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Abstract: The automated provisioning and management of Cloud applications is supported by various general-purpose
technologies that provide generic management functionalities such as scaling components or automatically re-
deploying parts of a Cloud application. However, if complex applications have to be managed, these technolo-
gies reach their limits and individual, application-specific processes must be created to automate the execution
of holistic management tasks that cannot be implemented in a generic manner. Unfortunately, creating such
processes from scratch is time-consuming, error-prone, and knowledge-intensive, thus, leading to inefficient
developments of new applications. In this paper, we present an approach that tackles these issues by enabling
the usage of choreographies to systematically combine available management workflows of existing applica-
tion building blocks. Moreover, we show how these choreographies can be merged into single, executable
workflows in order to enable their automated execution. To validate the approach, we apply the concept to
the choreography languageeBL4CHOR and the Cloud standard TOSCA. In addition, we extend the Cloud
application management ecosystem OpenTOSCA to support executing management choreographies.

1 INTRODUCTION automation of complex, holistic, and application-
specific management processean open issue. Au-
Due to the steadily increasing use of information tech- tomating complex management processes, e.g., mi-
nology in enterprises, accurate development, provi- grating an application component from one Cloud to
sioning, and management of applications becomes ofanother while avoiding downtime or acquiring new li-
crucial importance to align business and IT. While cences for employed software components, typically
developing application components and modelling requires the orchestration of multiple heterogeneous
application architectures and designs is supportedmanagement technologies. Therefore, such manage-
by sophisticated tools, application management still ment processes are mostly implemented using work-
presents major challenges: Especially in Cloud Com- flows languageslLeymann and Roller, 2000e.g.,
puting, management automation is a key prerequisite BPEL (Keller and Badonnel, 2004r BPMN (Kopp
since manual management is (i) too slow to preserve €t al., 2013, since other approaches such as scripts
Cloud properties such as elasticity and (ii) too error- are not capable of providing the reliability and robust-
prone as human operator errors account for the largesness of the workflow technologiérry et al., 2011

fraction of failures in distributed systemBrown and Creating management processes, however, re-
Patterson, 2001Oppenheimer et al., 2003 Thus,  quires integrating the different invocation mecha-

management automation is a key incentive in modern nisms, data formats, and transport protocols of each
IT. employed technology, which needs enormous time

While various management technolodiexist ~ and expertise on the conceptual as well as on the
that are capable of automatiggnericmanagement  technical implementation leveB¢eitenbiicher et al.,
tasks, such as automatically scaling application com- 2013).
ponents or installing single software components, the 14 avoid continually reinventing the wheel for

1E.g., configuration management technologies such as problems that havg been already solved multlple t.|mes
Chef Opscode, Inc., 20350r Puppet Puppet Labs, for other applications, developing new applications

Inc., 2015, or Cloud management platforms such as by reusing and combining proven (i) structural ap-
Heroku Coutermarsh, 2034 plication fragments as well as (ii) the corresponding
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available management processes would pave the wayreusing TOSCA-based applications and their manage-
to increase the efficiency and quality of new devel- ment plans by introducing management choreogra-
opments. However, while automatically combining phies. InSection 4we formally discuss the step of
and merging individual application structures is re- the method, that transforms a choreography into an
solved Binz et al., 2013p integrating the associated executable management plan. Sectoralidates the
management processes is a highly non-trivial task thatmethod proposed ifsection 3and Section 6con-

still has to be done manually. Unfortunately, simi- cludes the work.

larly to manually authoring such processes, this leads

to error-prone, time-consuming, and costly efforts,

which is not appropriate for modern software devel- 2 BACKGROUND & RELATED

opment and operation.

In this paper, we tackle these issues. We first WORK
present a method that describes how to employ chore-
ographies to systematically reuse existing manage-This section discusses background and related work
ment workflows. Choreography models enable coor- about (i) the Cloud standard TOSCA, (ii) manage-
dinating the distributed execution of individual work- ment workflows, and (iii) the transformation and con-
flows without the need to adapt their implementa- solidation of choreographies. Bection 2.3 we in-
tion. Thus, they provide a suitable integration basis troduce a motivating scenario that is used throughout
to combine different management workflows without the paper to explain the approach.
the need to dive into or change their technical imple-

mentation. 2.1 TOSCA and Management Plans
Since choreographies are not intended to be ex-
ecuted on a single workflow engine—which is a
mandatory requirement in application management as
typically sensitive data such as credentials or certifi-
cates have to be exchanged between the coordinate
workflows—we present a process consolidation ap-
proach that transforms a choreography including all
coordinated workflow mggdels into one s_mgle FXe- per and simplify constructs, where possible, for the
cutat_)Ie Ao mod_el. The.consolidation resu!ts sake of comprehension. For more details, we refer
also in a faster execution due to reduced communica-jtarested readers to the TOSCA Specification{

tion over the wire. It also simplifies deployment as SIS, 2013pand the TOSCA Prime@ASIS, 2013
only a single workflow has to be deployed instead of TOéCA defines a meta-model for descri'bing (i) the

various inte_r_acti_ng workflows along W_ith the choreog; structure of an application, and (ii) their management
raphy spemﬁcatlpn |tsglf. Thus, reusing managgment processes. In addition, the standard introduces an
vyorkflows foIIowmg this approach Ieads to 5|gn|f|cqnt archive format that enables packaging applications
time and cost savings when developing new applica- 54 5| required files, e.g., installables, as portable

tions out of existing building blocks. archive that can be consumed by TOSCA runtimes to
To validate the presented approach, we apply provision and manage new instances of the described
the developed concepts to the choreography mod-gpplication. The structure of the application is de-
elling language BELACHOR (Decker et al., 2007 scribed in the form of ampplication topologya di-
and the Cloud standard TOSCAOASIS, 2013b  rected graph that consists of vertices representing the
OASIS, 2013 For this purpose, we developed a components of the application and edges that describe
standard-based, open-source Cloud application man+he relationships between these components, e. g., that
agement prototype by extending the OpenTOSCA 3 \Webservecomponent isnstalled on anoperating
ecosystemBinz et al., 2013pKopp et al., 2013Bre-  system Components and relationships are typed and
itenblcher et al., 2034n order to support managing may specify properties and management operations
applications based on choreographies, that are transtg pe invoked. For example, a component of type
parently transformed into executable workflows be- ApacheWebservenay specify itdP-addressas well

In this section, we introduce th&opology and
Orchestration Specification for Cloud Applications
TOSCA) which is an emerging standard to describe
loud applications and their management. We ex-
plain the fundamental concepts of TOSCA that are
required to understand the contributions of this pa-

hind the scenes. as theHTTP-portand provides an operation deploy
The remainder is structured as followsSec- new applications. In addition, required artifacts, e. g.,

tion 2 provides background and related work infor- installation scripts or binaries implementing the appli-

mation along with a motivating scenario. Bec- cation functionality, may be associated with the corre-

tion 3, we conceptually describe the method for sponding components, relationships, and operations.

182



A Method for Reusing TOSCA-based Applications and Management Plans

= f— SIS, 200% or BPMN (OMG, 2011, that enable de-
L= il scribing workflows in a portable manner. Standard-

(dependsOn) . .
- p compliant workflow engines can be employed to auto-
@do ) Eo matically execute these workflow models. The work-
ostedOn, installedOn .
3 flow technology is well-known for features such as re-
(ApacheWebserver)
VM
Install

liability and robustnesd gymann and Roller, 2000
thus, providing an ideal basis to automate manage-
Module
Deploy PHP

ment processeXeéller and Badonnel, 2004 In ad-
dition, there are extensions of workflow standards
Application

HTTP-Port: 8080
Credentials: ~ [...]

i (hostedOn)

(Ubuntu12.04VM)

which are explicitly tailored to the management of

applications. For example, BANATOSCA Kopp

et al., 2012 is an extension to easily describe man-

agement plans for applications modeled in TOSCA.

TOSCA supports using arbitrary workflow languages
: for describing executable management pldDAS$IS,

Figure 1: TOSCA Example: Topology (left) and provision-  2013H.

ing plan (right). Fig. 1 shows a simplified management workflow

on the right that automatically provisions the appli-

Thereby, TOSCA enables describing the entire struc- cation (data flow modeling is omitted for simplic-
ture of an application in the form of a self-contained ity)- The first activity reads properties of components
model, which also contains all information about em- and relationships from the topology model, which
ployed types, properties, files, and operations. These€nables customizing the deployment without adapt-
models can be used by a TOSCA runtime to fully ing the plan. Other information, €.g., the endpoint
automatically provision instances of the application Of Open Stack, are passed via the plan’s start mes-
by interpreting the semantics of the modeled struc- Sage. Using these information, the plan instantiates
ture (OASIS, 2013aBreitenbiicher et al., 204 a new virtual machine by invoking the HTTP-API
Fig. 1 shows an example on the left rendered us- o B Stagk. Afterwgrds, the_plan ecome
ing VINOATOSCA @reitenbiicher et al., 2032The access the virtual machine and installs the Apache
shown topology describes a deployment consisting of Webserverand the PHP. module using Cliggcode,
a PHP application that is hosted on akpacheWeb- In_c., 2013, a con_ﬁgu_ratlo_n management technology.
server running on a virtual machine (VM) of type Finally, the application files, which have been ex-
Ubuntu12.04VMThis VM is operated by the Cloud tracted from the topology, are deployed on the Web-
managem.ent syste@penStackTo run the PHP ap- server and the application’s endpoint is returned.
plication on an Apache Webserver, RHPModule The TOSCA standard additionally defines an ex-
needs to be installed. In the topology the component g:]:r?a?;e:r?g:taglzspzzzagﬁ rt;)glzl%%yfi[gg?slfﬁ;%g?;,
types and relationship types, e.g., the desheste- . .
dOn of the VM, are put in brackets. The component of a ClService Archive (.CSARQ)ASIS' 2013b
properties, e.g., the desir@AM of the VM, are de- OASIS, 2013a These archives are portable across
picted below the component types. The actual appli- standarpls-compllant_TOSCA runtimes and prowde
cation implementation, i. e., the PHP files implement- the basis to automatically provision and manage in-
ing the functionality, is attached to the PHP compo- stances of the merIed application. Runtimes such
Inegnt Hnet W P as OpenTOSCARinz et al., 2013p also enable
Wh'l th L £ simpl licati automatically executing the associated management
be d |e_bedpr0\;_|s_|3n|rggo S”:]‘pte apl)p Ica |onds Ta” workflows, thereby, enabling the automation of the
e describedmpliCitly Dy such 1opology moCelS, — antjre |ifecycle of Cloud applications described in
TOSCA also enables describing complex provision- togca. Thus, TOSCA provides an ideal basis for

ing and management processes in the forexfic- gy stematically reusing (i) proven application struc-
itly modeledmanagement plansManagement plans — y\re5 a5 well as their (i) management processes as

are executable workflows that specify the (i) activities pqih can be described and linked using the standard.
to be executed, (ii) the control flow between them,

i.e., their execution order, as well as (iii) the data .

flow, e.g., that one activity produces data to be con- 2-2 Choreography Transformation

sumed by a subsequent activityeymann and Roller,

2000. There exists standardized workflow languages There exist manual approaches for transforming
and corresponding engines, for example, BPBIA{ choreographies to executable processes (plans).

RAM: 4GB
Cores: 2

-
i (hostedOn)

(OpenStack)
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Figure 2: Motivating scenario showing that managementgplave to be combined to reuse existing topology models and
management processes.

Hofreiter et al. Hofreiter and Huemer, 200&ug- 2.3 Motivating Scenario
gest for instance a top-down approach where business

partners agree on a global choreography by specify-This section describes a motivation scenario based
ing the interaction behavior the processes of the part-on the previous example to explain the difficulties
ners have to comply with. The choreography and the of implementing executable management plans and
corresponding processes have to be modeled in UML the significant advantage that would be enabled by
and the authors propose a manual transformation t0an approach that facilitates systematically reusing and
BPEL. Mendling et al. Mendling and Hafner, 2008 combining existing workflows. As described be-
use the Web Service Choreography Description Lan- fore, for provisioning the PHP-based example ap-
guage (WS-CDL) Kavantzas et al., 20030 model  plication several management tasks have to be per-
choreographies and to generate BPEL process stub§ormed: Open Stack's HTTP-API has to be invoked
out of it. However, these process stubs have to befor instantiating the VM while SSH and Chef are
also completed manually. Another drawback of WS- ysed to install the Webserver. However, already
CDL is that it is an interaction choreography which  thjs simple example impressively shows the difficul-
is less expressive than interconnection models as Wetjes: Two low-level management technologies includ-
will briefly discuss inSection3.3 ~ing their invocation mechanisms, data formats, and
In Section 4a process consolidation algorithm is - transport protocols have to be (i) understood and
presented to generate an executable process from gjiy orchestrated by a workflow. This requires com-
choreography. Existing process consolidation tech- plex data format transformations, building integration
niques, e.g., from Kaster et aKiister et al., 200B  wrappers to invoke the technologies, and results in
or Mendling and Simon\lendling and Simon, 2006 many lines of complex workflow cod@teitenbiicher
focus on merging semantically equivalent processes, et al., 2013. Thus, implementing such manage-
which is different from the proposed consolidation ment plans from scratch is a labor-intensive, error-
algorithm that mergesomplementingrocesses of a  prone, and complex task that requires a lot of exper-
choreography into a single process. tise in very different fields of technologies - reach-
In contrast to our approach Herry et aHery  ing fromhigh-levelorchestration téow-levelapplica-
etal., 2013aim to execute a former centralized man- tjon management. Therefore, systematically reusing
agement workflow in a decentralized fashion. To ac- existing plans and combining them and coordinating
complish that they are describing an approach to de-them would significantly improve these deficiencies.
compose the management workflow into a set of dif- Fig. 2 shows an example how TOSCA may
ferent interacting agents coordinating its execution. support this vision. On the left, the provisioning
plan and the topology of the TOSCA example in-
troduced inSection 2.1lis shown. On the right, a
topology is shown that describes the deployment of
a MySQL database including the corresponding pro-
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Application Application Application
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Figure 3: Steps of the method to systematically reuse TOB&%&d (i) application topologies and (ii) their correspogd
management plans.

visioning plan. This plan automatically provisionsa 3.1 Select and Merge TOSCA Topology
new VM, installs the MySQL database management Models

system, creates a new database, and inserts a specified

schema, which is attached to the MySQL component.
Thus, if a LAMP-applicatiof has to be developed,
the two topologies could be merged and connected
with a new relationship of typ€QLConnectionOb-
viously, to provision the combined stack, also their
provisioning plans have to be combined. However,
while merging TOSCA topology models can be done
easily using tools such as Winedpp et al., 2013
manually combining workflow models is a crucial
and error-prone task since (i) the individual control
flows and possible violations have to be considered,
(ii) low-level artifacts, e. g., XML schema definitions,
have to be imported, and (iii) typically hundreds of
lines of workflow code have to be integrated. Han-
dling these issues manually is neither efficient nor re-
liable. Therefore, a systematic approach for combin-
ing TOSCA topologies and management plans is re-
quired that enables combining plans without the need
to deal with their actual implementation.

In the first step, the application developer sketches the
desired deployment and selects appropriate TOSCA
topology models from a repository to be used for
its realization. The selected topologies are merged
by copying them into a new topology model, which
provides arecursive aggregation modelks the result

is also a topology that can be combined with others
again. This is a manual step that may be supported
by TOSCA modeling tools such as the open-source
implementation WineryKopp et al., 2013 In pre-
vious works, we showed how multiple application
topologies can be merged automatically while pre-
serving their functional semanticBi6z et al., 2013pn
and how valid implementations for custom compo-
nent types can be derived automatically from a repos-
itory of validated cloud application topologieSdl-
dani et al., 201p These works support technically
merging individual topologies, but the general deci-
sions which topologies to be used are of manual na-
ture as only developers are aware of the desired over-
all functionality of the application to be developed.

3 AMETHOD TO REUSE
TOSCA-BASED APPLICATIONS 3.2 Connect Merged Parts of the

_ _ _ Application
This section presents a generic method to systemat-
ically reuse existing TOSCA-baseq t_opology models The resulting topology model contains isolated topol-
and their management plans_as building blocks_for the ogy fragments that may have to be connected with
development of new applications. The method is sub- 50 gther. For example, the motivating scenario re-

divided in two phases and shownHiig. 3. () aman- 4 jires the insertion of 8QLConnectiomelationship

gal rr:odeling anSeNhiCh desc;,jribles how ap?.plic_ationb to syntactically connect the merged topology models.
evelopers and manager model new applications by qjnq \ell-defined relationship types enables speci-

reusing existing topol_ogy models_ and plans, and (ii) fying the respective semantics. This is also a man-
an aptomated execution phasahlch enables auto- step as these connections exclusively depend on
matically deploying and managing the modeled ap- 0 gesired functionality. Moreover, TOSCA enables
_pl|cat|o_n: The five steps of the method are explained specifying requirementsand capabilitiesof compo-
in detail in the following. nents, which can be used to automatically derive pos-
sible connections@ASIS, 20135 Modeling tools
may use these specifications to support combining the
individual fragments, but in many cases the final de-
2An application consisting of inux, Apache, M/SQL, cisions must be made manually by the application de-
PHP components velopers. For example, if multiple business compo-
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nents and databases exist, in general, a modeling tookoordinates three management workflows of the mo-
cannot derive with certainty which component has to tivating scenario. The coordination plan invokes in

connect to which database. parallel the provisioning workflows of the PHP and
MySQL topology models, respectively, by specifying
3.3 Coordinate Management Plans by message links to their receive activities. After their

execution, messages are sent back to the coordina-
tion plan, which continues with invoking the afore-
mentioned management workflow for transferring the
Similarly to connecting isolated topology fragments, database information (endpoint, database name, and
their management plans need to be combined for real-credentials) to the PHP application by invoking the
izing holistic management processes that affect |argercorresponding management Operation_
parts of the merged application at once, for example,
to terminate the whole application. However, as dis- 3 4  Transform Choreographies Into
cussed inSection 2.3 manually merging workflow
models is a highly non-trivial and technically error- Executable Workflows
prone task. Therefore, we propose usintercon-
nection choreographiedo coordinate the individual
workflows without changing their actual implemen-
tation. Interconnection choreographies define inter-
action specifications for collaborating processes by
interconnectingcommunication activitiesi. e., send
and receiveactivities, of these processes via set of
message links This enables modeling different in-
teraction styles between the individual managemen
workflows, e.g., asynchronous and synchronous in-
teractions. Thus, in this step, (i) application man-
agers analyse required management processes, (ii) s
lect appropriate management workflows of the indi-
vidual topology models, and (iii) coordinate them by
modeling choreographies. In addition, (iv) dependin .
on requi?ed inputganrt)j output parametérs) of ?he indg 3.5 Deploy and Execute Resulting
vidual workflows, the data flow between the work- Workflows
flow invocations has to be specified. For example,
the MySQL provisioning workflow of the motivating  In the last step, the generated workflow model is de-
scenario outputs the endpoint and credentials of theployed on an appropriate workflow engine. After-
database, which are required to invoke a managemeniyards, the plan can be triggered by sending the start
plan of the PHP model that connects the PHP frontend message to the workflow’s endpoint. TOSCA run-
to this databade This is a manual step as the desired times such as OpenTOSCABIfz et al., 2013pex-
functionality, in general, cannot be derived automati- plicitly support management by executing such work-
cally for application-specific tasks. For example, the flows.
individual provisioning plans of the motivating sce-
nario can be used to model the overall provisioning
of the entire application as well as to implement man- 4 PROCESS CONSOLIDATION
agement plans that scale out parts of the application
to handle changing workloads.

Fig. 4 shows an example of a choreography that

Choreographies

After manually modeling the choreography, the re-
sulting model has to be transformed into an exe-
cutable workflow. This has to be done as choreogra-
phies are not suited to be executed on a single work-
flow machine: unnecessary communication effort be-
tween the different workflows would slow down the
execution time\\agner et al., 200)3and passing sen-
tSitive data over the wire, e.g., the database creden-
tials, is not appropriate. Therefore, in this step, the
choreography is automatically translated into an exe-
e(;utable workflow model. This transformation is de-
scribed in the next section in detail and implemented
by our prototype.

To transform the management choreography into an
executable workflow we provide an algorithmSec-
3In contrast to interaction choreographies that model tion 4.2that implements the pracess consolidation ap-

message exchanges as abstract interactions not congiderin proach described irWagngr etal., 20])2and. Q/Vag_—
the workflow implementation. ner et al., 201% In Section 4.3the algorithm is

4Such management workflows can be realized in a @pplied on the provisioning choreography shown in
generic manner by binding them exclusively to operations Fig. 4.
defined by the respective component type. TOSCA enables
exchanging the implementations of these operations on the
topology layer to implement application-specific manage-
ment logic.
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Figure 4: Provisioning choreography coordinating thre@aggment workflows of the PHP and MySQL TOSCA models.

4.1 Choreography Meta-model fore its successors can be executed, i.e., it “blocks”
until the response is received. Response messages to
The algorithm bases on the interconnection choreog-synchronous calls must be answered by anctbed
raphy meta-model that is defined in the following. activity following ther ecei ve in the control flow. A

The choreography meta-model uses the process metat ask activity a € Aiask C A performs certain manage-
model introduced byl{eymann and Roller, 20QG&s ment logic, such as executing human tasks, calling
foundation. For simplicity reasons constructs such scripts etc. Anopaque activity acts as placeholder

as compensation spheres or loops are omitted in thisfor concrete business functions ambp activities do
meta-model. not perform any business functions.

Definition 1 (Process) A process p= (A,E, L,Cond) The set of incoming control links of an activity
is a directed acyclic graph where A is the set of activ- & are denoted a& ™~ (a) = {(&,a,¢)|(&,a,c) € E}.
ities. EC Ax A is the set of directed control links be-  The set of outgoing control links & is denoted as
tween two activities. If two activities are not directly E™(8) = {(a,&,¢)[(a,a,c) € E}. The join condi-
or indirectly related over control links they are per- tion of an activity can be obtained with the function
formed concurrently. L denotes the set of labels usedjoinCond : A— Cond

to identi_fy process ele_m_ents and Cond denotes the sepgfinition 3 (Fault-Handling Sphere)A fault han-
of conditions used within p that can be evaluated to dling sphere s= S A is an activity that groups a

true Or false. set of activities and defines a common fault handling
Definition 2 (Activity). An activity ac Aisdefinedby  behavior on them. A sphere is defined by the tuple
the tuple a= (nametype jc) where name L, jc € s= (A,E,FH) where A denotes the set of grouped
Cond, types T and T= {send,r ecei ve, t ask, activities and E the links between them. If an ac-
noop, opaque, spher e}. tivity within a sphere throws a fault, all other ac-

The setAsendC A represents all activities of type tivities within this sphere are terminated. The set
send. These activities send messages to another pro--H & (LU {L}) x Ax E represents the set of fault
cess via a message linkl € % £. The messages can handlers attached to a sphere. A faul_t handlerlth
be received by ecei ve activitiesAgy C A. A send (faultNameA,E) reacts on a fault with a defined
supports either the asynchronous or synchronous one'@me faultName L that may be thrown by the activ-
to-one interactiof pattern Barros et al., 2005 The ities within the sphere. A sphere may have one fault
asynchronousend activity sends a message to the handler attached where faultName L. It reacts
recei ve within the other process in a “fire and for- 0N all faults being not caught by the other fault han-
get” manner, i. e., after the message was serg¢he dlers. The fault handling logic consists of the fault
completes and its successor activities are performed.handling activities and the links between them. The
A synchronousend activity, in turn, waits until it re- name of a fault handler can be obtained with the func-
ceives a response from the called partner process belion faultName :FH — L.

SIn one-to-one interactions a send activity sends a mes- The child activities ofa Process, a sphell’e or a.fault
sage to exactly one receive activity, while in one-to-many handler can be obtained with the functioildren :

interactions a send activity communicates with multiple re P USUFH — A. Accordingly, the functioriinks :
ceives, e. g., via loops. PUSUFH — E returns the control links between the
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activities. Note, for simplicity reasons we assume that Algorithm 1: Process Consolidation.

control links are defined within the same modeling 1. procedure CONSOLIDATE(C)

construct as their source and target activities. This ».
implies that no control link must cross the boundary 3.

of a modeling construct.

Definition 4 (Choreography)A choreography G C

is defined by the tuple € (P, ML), i.e., it con-
sists of a set of interacting processBsand the mes-
sage linksM L between them. A message link ml
connects a sending and a receiving activityf £ C

AsendX Arcy. YMl € M L : Py £ P, AP, P € P where 10:
P1 = process(Asend), P2 = process(Arcy). A message  11:

link is activated when the sending activityegy € 12:
Asengis started. A receiving activity;@ € Ay can- 13:
not complete until its incoming message link was ac- 14:
tivated. 15:

The process defined within a choreography can be 16:

obtained with the functioprocesses : C — P. The
functionssend : M £ — Ageng andreceive : ML —
Ay return the send and receive activity of a given

message link. 19

4.2 Choreography-based Process 2
Consolidation od

©NDT R

17:
18:

20:

P, < new Process
for all P € processes(C) do
S<— newsphere
children(s) < children(P)
fh < newf aul t Handl er
children(fh) <— {newnoop}
faultName(fh) < L
faultHandlers(s) < faultHandlers(P) U { fh}
children(Py,) < children(Ry) U {s}
links(Py) < links(P,) Ulinks(P)
end for
for all ml € messageLinks(C) do
send« send(ml)
rcv < receive(ml)
ML;p <— {messageLinks(C)|
receive(ml) = send}
if MLrp # O then
MATERIALIZE SYN(sendreceiveMLp)
else
MATERIALIZE ASYN(sendreceive
end if
end for
CLEANUP(R)

24: end procedure

The process consolidation operation gets a choreog-

raphy as input and returns a single procBgs The
operation ensures th&, contains all activitiestask
defined within the processes Gfand that the execu-
tion order between these activities is preserved, i.e., ,
P. is able to generate the same set of activity traces o
Awaskduring runtime a€ (Wagner et al., 2012). As

the consolidation steps were only described conceptu-
ally in previous works, we provide a formal descrip-
tion of the consolidation steps ilgorithm 1. Note,
since the implementation of data flow is language-
dependent the algorithm focuses only on the contro
flow aspects of the consolidation.

First the proces®, is created and all activi-
ties of C along with the control links between them
are moved toP, (lines 10 and 11). The activities
A and A originating from different processes @
(process(Aj) # process(A;)) have to be isolated from
each other iP,. This ensures that the originally mod-
eled behavior is preserved, that faultsAnare not
propagated to activities from;, which would lead

inating from different processes from the interaction
patterns defined il€. Therefore Algorithm 1 visits
each message link (lin€3), determines the interac-
stion pattern implied by it and calls the correspond-
ing materialization operation. If the visited message
link ml originates from a sending activity that is also
target of one or more other message limki,p this
implies a synchronous interactidwL,p. In this case
the response for the request made awérs sent via
| one of the message links ML,. Due to space rea-
sons only the materialization for asynchronous inter-
actions is described in the following. A more detailed
description of the materialization for synchronous in-
teractions (called in lin&8) can be found in\(Vagner
etal., 2012.

The materialization for asynchronous interactions
is implemented byAlgorithm 2. The algorithm re-
places the communication activitisendandreceive
with thesynchronization activities syandsync. Ac-

to their termination. The isolation is guaranteed by tivity syr serves as synchronization point for the con-

adding spheres for each proc&st be merged. The
spheres act as container for the activity graphPof

trol links of the formersend thus, it inherits the con-
trol links and join condition of theendactivity. Ac-

Each of these spheres has a fault handler attached tdivity syn. gets the control links and join condition
it catching all faults that may be thrown from the ac- of thereceiveassigned (line$§ to 8). This preserves

tivities within the sphere.

the control flow order between the predecessor and

Then the control flow materialization is performed successor activities of the formezceive To emu-
which derives the control flow between activities orig- late the control flow constraint implied by an asyn-
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LAMP Provisioning Plan (P,) LAMP Provisioning Plan (P,)
el,, <} e3,,
Read Topology Read Topology
Properties Properties
v ¥
Read Topology Read Topology [# Create ] [ # Create ]
Properties Properties - M - VM
# Install ﬁ' Install
Webserver MySQLDBMS
v [2
ﬁ' Install PHP # Create DB
Module Instance
v ¥
# Install PHP [ # eplo ] [ # peerioe ]
Module Schema
- syné,. < >
Deploy PHP Insert DB
Application Schema
syn,
syn2, <-|>— syn

Figure 5: Consolidation of provisioning choreography isitagle LAMP provisioning plan.

Algorithm 2: Asynchronous Control Flow Materialization. 4.3 ~ Consolidation Example

1: procedure MATERIALIZE ASYN(sendreceiveg _ o

2. syn; < newopague The single processAMP Provisioning Planon the

3:  Syne < newopaque left of Fig. 5 results from the application oAl-

4:  children(P,) « children(P,) — send— receive gorithm 1 on the provisioning choreography. As
5. esyn=newl i nk(syn,syne,true) all plans interact asynchronously via message links
6: E(syn) <« E~(send mll to ml6 the asynchronous control flow ma-
7. E“(sym) + E<(send Uegyn terialization is applied. Thus, the sending and
8: joinCond(syns) < joinCond(send receiving activities related to each message link
9. E7(sync) « E(receive Uesyn are replaced with synchronization activity pairs
10:  E*(sync) « E“ (receive (syrlls, syricc), ..., (SyrBs,Syrbrc). The correspond-
11:  joinCond(sync) « joinCond(receive AND esyn ing control linkselsyn, ..., e6syn €nsure that the con-
12: end procedure trol flow order implied by the message links is pre-

served. The new control linke2sy, and edsy, along
with join conditions (not depicted iRig. 4) guarantee

for instance thatnvoke SetDB Operatiois not exe-
cuted before the other management tasks completed.

chronous interaction, i. e., that successor activities of
the formerreceiveare not started before the message

was sent over the message link, a new control link As stated before, depending on the workflow lan-
Esynis created betweesyn; andsyne. The synchro- guageAlgorithm 1 may create redundant control flow

nization activities are of typepaque as their imple-
mentation is language-dependent. For instance Whencons_tr_uct_s that can be removepl fréin Th? LAMP
provisioning plan on the left dfig. 5contains some

SBPMi': ;:hbc;;en%%riﬁphlzsrazlalreel Cg?jv?lgda;ﬁg’ t:]htae ttypee (;)ff redundancies, for instance redundant branching paral-
Y1 9p 9 y yp lel gateways (with just one outgoing link) and merg-

Syne is a merging parallel gateway. : o . L
After the control flow materialization was per- ing parallel gateways (W'th Just one lncomlng_llnk).
formed the process consolidation can complete. How- The concrete optimization (clean pr) mecham_srr_] for
) BPMN models is out of scope of this work and is just

ever, we introduce an additional optional “clean up” shown in an exemplary manner. The results of the op-
(optimization) step in lin@3for decreasing the com- timization is the LAMP provisioning plan on the right

ﬂgxngeafré? ifr?sttg?lzreoglznh%\?ee drgaciggqltt\)//ir?u.reg:ﬁ dant of Fig. 5. The plan preserves the control flow order
y y 9 between the activities that was specified in the man-

activities and control links that were created during agement choreoaranhy presentedsin. 4 For the
the consolidation. This step is language dependent 9 : grapny pres g, 4 T .-
sake of clarity, the spheres isolating activities origi-

gglc:)cvot further discussed here but an example is g|vennating from different plans are not shownfig. 5
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Figure 6: Architecture of the open-source Cloud manage-
ment prototype.

5 VALIDATION

In this section, we validate the practical feasibility of
the presented method by a prototypical implementa-
tion. We applied the method and merge algorithms to
the choreography modeling language BPEIH®

and extended the OpenTOSCA Cloud management
ecosystem to support choreographies. This ecosysterﬁa

consists of (i) the graphical TOSCA modelling tool
Winery(Kopp et al., 2013 the (ii) OpenTOSCA con-
tainer (Binz et al., 2013 and (iii) the self-service
portal Vinothek (Breitenbiicher et al., 2014 An
overview of the entire prototype is shown kig. 6
Application developers use Winery to merge exist-
ing topology models, while application managers use
the choreography modelling tool ChorDesignéie(3
and Karastoyanova, 20140 coordinate the associ-
ated management workflows.

Based on the merge algorithm describedSiec-
tion 4 a process consolidation tool was developed for

generating a single executable BPEL processes out o

a choreograpHy Therefore the algorithm was ex-
tended to accommodate the language idiosyncrasie
of BPEL. This includes the emulation of the chore-

ography’s data flow in the merged process and the

elimination of language violations that may arise dur-
ing control flow materialization, e.g., control links

erated management plans can be packaged as CSAR
using Winery. The resulting CSAR can be installed on
the OpenTOSCA container, which internally deploys
the workflows and, thereby, makes them executable.
To ease the invocation of provisioning and manage-
ment workflows, we employ our TOSCA self-service
portal Vinothek, which wraps the invocation of work-
flows by a simple user interface for end users. All
tools are available as open-source implementations,
thus, the developed prototype provides an end-to-
end Cloud application management system support-
ing choreographies for modelling coordinated man-
agement processes.

6 CONCLUSION AND FUTURE
WORK

To ease the development of new complex TOSCA-
based applications, we described a semi-automatic
method for building such applications by reusing ex-
isting application topologies and management plans.
Beside describing how existing applications can be
selected and wired, management choreographies were
introduced for enabling the coordinated execution of
existing management plans. To achieve the efficient
xecution of the management choreography on a sin-
gle workflow engine, an automatic process consoli-
dation algorithm for transforming the choreography
into a single executable management plan was sug-
gested. The method was validated by a prototype
consisting of different tools supporting the execution
of the different steps of the method. For validating
the approach BPEL4Chor was used as choreography
language as the OpenTOSCA ecosystem currently
only supports BPEL management plans and chore-
ographies. Since BPEL4Chor has the same model-
ing capabilities as BPMN collaborationisdpp et al.,
2011, the presented method can be also applied on

BPMN processes and collaborations, if BPMN sup-

port will be added to the ecosystem. In future work,

ve plan to create orchestrations from low-level man-

agement scripts to enable the systematic reusability of
artifacts on different levels of provisioning and man-
agement granularity.

crossing boundaries of loops. Beside asynchronous

and synchronous one-to-one interactions the tool doesACKNOWLEDGEMENTS

also support the consolidation of one-to-many inter-
actions Barros et al., 2005(Wagner et al., 2014
The merged topology model as well as the gen-

6The prototype is available as Open-source: https:/git
hub.com/wagnerse/chormerge
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