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Abstract: Developing interactive applications is a complex activity as they must deal with various kinds of human-
computer interactions. This is especially true when these interactions use multiple modalities (voice, 
gesture…). As a result, thoroughly testing such applications is particularly important and requires more 
effort than for traditional interactive applications. In this paper, we propose an approach for automating the 
test generation of such multimodal applications. This approach is based on the definition of a new test 
modelling language, TTT. Test models provided in TTT can be translated intest generators.TTT deals with a 
well-known class of multimodality properties: the CARE properties. The whole approach is illustrated on a 
case study. 

1 INTRODUCTION 

Interactive Multimodal Applications (IMA) support 
communication with the user through different 
modalities, such as voice or gesture. They have the 
potential to greatly improve human-computer 
interaction, because they can be more intuitive, 
natural, efficient, and robust.  Flexibility is obtained 
when the user can use equivalent modalities for the 
same tasks while robustness can result from the 
integration of redundant or complementary inputs. 

The CARE properties (Complementarity, 
Assignment, Redundancy, Equivalence) can be used 
as a measure to assess the usability of the 
multimodal interaction (Coutaz et al., 1995). 
Equivalence and Assignment represent the 
availability and, respectively, the absence of choice 
between multiple modalities for performing a task 
while Complementarity and Redundancy express 
relationships between modalities. The flexibility and 
robustness of multimodal applications result in an 
increasing complexity of the design, development 
and testing. Therefore, ensuring their correctness 
requires thorough validation. 

Approaches based on formal specifications 
automating the development and the validation 

activities have been proposed to deal with this 
complexity. They adapt existing formalisms to the 
particular context of interactive applications. 
Examples of such approaches are the Formal System 
Modelling (FSM) analysis (Duke and Harrison, 
1993), the Lotos Interactor Model (LIM) (Paternò  
and Faconti, 1993), the Interactive Cooperative 
Objects (ICO) (Palanque and Bastide, 1995) or 
formal methods such as B (Aıt-Ameur and Kamel,  
2004). Model-based testing methods focusing on the 
specification of the user behaviour have also been 
studied. For instance, the method presented in 
(Richard et al., 1997) relies on the specification of a 
finite state machine.  

In (Ter Beek et al., 2009), Maurice H. terBeek et 
al. propose stochastic modelling and model checking 
to predict measures of the disruptive effects of 
interruptions on user behaviour. The approach also 
provides a way to compare the resilience of different 
interaction techniques to the presence of external 
interruptions that users need to handle. In (Palanque 
et al., 2009), P. Palanque et al. presents an approach 
for investigating in a predictive way potential 
disruptive effects of interruptions on task 
performance in a multitasking environment.  

In (Kamel and Aït Ameur, 2007), N. Kamel et al. 
propose a formal model allowing representing the 
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input multimodal user interaction task and the 
CARE usability properties. Once the multimodal 
interaction task model is designed, the 
corresponding property is checked using the SMV 
(Symbolic Model Verifier) model-checker. They 
also propose an approach for checking adaptability 
properties of multimodal User Interfaces (UIs) for 
systems used in dynamic environments like mobile 
phones and PDAs (Kamel et al., 2008). The 
approach is based on a formal description of both the 
multimodal interaction and the property. The SMV 
model-checking formal technique is used for the 
verification process of the property. In (Mohand-
Oussaïd et al., 2015), L. Mohand-Oussaïd et al. 
present a generic approach to design output 
multimodal interfaces. This approach is based on a 
formal model, composed of two other models: 
semantic fission model for information 
decomposition process and allocation model for 
modalities and media allocation to composite 
information. An Event-B formalization has been 
proposed for the fission model and for allocation 
model. This Event-B formalization extends the 
generic model and supports the verification of some 
relevant properties such as safety or liveness. 

The synchronous approach has been proposed to 
model and verify by model-checking some 
properties of interactive applications (Madani et al., 
2005), but its applicability is limited to small pieces 
of software.  

In (Madani and Parissis, 2009), Laya Madani et 
al. present a technique of test case generation for 
testing CARE properties by means of a synchronous 
approach. According to the proposed approach, 
CARE properties are translated into an enhanced 
version of the Lustre synchronous language. An 
improved method presented in (Madani and Parissis, 
2011) uses Task trees and a fusion model to perform 
test data generation for interactive multimodal 
applications. As an additional improvement to this 
previous research work, we have recently proposed 
an automatic test generation approach  based on a 
new test modelling language, TTT (Task Tree base 
Test) (Le et al., 2014) The main new feature of the 
TTT language is that it supports conditional 
probability specifications, used to express advanced 
operational profiles. Such conditional specifications 
may depend on the history of the user actions. A test 
generation engine makes it possible to produce test 
data compliant with such a description. For this, user 
actions are stored during the test execution. 

In this paper, we extend the above mentioned 
work in order to take into account multimodality. 
The TTT language is extended to specify 

multimodal events of IMA and CARE properties as 
well as to check the validity of CARE properties. 
Hence, multimodal test data can be automatically 
generated from a TTT specification of IMA. 

The paper is organized as follows: In Section 2, 
we provide the necessary background. Section 3 
presents the extension of theTTT language for 
generating tests and checking the validity of CARE 
properties. A case study is presented in Section 4. 

2 BACKGROUND 

2.1 Task Trees 

Task trees are often used in the design of interactive 
software applications (Paternò et al., 1997) to 
hierarchically build task models. A well-known 
notation for such task models is ConcurTaskTree 
(CTT). CTT includes four kinds of tasks: User tasks 
(no interaction with the application, just an internal 
cognitive activity such as thinking about how to 
solve a problem), application tasks (application 
performance, such as generating the results of a 
query, no interaction with the user), interaction tasks 
(involving user actions with immediate feedback 
from the application, such as editing a document) 
and abstract tasks (tasks composed of other 
subtasks). A CTT abstract task is composed of 
subtasks connected by means of temporal operators, 
for example, there is an enabling operator denoted 
by >> which specifies that one task enables a second 
one when it terminates. 

A CTT model is mainly intended to help 
designers to define interactive applications. 
However, it has been shown that the same notation 
can be also used to define test models describing the 
interaction between the user and the application and 
providing valuable information about the possible 
user behaviour. 

2.2 Finite State Machines 

Finite State Machines (FSMs) are widely used to 
model the behaviour of interactive applications. This 
model includes the states, the actions and the 
transitions presented by a state diagram (Madani  
and Parissis, 2009). When an interactive application 
is specified by a finite state machine, the states 
represent an abstraction of the operating status of 
interactive applications. The operations can be 
repeated, so the states can also be repeated. Initial 
state is a state that interactive applications begin to 
be used. Final state is the state where the interactive 
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application ends. Inputs are the user's tasks and 
outputs are application tasks. 

2.3 Multimodal Interaction: CARE 
Properties 

An interactive multimodal application uses at least 
two modalities (keyboard, speech, mouse...) for a 
given direction (input or output). Within a 
multimodal application, modalities can be used 
independently, but the availability of several 
modalities naturally raises the issue of their 
combined use (fusion of modalities). When talking 
about test data generation, we are mainly concerned 
with inputs, so in this paper we focus on multimodal 
input interaction. 

The combined use of modalities is constrained 
by temporal constraints. It can be carried out 
sequentially or concurrently (Coutaz et al., 1995) 
within a Temporal Window (TW), that defines a 
time interval. The modalities of a set M are used 
concurrently if they are used at the same instant. The 
modalities of a set M are used sequentially within 
the TW, if there is at most one active modality at 
every instant and if all the modalities in this set are 
used within the TW. The concurrency and the 
sequencing express a constraint on the interaction 
space. The absence of a temporal constraint means 
that the duration of the TW is infinite. The CARE 
properties form an interesting set of relations that are 
relevant when characterizing multimodal 
applications. The Assignment implies that a single 
modality is assigned to a task. The Equivalence of 
modalities implies that the user can perform a task 
using a modality chosen amongst a set of modalities. 
The Complementarity denotes several modalities 
that convey complementary chunks of information. 
The complementary modalities must be used 
simultaneously or sequentially within the same TW. 
The Redundancy indicates that the same piece of 
information is conveyed by several modalities. 
Redundant modalities must also be used 
simultaneously or sequentially within the same TW. 

2.4 Operational Profiles 

Operational profiles (Musa, 1993) provide 
information about the effective usage of an 
application. In particular, they can be used to guide 
the test process. For the particular case of interactive 
applications, operational profiles can be easily 
defined by assigning occurrence probabilities to 
some of the described behaviours.  In (Madani and 
Parissis, 2009), the CTT notation was extended with 

occurrence probabilities to make possible to specify 
operational profiles.  

2.5 Generating Test Data for IMA 

Task trees are used in the design of interactive 
applications. To generate automatically the test data 
from task trees, the task tree is translated into a 
probabilistic finite state machine (PFSM).  

It is assumed that the PFSM is simulated while 
the interactive application under test is executed and 
that inputs and outputs are exchanged between them 
on-the-fly. During the simulation, assuming the 
PFSM to be in a given state, an input is chosen 
according to the probabilities of the outgoing 
transitions of this state. The chosen input is then sent 
to the interactive application, the resulting 
application outputs are read and the next state 
computed, and so on. 

2.6 The Interactive Multimodal 
Application Memo  

The interactive application "Memo" (Madani and 
Parissis, 2009) makes it possible to annotate 
physical locations with digital stickers ("post it"-like 
notes). Once a digital sticker has been set to a 
physical location, it can be read/carried/removed by 
other users. A Memo user is equipped with a GPS 
and a magnetometer enabling the application to 
compute his/her location and orientation. S/he is also 
wearing a head mounted semi-transparent display 
(HMD) enabling the fusion of computer data (the 
digital notes) with the real environment. Memo 
provides three main tasks: (1) orientation and 
localization of the mobile user, so that the 
application is able to display the visible notes 
according to the current position and orientation of 
the mobile user (2) manipulation of a note (get, set 
and remove a note) and (3) exiting the application. 
So, the mobile user can get a note and carry it while 
moving. S/he can set a carried note to a specific 
place or delete a visible or carried note. 

Figure 1 shows an extended CTT for the Memo 
application (interaction tasks are represented by 
☺�). To generate test data, the task tree is translated 
into a PFSM. The PFSM is simulated while the 
interactive application under test is executed and that 
inputs and outputs are exchanged between them on-
the-fly. It is thus possible to describe abstract 
interaction scenarios as task trees, and observe the 
behaviour of the interactive application under test. 
Figure 2 shows a PFSM example for the Memo 
application. 
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Figure 1: Example of Task tree model. 

 

 

 

 

 

 

 

 

 
Figure 2: FSM Example for the Memo application. 

Figure 3 shows a fusion model for the Memo 
application. 

Tasks ( get, set, remove, move, turn, exit); 
Modalities (Speech (get, set, remove),  
Mouse(get, set, remove), 
Keyboard(get, set, remove, move, turn, exit)); 
Equivalence ((Speech, Mouse, Keyboard), 
             (get, set, remove)); 
Assignment ((Keyboard), (move, turn, exit)); 

Figure 3: Example of fusion model. 

2.7 Taking into Account Conditional 
Probabilities 

The above presented approach uses several 
notations, inspired from existing modelling 
languages, to build test models: a model of the 
application behaviour (a task tree), a model of the 
interactive tasks (FSM), operational profiles 
(annotations on the task tree), and modality 

specifications. The variety of notations makes the 
modelling process hard. Moreover, operational 
profiles cannot be defined using conditions 
(however, an occurrence probability is often 
assigned to an event according to a condition). 

Therefore, we have proposed the test modelling 
language TTT (Le et al., 2013) allowing to express: 

− Scenarios for interactive applications. 
− Conditional probability specifications for task 

trees. 
− The “traces” of the user actions and read-only 

functions on these traces. 
− Expected properties of the application. 

The conditional probability specifications for task 
trees must be defined in the test model. This means 
that the TTT language is designed to allow the 
definition of variables, for example, Cond = (X > 5), 
where X is an application input or output variable. 
Moreover, there are a lot of “rich” conditions that 
need to be expressed, for example, 
Cond=F(parameter)>5 where  F is a function that 
can return a float value.  

2.7.1 The TTT Language 

A basic structure of a TTT model consists of a 
TESTCTT block and one or more FUNCTIONs. 
TESTCTT is defined by a set of clauses and the 
general form of a TESTCTT. 
 

<tttmodel> ::= <testctt><function>+ 
<testctt> ::= <testctt_name><testctt_set> 
<testctt_var><testctt_init><begin_end> 
<testctt_name>::=TESTCTT<name> 
<testctt_set> ::= sets <basic_type>+ ; 
<testctt_var> ::= var<local_variable>+ ; 
<testctt_init> ::= init<initial_state>+ ; 
<begin_end> ::= begin <statement>+ end; 
<statement>:=<beginend>|<invar_operator>| 

<ctt_operator>|<sql_statement>| 
<conditional_struct>  |<iteration-statement> 

<begin_end> ::= begin<statement>+ end; 

We define the syntax for describing the CTT 
operators, which take into account conditional 
probabilities. The ctt_operators are used to create 
tasks from conditional operational profiles where the 
selection of the program inputs is performed with 
respect to probabilities specified by the tester. 
<ctt_operator> ::= <choice> | <concurrency> |  
<deact> | <sr> | <option> | <enabling> | <iteration> | 
<fiteration> 

We save all the past actions of the users and 
build functions on them. Functions are intended to 
be part of the conditions. We use an SQL-like 
language to update and search the data. We inherit 
and reduce the following SQL statements: 

Move/-0.45 
µ/memoCarried 0.18 

remove/ 
memoRemoved 0.18 

remove/ 
memoRemoved 0.63 

q

q3 

q2 

Move/-0.45 

µ/memoCarried 
0.18 

µ/memoDisplayed 
0.27 

µ/ memo-
Displayed  
0.27 

get/memoTaken 0.72 

set/memoSet0.27 

q1 
exit

exit/-0.1 

exit/-0.1

Turn/0.09 

q4 

exit/-0.1 

q0 

Memo 

Use memo system* Exit 
☺ 

     Explore the ground   [] (0.5,0.5)                     Handle notes 

      Get            [](0.8,0.2)    remove         Set     [] (0.3,0.7)     remove 
      ☺�                               ☺�         ☺�                      ☺� 

[>( 0.1) 

Move   [] (0.8,0.2)     turn 
☺�                   ☺� 
   Handle a displayed Note   [](0.6, 0.4)    Handle a carried note 

Memo Displayed >>  Get or remove   Memo carried >> Set or remove   
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<sql_statement> ::= <create_table> | <alter_table> | 
<drop_table> | <insert> | <delete> | <update>| <select> 

2.7.2 Test Execution Environment 

For the purpose of testing interactive applications, 
we have built a testing environment (Le et al., 2014), 
called TTTEST (TTT-based Test), in Figure 4. 

 
 
 
 
 
 
 
 

Figure 4: The TTTEST testing evironment. 

The TTTEST testing environment consists of 
four basic components: TESTCTT model specified 
by TTT language, C program translated from 
TESTCTT models, interactive multimodal 
application under test, traces of the action user. The 
TTTEST environment activities are described as 
follows: 

− Step 0: The TESTCTT model is translated 
into a C program which is executed. 

− Step 1: The C program produces output data 
X from its internal state. 

− Step 2: Output X is translated into input data 
for IMA. 

− Step 3: IMA receives and processes input X 
and generates output Y. 

− Step 4: Program C receives Y as input data, 
updates internal state variable of the model 
and returns to Step 1. 

A TESTCTT model is specified withTTT 
language. We translate a TESTCTT model into a C 
program which implements the corresponding test 
generator. The translation, the details of which are 
presented in (Le et al., 2014), involves many 
different steps. The simplest steps are lexical 
substitutions; operators and keywords in TTT are 
replaced by corresponding C operators and tokens. 
The second level of translation involves syntactic 
transformations. Certain constructs in TTT have 
equivalent constructs in C, but with differing orders 
of the tokens. The structures of high abstraction 
level of CTT operators must be converted into 
structures with more concrete level in the C 
language. Finally, the SQL statements from the TTT 
language are translated into equivalent C statements.  

3 TAKING INTO ACCOUNT 
MULTIMODALITY 

While testing IMA, the number of input events may 
increase dramatically. Indeed, each input can be 
produced in several modalities so the number of 
possible input event combinations can be much 
bigger than in the case of single modalities. 
Moreover, the fusion mechanism of IMA depends 
on TWs within which the user event occurs. For 
example, when two modalities are used in a 
redundant way, the resulting events must be 
combined only when they occur in the sameTW. 

The above observations suggest that there are 
two different issues when testing IMA: (1) 
generating tests for multimodal events, (2) checking 
the validity of the CARE properties. While the first 
issue is strictly related to test generation, the second 
one should be part of a test oracle. We propose to 
extend the TTT language to deal with both issues, as 
described in the following subsection. 

3.1 Generating Tests for Multimodal 
Events 

To simulate user behaviours for IMA, we use a test 
data generation technique based on conditional 
operational profiles. We add the operator modalities 
to the TTT language to generate tests for multimodal 
events. The syntax of modalities operator is the 
following: 
<modalities>::=modalities (<expression-list>) 
The tester can use modalities(EM1, EM2,…, EMn, 
p1,p2,…,pn, cond1, p11,p12,…,p13, cond2, 
p21,p22,…,p23), where i∈[1,n] EMi are events, pi are 
probabilities; condi are conditions; and pi,j (i∈[1,n], 
j∈[1,n]) are conditional probabilities. The semantics 
of this operator is expressed as follows: 

{ n is a random real number in [0,1] 
  n= rand(1)        
if (Cond1== TRUE) { 
if (n<= P11) EM1= 1 else EM1 = 0; 
       if (n<= P12) EM2= 1 else EM2 = 0; 
 … 
if (n<= P1n) EMn= 1 else EMn= 0; 
}   
   elseif (Cond2== TRUE) {  
       if (n<= P21) EM1= 1 else EM1 = 0; 
       if (n<= P22) EM2= 1 else EM2 = 0; 
 … 
if (n<= P2n) EMn= 1 else EMn= 0; 
 }     
   else { 
       if (n<= P1) EM1= 1 else EM1 = 0; 
       if (n<= P2) EM2= 1 else EM2 = 0; 
 … 

Output   

 

Input 

IMA TestCTT 

Model 

   C program 
Translation 

Trace of user actions 
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if (n<= Pn) EMn= 1 else EMn= 0; 
   } 
} 

Consider the following example: 

Modalities (speech(Remove), mouse(Remove),  
keyboard(Remove),0.5,0.5,0.5,note_nb()=0,0, 
0,0,note_nb()>=5,0.5,0.9,0.7); 
The events Speech(remove), Mouse(remove) and 

Keyboard(remove) are generated along probabilities 
0.5, 0.5, 0.5 respectively. If there is no note, the user 
cannot remove, so probabilities are 0, 0, 0. But if 
there are more than 5 notes, the user will use other 
probabilities for these events. The events generated 
are presented in Table 1. 

Table 1: Events are generated by Modalities operator. 

Time sR mR kR Memo 

1 
2 
3 
.. 

0 
0 
0 
… 

0 
0 
1 
… 

0 
0 
1 
… 

… 
Se 

Tak 
… 

In Table 1, we use the abbreviation sR, mR and 
kR respectively for speech(Remove), mouse(Remove) 
and keyboard(Remove). At the time 1, there is no 
note in the Memo, the user do not use any event. But 
at the time 3 when a note is visible (Set (Se) 
occurred in the previous step) the user takes it (Tak) 
by mouse(Remove) and   keyboard(Remove). 

3.2 Checking the Validity of CARE 
Properties 

3.2.1 Equivalence 

Let M1, M2 be two modalities. Let EM1, EM2 be two 
expressions along M1, M2 respectively. Two 
modalities M1, M2 are equivalent with respect to task 
T, if every task t ∈T can be activated by EM1 or EM2. 
Equivalence admits a single input event to be 
propagated. We add the operator 
TestEquivalence(EM1 ,EM2, T, tw) into TTT language 
to check the validity of the Equivalence property. 

The syntax of TestEquivalence operator is the 
following: 

<TestEquivalence>::= 
TestEquivalence(<expr>,<expr>,<expr>,<expr>) 

The tester can use TestEquivalence(EM1 ,EM2, T, 
tw) and the meaning of this operator is expressed as 
follows: 

 
 
 

1.begin 
2. T1 = select distinct Tout from U_ACTIONS 
where EM1= EM1 and time between(now()–tw)  
and now();  
3. T2 = select distinct Tout from U_ACTIONS 
 where EM2 = EM2 and time between(now()-tw) 
 and now();  
4. if ((T == T1) and (T ==T2)) 
5.      IsEquivalence=  True 
6.  else begin 
8.  output(“EM1 and EM2 are not equivalent”); 
9.  stop program; 
10.end 
11.end 

T1 and T2 are two tasks corresponding to two 
events E1 and E2 in U_ACTIONS table (lines 2,3).  
If task T1 is different from task T2, events E1 and 
E2 are not equivalent (line 8). The program under 
test will be stopped (line 9). 

Table 2 shows an extract example of the 
execution trace, the result of 
TestEquivalence(speech, mouse, get, 7). 

Table 2: The result of TestEquivalence. 

Time Speech(get) Mouse(get) Tout TestEquivalence 
1 
2 
3 

1 
 
 

 
 
1 

get 
 

get 

 
Speech(get)= 
Mouse(get) 

It can be observed that when the user does 
speech(get), Tout is equal to“get” in time 1. When 
the user uses the mouse to choose "get" (mouse(get)) 
Tout is equal to“get” in time 3. So event speech(get) 
is equivalent to event mouse(get). 

3.2.2 Redundancy-Equivalence 

If there are several input events, redundancy requires 
the fusion process to choose one event among those 
of all the available modalities. Equivalence admits a 
single input event to be propagated.The 
Redundancy-Equivalence input events which are 
temporally close are merged and the associated 
output task is enabled as soon as the required inputs 
have been identified. The occurrence of one event of 
every modality in the current TW is enough to 
enable the output task. It is possible that several 
events of the same modality occur in this window. In 
that case, the task is computed according to the last 
event of each modality.  

We add operator 
TestRedundant_EquivalenceEarly into TTT to test 
the Redundancy-Equivalence of two events EM1 and 
EM2 in early fusion strategies. The syntax of 
TestRedundant_EquivalenceEarly operator is the 
following: 

<testRE>::= TestRedundant_EquivalenceEarly 
(<expr>,<expr>,<expr>,<expr>) 
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The tester can use TestRedundant_EquivalenceEarly 
(EM1, EM2, TaskTM1M2, tw) and the semantics of this 
operator is as follows: 
1.begin 
2.T_out = select distinct Tout from 
   U_ACTIONS where((EM1 = EM1)or (EM2 =EM2)) 
and (time between(now() – tw)and now()) 
3.T_out_nb = select count(Tout) from  
U_ACTIONS where((EM1 = EM1)or(EM2 = EM2)) 
 and (time between(now() – tw)and now()) 
4.if((Tout_nb==1)and(T_out==taskTM1M2))then 
5.  output (“EM1 and EM2 are redundant -
equivalent”); 
6.else 
7.  begin  
8.output (“EM1, EM2 are not redundant-  
equivalent”); 
9.  stop program; 
10.end 
11.end 

T_out is the task that is generated in Temporal 
Window. Tout_nb is the number of tasks generated 
from the event EM1 or EM2 (line 5). The Redundancy-
Equivalence property of two events EM1 and EM2 is 
tested by condition (line 4):  ((Tout_nb == 1) and 
(T_out = taskTM1M2)). If there is only one task 
generated in TW and T_out is the taskTM1M2, EM1 
and EM2 are Redundant-Equivalence. Table 3 shows 
an extract of the execution trace resulting from 
TestRedundant_EquivalenceEarly (Speech_T, 
Mouse_T, TaskTM1M2, 5) with Tw = 5. 

Table 3: The result of TestRedundant_EquivalenceEarly. 

Time EM1 EM2 Tout TESTRedundant_ 
EquivalenceEarly 1 2 3 4 5 

Speech_Task  Speech_ Task Speech_ Task 
 Mouse_Task   Mouse_ Task 

Task     
 
Speech_Task, 
Mouse_Task are
Redundant-
Equivalence 

3.2.3 Complementarity (C) 

Let M1, M2 be two modalities. Let EM1, EM2 be two 
expressions along M1, M2 respectively. Two 
modalities M1, M2 are complementary with respect 
to a set of Task T, if every task t∈T can be activated 
by EM1 and EM2. EM1 and EM2 must occur in the same 
TW, i.e.Abs((time(EM1) – time(EM2)) < Tw. 

The complementary input events which are 
temporally close are merged and the associated 
output task is enabled as soon as the required inputs 
have been identified. The occurrence of one event of 
every modality in the current TW is enough to 
enable the output task. It is possible that several 
events of the same modality occur in this window. In 
that case, the task is computed according to the last 

event of each modality.  
We add operator TestcomplementaryEarly (EM1, 

EM2, TaskTM1M2, tw) into TTT language to test the 
complementary of two events EM1 and EM2. The 
syntax of TestcomplementaryEarly operator is the 
following: 

<testcom>::=TestcomplementaryEarly(<expr>,
<expr>,<expr>,<expr>) 

The tester can use TestcomplementaryEarly (EM1, 
EM2, TaskTM1M2, tw) and the behavior of this 
operator is as follows: 

1.begin 
2.EM1_out = select top 1 EM1 from U_ACTIONS 
where(time between (now()–tw) and now ()) 
order by time desc 
3.EM2_out = select top 1 EM2 from U_ACTIONS  
where(time between (now()–tw) and now ()) 
order by time desc 
4.T_out = select distinct Tout from  
U_ACTIONS  
5.if ((EM1== EM1_out) and (EM2 == EM2_out) 
and(T_out ==taskTM1M2)) then 
6.  output (“EM1 and EM2 are complementary”); 
7.else 
8.  begin  
9.   output (“EM1 and EM2 are complementary”); 
10.  stop program; 
11. end 
12.end 

EM1_out and EM2_out are the last events 
occurred in the Temporal Window. T_out is the task 
occurred in the Temporal Window. The 
Complementarity of two events EM1 and EM2 is tested 
by condition (line 5): ((EM1 == EM1_out) and (EM2 
== EM2_out)and (T_out ==task)). If EM1 and EM2 
are last events in TW and Tout is the taskTM1M2 
then EM1 and EM2 are complementary. Table 4 shows 
an extract example of the execution trace resulting 
from TestComplementaryEarly (Speech_T1, 
Mouse_T2, Task12, 5) with Tw = 5. 

Table 4: The result of TestComplementaryEarly. 

Time EM1 EM2 Tout TestComplemen_ 
taryEarly 

1 
2 
3 
4 
5 

Speech_T1 
 
Speech_T1 
Speech_T1 

Mouse_T2 

Mouse_T2 

 
 
 
 
TaskT12 

 
Speech_T1, 
Mouse_T2 are 
complememtary 

4 TESTING THE MEMO 
APPLICATION  

The TESTCTT model of Memo is built through four 
steps: (1) selecting a test target; (2) designing 
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notations of activity in the model; (3) designing the 
state variables and selecting data types for variables; 
(4) writing test scripts for each activity. Figure 5 
presents a part of this test model. 
1. TESTCTT Memo; 
2. VAR 
3. q0, q1, q2, q3, q4 : bool; 
4. T, Tout: char; 
5. tw : integer; 
6. begin 
7. INIT (Tout=’D’) 
8. do  
9. begin 
10. q0=(Tout<>'D' and Tout <> 'C' and T <>'o'); 
11. q1=(T=='o')or(Tout=='G'and T =='g') or 

(Tout=='R'andT=='r')or(Tout=='S'and T=='s'); 
12. q2 = (Tout=='D'); 
13. q3 = (Tout=='C'); 
14. if (q0)  
15. begin 
16. T = Choice(‘o’,’’,0.5, note_nb()=0,1, 
17. note_nb()>=5,0.1); 
18. insert into U_ACTIONS(input) values(T); 
19. end 
20. if (q1) 
21. begin   
22. T = Choice((‘o’ ,’’,0.5, note_nb()=0,1, 
23. note_nb()>=5,0.1); 
24. insert into U_ACTIONS(input) values(T); 
25. end 
26. if (q2) 
27. begin 
28. T = choice('g' ,'r',0.8,note_nb()=0, 1,  

note_nb()>=5,0.1); 
29. if T =’g’  
30.        begin 
31. tw=1; 
32.         do  
33.         begin 
34.          Modalities(Speech_get,Mouse_get, 
35.            0.3,0.7,note_nb()=0 ,0,0, 
36. note_nb()>=5,0.2,0.8); 
37.          Tout = call_Memo(T); 
38.         Insert into U_ACTIONS(M1,M2,input,   
39.      output)values(Speech_get,Mouse_get,T,  
40.                         Tout); 
41.          Tw =tw+1; 
42.          end 
43.          while (tw<=3)  
44. TestRedundantEquivalenceEarly_ 
45.              (Speech, Mouse, get, 3) 
46.         end 
47.       else  
48.   begin 
49.       Tw=1; 
50.       do 
51.       begin     
52. Modalities(Speech_remove,Mouse_remove, 
53.            0.8,0.9,note_nb()=0,0,0, 
54. note_nb()>=5,0.9,0.7); 
55.         Tout = call_Memo(T); 
56. insert into U_ACTIONS(M1, M2,  

input, output) values(Speech_remove, 
Mouse_remove,T,Tout); 

57.       Tw=tw+1; 
58.       end 
59.          while (tw<=3); 
60. TestRedundantEquivalenceEarly_ 
61.              (Speech, Mouse, remove, 3); 
62.     end; 
63. while (T<>’E’); 
64. end 
65. FUNCTION note_nb() returns (note_nb: int); 
66. varget_nb, remove_nb :int; 
67.   begin 
68. get_nb= select count(*) from U_ACTIONS where 

input =”g”; 

69. remove_nb= select count(*) from U_ACTIONS where 
input =”r”; 

70. note_nb= get_nb- remove_nb 
71.  end 

Figure 5: The test model for Memo in TTT. 

Based on the rules described in section 5, the 
TESTCTT model is transformed into a C program.  
After the translation is completed, the C program is 
compiled and executed to generate test data.Table 5 
shows an extract of the execution trace and the result 
of TestRedundantEquivalenceEarly(lines 43,59). 

Table 5: An extract of the execution trace and the result of 
TestRedundantEquivalenceEarly. 

Time EM1 EM2 TM1M2 Output 

1 Move   M_Displayed 

2 Speech_get  Get M_Taken 

3  Mouse_get   

4  Mouse_get   

5 Move   M_Display 

6 Speech_remove  Remove M_Remove 

7  Mouse_remove Remove M_Remove 

In line 1, the user moves and a note appeared 
(M_Displayed). The test generator produces input 
data Speech_get (choice between get or 
remove in the state q2). In lines (2, 3, 4) because of 
the redundancy mode, the user actions 
Speech_get, Mouse_get are sent through the 
Memo causing only one action Get and Memo 
returns output M_Taken (line 2). The test generator 
calculates and determines the application is in state 
q1. In state q1, TESTCTT model generates input 
data move (choice between move or "-" in the state 
q1). When the user moves, a note appeared on the 
Memo (M_Display) (line 5). The user removes 
this note (lines 6,7). The user actions 
Speech_remove, Mouse_remove are sent to  
Memo causing two actions Remove and Memo 
returns two outputs M_Remove. So 
Mouse_remove, Speech_re–move are not 
Redundant-Equivalent, therefore the C program 
stops the Memo application and displays a message 
“Mouse_remove and Speech_remove are not 
Redundant-Equivalent”. 

5 CONCLUSIONS 

IMA are intuitive, natural, efficient, and robust. The 
flexibility and robustness of multimodal applications 
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are increasing the complexity of the design, 
development and testing. We have built a new 
modelling language TTT to test interactive 
applications. For multimodal applications, we have 
extended the TTT language to solve two problems: 
generating test data and checking CARE properties. 
We defined a new operator Modalities to generate 
tests for multimodal events. The CARE properties 
are tested by the TestEquivalence, 
TestRedundant_EquivalenceEarly and 
TestcomplementaryEarly operators.  
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