(( tL Θ , which represent a scalar metric of queue 

backlog for reflecting delays of tasks, as follows: 

])()([
2

1
)(

2

1
))(( 222 tZtQttL +=Θ=Θ  (20)

where )(tΘ is defined as )](),([)( tZtQt =Θ  which can  

evolve over slot ,...}2,1,0{∈t , and ttL ∀≥ ,0))((Θ . To 

keep the system stable by persistently pushing the 
Lyapunov function towards a lower congestion state, 
we introduce the Lyapunov drift ))(( tΘΔ as follows: 

)}(|))(())1(({))(( ttLtLEt ΘΘΘΘ −+=Δ  (21)

Eq. (21) is the expected change in the Lyapunov 
function over one time slot, given that the current 
state in time slot t is )(tΘ . Following the Lyapunov 

optimization approach (Neely, 2010), we incorporate 
the expected energy cost over one time slot, to both 
sides of Eq. (21), which leads to drift-plus-penalty 
term: )}(|)({))(( ttCΕVt ΘΘ ⋅+Δ , where control 
parameter 0>V that represents an important weight 

on how much the IDC operator emphasizes energy 
cost minimization. Such a control decision can be 
motivated as follows: we want to make ))(( tΘΔ  

small to push queue backlog towards a lower 
congestion state, but we also want to make

)}(|)({ ttCΕ Θ small so that we do not incur large 

energy cost expenditure. We thus decide according to 
the above weighted sum.  

Then, a key derivation step is to obtain an upper 
bound on this term. The following lemma defines 
such an upper bound for our case. 
Lemma 1. For any possible action under constraints 
(15b) - (15f) that can be implemented at slot t , we 

have 

)}(|)({)(

)}(|)()({)(

)}(|)({

)}(|)({))((

tutuEtZ

ttbtaEtQ

ttCΕVD

ttCΕVt

av Θ

Θ

Θ

ΘΘ

−⋅+

−⋅+
⋅+≤
⋅+Δ

 (22)

where 

)(,)1[(
2

1
)(

2

1 2222 avav
maxmax uumaxBAD −⋅++⋅=

 

(23)

Proof. According to Eq. (20), we have 

])()1([
2

1

])()1([
2

1
))(())1((

22

22

tZtZ

tQtQtLtL

−++

−+=−+ ΘΘ
 (24)

Then, using the fact that for any real number x , 
22])0,[( xxmax ≤ , we have 

)]()([)(2

)()()()1( 2222

tbtatQ

tbtatQtQ

−⋅+
+≤−+

 (25)

In the same way, we get: 
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])([)(2

))(()()1( 222

av

av

ututZ

ututZtZ

−⋅+

−≤−+
 (26)

Then, 

)}(|])({[)(

)}(|))({(
2

1

)}(|)]()({[)(

)}(|])()({[
2

1

)}(|))(())1(({))((

2

22

tutuEtZ

tutuE

ttbtaEtQ

ttbtaE

ttLtLEt

av

av

Θ

Θ

Θ

Θ

ΘΘΘΘ

−⋅+

−+

−⋅+

+≤

−+=Δ

 (27)

As maxAta ≤)( , maxBtb ≤)( , and 1)(0 ≤≤ tu , we have 

])(,)1[(
2

1
)(

2

1

)}(|))({(
2

1
)}(|])()({[

2

1

2222

222

avav
maxmax

av

uumaxBA

tutuEttbtaE

−++≤

−++ ΘΘ

 

(28) 

Then, we get 

)}(|)({)(

)}(|)()({)())((

tutuEtZ

ttbtaEtQDt
av Θ

ΘΘ

−⋅+

−⋅+≤Δ
 (29)

Now adding )}(|)({ ttCΕV Θ⋅ to both sides prove the 

lemma 1. 
Following the design principle of Lyapunov 

framework, the underlying objective is to minimize 
the upper bound of the drift-plus-penalty term. Rather 
than directly minimize drift-plus-penalty term every 
slot t , our strategy actually seeks to minimize the 

bound given in the right-hand-side of (22). This is 
done via the framework of opportunistically 
minimizing a conditional expectation. Then, our 
algorithm finally minimizes the R.H.S of Eq. (22) by 
minimizing the following simplified term: 

Minimize      

)()(
1

)(

)()()())((

)()()()()(

trtbtZ

tbtQtptRPV

tutZtbtQtCV

⋅⋅+

⋅−⋅⋅=
⋅+⋅−⋅

λ

 (30a)

Subject to      (15d), (15e) and (15f) (30b)

As )(tQ , )(tZ and )(tp can be observed at the 

beginning of every time slot t , there are only three 

variables in Eq. (30a), namely )(tb , )(tr and )(tR , 

respectively. Nevertheless, if we determine how 
many tasks to be processed and which security levels 
to be selected for these tasks in time slot t , that is if 

we determine the parameters )(tb and )(tr , the total 
workload of these tasks can be computed by Eq. (4). 
Then, we can calculate how many resources )(tR

should be provided by IDC. Finally, the value of Eq. 
(30a) can be got. 

Note that variable )(tb and )(tr are discrete and 

there are three authentication services, seven integrity 
services and eight confidentiality services in the real-
world applications (Xie and Qin, 2006). So, there are
k possibilities for risk rate )(tr in every time slot t , 

i.e. 984 ××=k . Furthermore, variable )(tb  only has

)1)(( +tn choices for the FIFO queue system in time 

slot t . Hence, we can use the enumeration method to 

minimize Eq. (30a) subjects to constraint (30b). 
The pseudo code of ECM algorithm is outlined in 

Figure 2. Note that all tasks have the same security 
services in time slot t . Therefore, for a fixed value

)}(,...,2,1,0{)( tntb ∈ in time slot t , we calculate all the 

security levels profile and then select the local 
optimal profile which can minimize the value of Eq. 
(30a) (lines 5-13). Then, we enumerate )1)(( +tn

possibilities for all the tasks in the queue system to 
get access to the global minimization energy cost 
(lines 3-18). Finally, the IDC operator processes tasks 
according to optimal number of tasks, security levels 
profile and required resource and updates the actual 
queue )1( +tQ and virtual queue )1( +tZ at the end of 

time slot t (lines 19-20). We can conclude that the 
time complexity of ECM algorithm by enumeration 
method is )(knO in time slot t , where )(tnn = , which 

is polynomial associated with )(tn in current queue

)(tQ . 
Considering a fixed V , if we do not want to 

process any task in time slot t , that is 0)( =tb , we 

have 0)( =tR , and then the expression of Eq. (30a) is 
zero. As we only minimize the Eq. (30a), the IDC 
operator executes the tasks when the value of Eq. 
(30a) is negative. It happens when either the 
electricity price )(tp is low, or the queue )(tQ is 

already congested in time slot t . Therefore, our ECM 

algorithm will process tasks in the following 
conditions: 1) when the electricity price )(tp is low 

enough, the IDC operator will catch the chance to 
execute more tasks with low risk rate; 2) when the 
queue )(tQ is congested, tasks must be finished to 

guarantee the queue stability. 

4.2 Performance Analysis 

The performance bounds of ECM algorithm are stated 
in the following theorem. 
Theorem 1. Assume that the task arrival rate λ is 
strictly within the network capacity region Λ, and the 
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ECM algorithm is applied at each time slot t . For any 

control parameter 0>V , it generates the time-

average energy cost C and queue backlog Q

satisfying that: 

V

D
CCE

t
C

t

t
+≤=  −

=∞→

*1

0
)}({

1
suplim τ τ  (31)

ε
ττ

*
1

0
)}({

1
suplim

VCD
QE

t
Q

t

t

+≤=  −

=∞→
 (32)

where D and ε are positive constants, and *C is the 

theoretical optimal time-average energy cost. 
Proof. Since the arrival process is strictly within the 
network capacity region, there exists one stationary 
randomized scheduling policy that can stabilize the 
queue (Neely, 2010), which satisfies the following 
properties: 

*)}({ CCE =τ  (33)

0})({ ≤− avuuE τ  (34)
εττ −≤− )}()({ baE  (35)

For any slot τ , by applying Eqs. (33), (34) and (35) 

to Eq. (22), we have: 

*)(

)}(|)({))((

CVQD

CΕV

⋅+⋅−≤

⋅+Δ

τε
τττ ΘΘ

 (36)

Taking the expectation of Eq. (36) with respect to the 
distribution of )(τQ and applying the iterative 

expectation law, we get 

*)}({

)}({))}(())1(({

CVQED

CEVLLE

⋅+⋅−≤

⋅+−+

τε
τττ ΘΘ

 (37)

Summing the series over all time slots }1,...,1,0{ −∈ tτ  
and using the law of telescoping sums yields: 




−

=

−
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⋅+−
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0
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CEVLEtLE

τ

τ

τε

τΘΘ
 (38)

Rearranging terms and neglecting non-negative 
terms when appropriate, it is easy to show that the 
above inequality directly implies the following two 
inequalities for all 0>t : 

Vt

LE

V

D
CCE

t
t ))}0(({

)}({
1 1

0

* Θ++≤ −

=τ τ  (39)
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QE
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εε
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))}0(({
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1 *
1

0

Θ++≤ −

=
 (40)

where Eq. (39) follows by dividing Eq. (38) by Vt , 

and Eq. (40) follows by dividing Eq. (38) by tε .  
 

Algorithm 1: ECM algorithm. 
BEGIN 
01. Set ∞=minC to record the minimum energy cost; 
02. Use )(* tb , ),,( *** cga slslsl and )(* tR to record the 
optimal number of tasks, security levels profile and 
required resource under minimum energy cost; 
03. for 0)( =tb to )(tn in time slot t  
04.   Set ∞=))(( tbCost to record the local minimum 
energy cost; 
05.   for any security levels profile ),,( cga slslsl  

06.      Calculate the total workload  =

)(

1

tb

i iW  of )(tb

tasks according to Eq. (4); 
07.      Get )(tR based on condition constraint (15d); 
08.      Compute the value value of Eq. (30a); 
09.      if ))(( tbCostvalue <  
10.         Set valuetbCost =))(( ; 
11.         Record ),,( cga slslsl and )(tR ; 
12.      end if 
13.   end for 
14.   if minCtbCost <))((  
15.      Set ))(( tbCostminC = ; 
16.      Update the )(* tb , ),,( *** cga slslsl and )(* tR ; 
17.   end if 
18. end for 
19. IDC operator conduct processing actions according 
to )(* tb , ),,( *** cga slslsl and )(* tR ; 
20. Update actual queue )1( +tQ and virtual queue 

)1( +tZ when the current time slot t ends according to 
the Eq. (14) and Eq. (16) respectively. 
END 

Figure 2: The pseudo code of ECM algorithm. 

Taking limits of the above as ∞→t proves Eqs. (31) 

and (32). 
Theorem 1 can be understood as follows: If for 

any parameter 0>V , we can use the ECM algorithm 

to ensure the drift condition (36) is satisfied on every 
time slot, then the time average expected penalty 
satisfied Eq. (31) and hence is either less than the 
target value *C , or differs from *C by no more than 

the value VD / , which can be made arbitrarily small 

as V is increased. However, the time average queue 

backlog bound increases linearly in the V parameter, 

as shown by Eq. (32). This presents a cost-backlog 
tradeoff of )](),/1([ VOVO . Such a cost-delay tradeoff 

allows ECM algorithm to make flexible design 
choices according to different application types and 
user contexts. 
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5 PERFORMANCE EVALUATION 

In this section, we evaluate the performance of the 
proposed algorithm based on real-world electricity 
prices.  

5.1 Experimental Setup 

System parameters Suppose that an IDC has 
10000=N servers, and power function ))(( tRP  is we 

modelled as follows: 

))(())(( 3
idlePtfNtRP +⋅⋅= α  (41)

In Eq. (41), α and idleP are constants determined by 

IDC. Specifically, idleP is the average idle power 

consumption of a server, and idlePtf +⋅ )(3α gives the 

power consumption of a server running at computing 
frequency )(tf . Then, the resource capacity of the 

IDC is )()( tfNtR ⋅=  (in basic resource unit), where 

the computing frequency is in the range [1.2, 3.2] 
(Cao and Zhu, 2013). In our experiments, we choose

1.6=α and W100=idleP such that the peak power 

consumed by a server is 250W. The model (41) is 
based on the measurements reported in (Gandhi et al., 
2009; Yao et al., 2014). 
Task workload Suppose that the number of tasks 
arrive in each slot )(ta follows a Poisson distribution 

with parameter 5 and the execution workload follows 
a uniform distribution in the range [1000, 4000] (in 
basic resource unit). In order to meet the security 
requirement of each task, the IDC should process the 
security workload. The risk coefficients of three 
attacks are set 0.3=aλ , 5.2=gλ and 8.1=cλ , 

respectively. For the integrity service and 
confidentiality service, the workload function (in 
basic resource unit) is devised as follows. 

},{,),( cgkdsldslF kkkkkk ∈⋅⋅= β  (42)

We can see that Eq. (42) satisfies the property 1. 
As to authentication service, the workload function is 
represented by Eq. (43). 

}{,)( akslslF kkkk ∈⋅= β  (43)

For each arrived task, the protected data kd is in 

the range [0.1, 1] GB, and 1600=aβ , 2400=gβ  and

800=cβ . These parameters are derived and deduced 
from (Xie and Qin, 2006). 
Electricity Price We downloaded the hourly 
electricity prices of Palo Alto in real-time electricity 

market (Nyiso, 2015), and the time horizon we 
consider in this paper is from June 1 to June 30, 2015. 
To fully exploit the cost savings due to temporal 
power price variations, we would have preferred to 
have prices at a time granularity that exhibits high 
variability, for example, the length of a time slot is set 
to 5 minutes (Qureshi et al., 2009). However, since 
we had access to only the hourly prices, we use 
interpolation to generate prices at 5-minute intervals 
(Yao et al., 2014). Thus, the time horizon in the 
evaluations is 8640 slots. 
Algorithms in Comparison The following four 
algorithms are compared in terms of energy cost and 
queue delay in the experiments: 
Algo-1: The Lyapunov optimization technique is not 
utilized in this algorithm. Thus, arriving tasks are not 
queued. It starts to execute tasks when they are 
received. Moreover, these tasks are executed without 
security services. 
Algo-2: This algorithm starts to execute all arriving 
tasks when they are received. However, each task 
requires security services to ensure its security 
execution. Furthermore, all the levels of service are 
set to 1.  
Algo-3: It uses our proposed ECM algorithm but with 
no risk rate constraint, i.e., 1=avu  . Different from 
Algo-1 and Algo-2, the arrived tasks are queued in the 
IDC, which will be processed when the electricity 
price is low or the queue is congested.  
Algo-4: This is our ECM algorithm, the purpose of 
which is to minimize the total energy cost with risk 
rate constraint for IDC.  

5.2 Performance Comparison of Four 
Algorithms 

We fix the parameter 10=V and 0=avu  for Algo-4 

and conduct the four algorithms in TEC and average 
delay. As shown in Figure 3 (a), we can make the 
following observations about TEC: 1) Compared with 
Algo-1 and Algo-2 respectively, Algo-3 and Algo-4 
have the Lower TEC. This is because Algo-3 and 
Algo-4 uses the Lyapunov optimization technique to 
minimize the energy cost. The arrived tasks are 
queued in the IDC, which can be processed when the 
electricity price is low, i.e., the IDC operator can fully 
exploit the temporal diversities of electricity price; 2) 
Algo-2 exhibits more energy cost than Algo-1. This is 
reflected by the fact that each task in Algo-2 requires 
security services to ensure its security execution, 
which will incur a great amount of security workload 
and power demand for IDC (see Section 3.3). There 
is the same relationship between Algo-3 and Algo-4. 
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(a) Energy cost 

 
(b) Delay 

Figure 3: Energy cost and delay of four algorithms. 

As for average delay shown in Figure 3 (b), Algo-
1 and Algo-2 have the same and lowest delay, which 
results from the fact that arrived tasks are not queued, 
and IDC operator executes these tasks in the same slot 
when they are received. The Algo-4 tends to have the 
longer average delay due to two reasons that: 1) 
arrived tasks in the queue are waiting for low 
electricity price; 2) security services result in more 
workload while IDC only processes fewer tasks in 
one time slot, which increases the length of task 
queue. The Algo-3 has no security services but with 
task queue, the delay of which is medium. 

5.3 Performance Vary under Different 
Parameters 

Figure 4 illustrates the performance of four 
algorithms under varying control parameter V . As 

Aglo-1 and Aglo-2 are independent of parameter V , 

we plot them as baselines in contrast with Algo-3 and 
Algo-4. The parameter V controls the energy-delay 

tradeoff of Algo-3 and Algo-4. As shown in Figure 4, 
given 0=avu , the TEC drops and the time-average 

delay grows as V goes from 0 to 20. The TEC of 

Algo-1 and Algo-2 are always larger than Algo-3 and 
Algo-4, respectively, while they are equal when

0=V . This is because security services incur lots of 

energy cost, and we only care about the queue delay 
when parameter V is set to 0. Note that energy cost 

falls quickly at the beginning and then tends to 
descend slowly while the time-averaged queue 
backlog grows linearly with V . This finding confirms  

 
(a) Energy cost 

 
(b) Delay 

Figure 4: Energy cost and delay under different V . 

the )](),/1([ VOVO  energy-delay tradeoff as captured 

in Eqs. (31) and (32). Particularly, there exists a spot 
of V (e.g., 10=V ), beyond which increasing V leads 

to marginal energy conservation yet consistently 
growing delays. 

5.4 Impact of Risk Rate Constraint 

For purpose of revealing the impact of risk rate 
constraint of our ECM algorithm, we fix 10=V and 

vary avu from 0.1 to 1. The performance effects of 

varying risk rate constraint are reported in Figure 5. It 
can be seen that the TEC and delay become lower as 
risk rate avu increases. This phenomenon can be 

explained as follows: given a large risk rate 
constraint, the workload of security service is small 
according to Eqs. (1) and (2). Then, we need less 
electricity energy to execute the arrived tasks. What 
is more, The IDC operator can process more tasks in 
one time slot under the same computing resource that 
leads to lower average delay. Overall, though larger 
risk rate constraint will reduce the TEC and delay, the 
tasks may experience more threats and attacks when 
being executed in IDC. 

5.5 Impact of Three Risk Coefficients 

As mentioned in Section 3.4, the risk rate is highly 
correlated with the risk coefficient. This section is 
focused on the performance impact of the three risk 
coefficients on our ECM algorithm. We fix V to be 10 

and use shortening Authe_only, Integ_only and 
Confi_only to represent  authentication  service  only,  
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(a) Energy cost 

 
(b) Delay 

Figure 5: Energy cost and delay under different risk rate 
constraints. 

integrity service only and confidentiality service only, 
respectively. Authe_only means that there is only 
authentication service for tasks, and this is the same 
interpretation with other two shortenings.  

The simulation results are given in Figure 6 for 
three risk coefficients. Overall, the Confi_only 
achieves the lowest TEC and delay, Authe_only has 
the medium performances and Integ_only performs 
the worst. This can be explained by the fact that we 
set gac βββ << , and a larger parameter β will lead 

to more security workload. We can also see from 
Figure 6 that the three curves are higher slope when 
parameter },,{,5.1 cgakk ∈≤λ , beyond which curves 

become flat. The explanation is that the risk rate 
changes dramatically when the risk coefficient varies 
in a small range in terms of Eq. (5), then the TEC and 
delay change with the same pace. In a word, different 
risk coefficients make different impacts on our energy 
cost minimization framework. 

6 CONCLUSION AND FUTURE 
WORK 

In this paper, we propose a long-term energy cost 
minimization (ECM) algorithm for an internet data 
center in deregulated electricity markets. We 
formulate the stochastic optimization problem taking 
the temporal diversity of electricity price and risk rate 
constraint into account. Then, an operation algorithm 
is designed to solve the problem by Lyapunov  
 

 
(a) Energy cost 

 
(b) Delay 

Figure 6: Impact of three risk coefficients. 

optimization framework, which offers provable 
energy cost and delay guarantees.  

As a future work, we are going to consider some 
new aspects in better usage of power in IDC, such as 
renewable energy, energy storage, battery and so on. 
We also plan to exploit spatial variations in the 
workload arrival process and the power prices to 
reduce energy cost for IDC. 
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