A Comparative Study of Programming Agents in POSH and GOAL

Keywords:

Abstract:

Rien Korstanje!, Cyril Brom?, Jakub Gemrot?> and Koen V. Hindriks!
LDelft University of Technology, EEMCS, Delft, The Netherlands
2Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic

Agent Programming, User Study, Novice Programmers, Advanced Programmers, Virtual Environment.

A variety of agent programming languages have been proposed but only few comparative studies have been
performed to evaluate the strengths and weaknesses of these languages. In order to gain a better understanding
of features in and their use by programmers of these languages, we perform a study which compares the
two languages GOAL and POSH. The study aims at advancing our knowledge of the benefits of using agent-
oriented languages and at contributing to the evolution of these languages. The main focus of the study is on
the usability of both languages and the differences between novice and more advanced programmers that use
either language. As POSH requires Java programming experience, we expected novice POSH programmers
to perform better on the tasks than novice GOAL programmers whereas we hypothesized this difference would
not be observed between more advanced programmers. However, results suggest that there is no significant
difference. The study does suggest that general experience and tooling support can make a difference. Analysis
of the tasks and the observations made about the use of the languages, moreover, suggests ways to improve

the experimental design in such a way that differences in usability of the frameworks could be established.

1 INTRODUCTION!

A variety of agent programming languages have been
proposed in the literature, see e.g., (Bordini et al.,
2005; Bordini et al., 2009), but only few comparative
studies have been performed to evaluate the strengths
and weaknesses of these languages. In order to gain
a better understanding of the use of language fea-
tures by programmers it is important to perform stud-
ies on various programming tasks in these languages.
Such studies advance our knowledge of the benefits of
agent-oriented programming and may contribute pos-
itively to the evolution of the paradigm.

In this paper we report on a study we performed in
which the agent programming languages GOAL (Hin-
driks, 2009) and POSH (Brom et al., 2006) are com-
pared empirically. Both languages take a different
approach to agent programming. GOAL is a rule-
based language for programming the decision mak-
ing of cognitive agents that uses an embedded logical
language for knowledge representation (e.g., Prolog).
POSH is based on Behaviour Oriented Design and
distinguishes between two layers: a high level rule-

'This work also has been presented at the Second AA-
MAS Workshop on Cognitive Agents and Virtual Environ-
ments (2013)

192

Korstanje, R., Brom, C., Gemrot, J. and Hindriks, K.
A Comparative Study of Programming Agents in POSH and GOAL.
DOI: 10.5220/0005799601920203

based planning layer on top of a layer that provides
support for executing low level actions and senses.

The main aim of the study has been to analyse
whether the different set of language features pro-
vided impact the performance of programmers on the
same set of tasks. Moreover, we are interested in gain-
ing a better understanding of the learning curve as-
sociated with agent-oriented programming languages.
Given that the POSH framework builds directly on
top of Java whereas the GOAL language uses Pro-
log for representing knowledge, we hypothesized that
the learning curve would be less steep for POSH than
for GOAL. More in particular, we expected novice
programmers in POSH to perform better than novice
GoAL programmers. For the coding tasks that we de-
signed, we expected this difference to disappear for
more advanced programmers that received more ex-
tensive training in programming in either language.

The study consists of a comprehension task and a
number of increasingly more complex coding tasks.
The coding tasks involved programming an agent that
controls a character in a virtual environment called
Emohawk that runs on top of the Unreal engine. Emo-
hawk provides a fairly complex environment but is
not as complex as the Unreal Tournament gaming
environment. Using Emohawk enabled us to design

In Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016) - Volume 2, pages 192-203

ISBN: 978-989-758-172-4

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

challenging but not too complex tasks. A basic agent
program was provided to start with that subjects could
inspect first and extend thereafter. By providing a
basic program not only a useful starting point was
provided but time needed to complete the tasks was
also reduced. Subjects were asked to extend the basic
agent in a number of consecutive coding tasks. Dur-
ing the experiment we collected data on the time it
took to complete each task and asked participants to
rate the usefulness of language features.

The paper is organized as follows. Section 2 dis-
cusses related work. In Section 3 we briefly discuss
the virtual environment used in our study whereas
Section 4 compares the agent programming languages
used. In Section 5 we discuss the experimental design
of the study. Section 6 presents results, which are fur-
ther discussed in Section 7. Section 8 concludes.

2 RELATED WORK

In this paper we report empirical results that allow us
to compare two agent programming languages. We
can also compare agent programming languages an-
alytically and we mention two examples of work in
that area. (Hindriks et al., 1998) formally compare
the agent languages AgentSpeak(L) and 3APL and
shows that the former can be embedded into the lat-
ter. It follows that 3APL is at least as expressive as
AgentSpeak(L) and any program that can be writ-
ten in AgentSpeak(L) can also be coded in 3APL
to do the same task but not necessarily vice versa.
(Bryson, 2003) presents a theoretical comparison be-
tween POSH and other action selection mechanisms
such as Environmental Determinism, Finite State Ma-
chines and Basic Reactive Plans. POSH was found to
be more expressive than these other frameworks for
programming reactive agents.

We briefly discuss some related studies that also
aim at empirically evaluating agent programming lan-
guages. (Lillis et al., 2012) evaluate a toolkit called
ACRE for conversation management between agents.
The focus of this study is on agent communication
and compares the performance of subjects that used
the toolkit with subjects that did not have access to
it. Results suggest that the toolkit can improve code
quality and reduces the code base but not necessarily
effort. The Agent Factory platform was used in the
study but use of language features was not analyzed.

(van Riemsdijk et al., 2012) present a qualitative
analysis of multi-agent programs for UNREAL TOUR-
NAMENT written in GOAL by first year BSc computer
science students. The aim of the study was to gain in-
sight into practical aspects of agent development and

A Comparative Study of Programming Agents in POSH and GOAL

to better understand some of the problems that agent
programmers face. The method used in (van Riems-
dijk et al., 2012) has been to analyse the multi-agent
program code that was developed by the students. The
paper discusses the actual use of language features in
this code. The study did not involve an experimental
design with programmers as subjects nor a compari-
son with other languages.

Agent programming languages have been empiri-
cally compared in only a few studies. (Gemrot et al.,
2012b; Gemrot et al., 2012a) aimed at evaluating
differences between programming agents in Java or
POSH for the virtual environment Emohawk. The
study, however, found that subjects using POSH and
those using Java performed similarly. Both studies
asked subjects to write code from scratch, i.e., no
code was provided initially. The second study also
included a comprehension task. Both studies lasted
eight hours, making fatigue a potential factor that may
have influenced the results found.

As we use a virtual environment called Emohawk
that runs on top of the Unreal gaming engine, we
briefly mention related work in the area of program-
ming gaming agents. (Heckel et al., 2009) evaluated
a tool called BehaviorShop and showed that the IDE
allowed users with little to no experience in Artificial
Intelligence to create high-level behaviors that con-
trol virtual characters. Subjects that were only given
a brief lecture on the basic concepts of BehaviorShop
were able to create fairly complex interactions. In our
study we also found that, given more general experi-
ence with programming, a short tutorial was sufficient
for subjects to code agents that control virtual charac-
ters. Our study is comparative, however, and different
from (Heckel et al., 2009) it also investigates which
language features are used.

3 EMOHAWK ENVIRONMENT

A challenging aspect of designing a comparative
study for agent languages concerns the choice of en-
vironment with which the agents interact. Toy ex-
amples, such as the Blocks World discussed in (van
Riemsdijk et al., 2012), for example, do not call for
the use of more advanced features of a language,
whereas the use of complex gaming environments
such as UNREAL TOURNAMENT may pose too many
challenges for a programmer to solve within the nec-
essarily limited time available during an experiment
(Gemrot et al., 2012a; Gemrot et al., 2012b).

For our study we have chosen to use the Emo-
hawk environment. Similar to UNREAL TOURNA-
MENT, Emohawk runs on top of the Unreal engine.

193

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

But it provides a very different environment featur-
ing a small town with several locations of interest and
several characters that can display text, emoticons and
animations (Bida and Brom, 2010). The size of the
Emohawk environment is small compared to maps in
UNREAL TOURNAMENT and thus presents less of a
challenge than the UNREAL TOURNAMENT game.

Like UNREAL TOURNAMENT, Emohawk is ac-
cessible through a software environment called Poga-
mut. Pogamut provides functionality to manage char-
acters in the Emohawk environment by means of
modules. These modules provide a wide range of
functionality and support various forms of locomo-
tion, displaying emotions, communication with other
bots, information, etc. They also manage information
about the world and allow an agent to query this infor-
mation. By combining modules, an agent can be pro-
grammed to do more complex tasks. For example, an
agent can request the Players module for the nearest
visible player (character) and then tell the Navigation
module to bring another character to that player.

For comparing the performance of GOAL and
POSH programmers, an environment should be used
that provides similar access to environment primitives
in both cases. This poses an additional (technical)
challenge as agents written in either language must be
able to interact with the same environment in a similar
way. Even though this concerns a mainly technical as-
pect of our study, the way access is provided to the en-
vironment thus needs to be carefully designed to make
sure that connecting to the environment does not sig-
nificantly change the tasks that subjects are asked to
complete. This also rules out, for example, the use
of the UNREAL TOURNAMENT gaming environment
in our study because of the significant differences be-
tween the interfaces that are available for connecting
GoAL and POSH to this environment.

We have used Pogamut for connecting both GOAL
and POSH to the Emohawk environment. POSH is in-
tegrated with Pogamut and can connect directly with
it. In order to connect GOAL to Emohawk, an en-
vironment interface had to be designed and created
that provides similar functionality. We used the En-
vironment Interface Standard for this (Behrens et al.,
2011). In order to make the same functionality pro-
vided by Pogamut available for GOAL and POSH
programmers, we restricted the set of Pogamut mod-
ules that were made available in POSH to those that
were present in the interface designed for GOAL or
for which similar functionality could be provided in
GoOAL otherwise. Technically, this was realised for
POSH by creating a custom context that provides ac-
cess to the selected modules. For GOAL, the same
functionality was either made available through per-

194

cepts and actions in the interface or via Prolog code.
The Prolog code in a GOAL agent represents knowl-
edge that is provided by Pogamut modules that oper-
ate on more basic data available in the environment.

4 LANGUAGES USED: GOAL &
POSH

Before we proceed, we introduce the main features of
the agent programming languages GOAL and POSH
used in our study and provide a brief comparison
which highlights the main differences and similarities
between the languages.

4.1 The GOAL Programming Language

GOAL is a logic-based agent programming language
for programming cognitive agents (GOAL, 2015;
Hindriks, 2009). GOAL agents maintain a mental
state that consists of beliefs and goals. Agents de-
rive their choice of action from their beliefs and goals.
GOAL agents also use a knowledge base to repre-
sent conceptual and domain knowledge. The version
of GOAL used in this study uses Prolog, a declara-
tive programming language used for representing the
knowledge, beliefs, and goals of an agent. A Prolog
program consists of Horn clauses, which are logical
rules and simple facts (Shapiro and Sterling, 1994).

GOAL is a rule-based language. The design phi-
losophy of GOAL is that writing agent programs es-
sentially means writing rules that determine for each
situation that the agent finds itself in what it should do
in that situation. Rules are ordered which allows for
imposing a priority on what needs to be done first.

GOAL agents execute a reasoning cycle that con-
sists of two phases. The purpose of the first phase is to
process all events such as percepts and messages and
make sure that the agent’s mental state is up-to-date.
In this phase the GOAL agent retrieves and processes
all perceptual information available from the environ-
ment to update the beliefs and goals of the agent. In
the second phase of the cycle agents decide what to do
next. Typically, in this phase one environment action
is selected and sent to an environment.

The concept of a module is a key programming
construct in GOAL for structuring and writing larger
agent programs. A module basically is a container for
a set of rules. A GOAL agent program then is a set
of modules. The event module corresponds to the
first phase in the agent’s cycle and is designed to sup-
port event processing whereas the main module corre-
sponds to the second phase and is designed to support

decision making. In addition, a special init mod-
ule is available for initialising the mental state and
other components of an agent. A programmer can
also add and write its own set of modules for structur-
ing and organizing code. GOAL also provides support
for communication between agents.

The GOAL language is distributed with an Inte-
grated Development Environment for coding, testing,
and debugging in the Eclipse environment. It pro-
vides the usual program editing tools as well as tools
to analyse and debug code.

4.2 The POSH Programming Language

POSH is a reactive action selection mechanism intro-
duced in (Bryson, 2001) to simplify the construction
of action selection for modular Al; see (Gemrot et al.,
2012b) for details on the POSH language. A pro-
grammer used to thinking about conventional sequen-
tial programs is asked to first consider a worst-case
scenario for his/her agent, then to break each step of
the plan to resolve that scenario into a part of a re-
active plan. Succeeding at a goal is the agent’s high-
est priority and attempted whenever the agent can. It
is the task of the programmer to write code that al-
lows an agent to recognize that it can meet a goal.
This needs to be done for all sub-goals: A perceptual
condition must be specified that allows the agent to
recognize if it can take an action that makes progress
towards its goal (Bryson, 2001). Actions are small
code chunks that control the agent briefly, so-called
behaviour primitives.

(Bryson, 2003) provides a development method-
ology called Behaviour Oriented Design (BOD) for
developing POSH agents. BOD emphasizes the
above development process, and also the use of be-
haviour modules written in ordinary object-oriented
languages (in our case, in Java) to encode the ma-
jority of the agent’s intelligence, including its mem-
ory. These modules provide the behaviour and sen-
sory primitives; methods calls are the interface be-
tween a high-level POSH plan and the low-level code
of the behaviour modules. A POSH plan can be orga-
nized hierarchically in a tree-like structure.

Technically, a plan consists of production rules,
very similar to modules in GOAL. Rules are also or-
dered by priority. In POSH, the antecedent or condi-
tion of a rule is a method call (i.e., a sensory primi-
tive). The head of a rule is either a method call, i.e.,
a behaviour primitive, or a set of sub-rules also called
a competence. At run-time, a POSH plan is periodi-
cally evaluated in order to determine the action, i.e.,
which behaviour primitive, the agent should execute.

A graphical editor for POSH plans is available and

A Comparative Study of Programming Agents in POSH and GOAL

used in the present study.
4.3 Comparison

It is clear that GOAL and POSH share some features
for writing agent programs that are similar. Both lan-
guages, for example, are rule-based. Rules are used in
GoAL as well as in POSH for deciding which action
the agent has to perform in a particular situation. Even
though the terminology used differs, we can at least
conceptually compare language features. In order to
enable comparison, we introduce five important con-
cepts related to programming agents and discuss how
each language provides support for these concepts.

The Agent’s State. A state represents everything
that the agent knows about its environment. A
POSH agent maintains a state by means of various
Java modules which process messages received
from the Pogamut environment that enables con-
trolling characters in Emohawk (see also Sec-
tion 3). A GOAL agent maintains a mental state
by processing percepts received from the Emo-
hawk environment via an environment interface
that connects the agent to the Pogamut environ-
ment. A GOAL agent not only updates its beliefs
but may also update its goals when it receives new
percepts.

The Plan. In both languages, a plan consists of
condition-action rules that allow an agent to de-
cide on what to do next given its current state. In
GoOAL such a set of rules is called a module. In
POSH such a set of rules is called a POSH plan.

Rule Conditions. Rules are condition-action rules.
Rule conditions in GOAL consist of Prolog
queries performed on the agent’s beliefs and/or
goals. Conditions of POSH rules cannot directly
query the agent’s state but use so-called ‘senses’
to evaluate rule conditions.

Rule Actions. POSH rules contain primitive and ag-
gregate actions. Through primitive actions POSH
has access to a large number of high and low
level actions provided by Pogamut (Gemrot et al.,
2009). A GOAL agent only has access to actions
that are provided by means of an environment in-
terface. In our study, that means that a GOAL
agent cannot directly access actions that are made
available by the Pogamut environment and only
has access to actions in that environment that are
made available explicitly in the environment in-
terface used by the agent.

Perception. In GOAL the event module can be used
to process percepts and store facts in the mental

195

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

state. POSH has no such feature and relies on
functionality provided by Pogamut to do this.

S EXPERIMENTAL DESIGN

In our study, we compared how programmers
used two agent programming languages. Subjects
also used the Integrated Development Environments
(IDEs) that were available for both languages. Sub-
jects were provided with an initial agent and asked
to complete several tasks which measured their abil-
ity to comprehend and modify agent program code.
The coding tasks were divided into several sub-tasks
that each built on the results of the previous task.
Subjects were also asked to complete three question-
naires. Subjects were asked to program in either
GoAL or POSH, and based on their experience classi-
fied as either novice or (more) advanced programmer.
We thus have four different groups: GOAL novices,
advanced GOAL programmers, POSH novices, and
advanced POSH programmers.

5.1 Aim of the Study and Hypotheses

The aim of the study is to establish whether there are
differences related to the usability of the program-
ming languages GOAL and POSH. More specifically,
we are interested in the learning curve of both lan-
guages. We therefore looked in particular at differ-
ences between novices that just started learning a lan-
guage and more advanced programmers that had re-
ceived more extensive training and practice.

The first hypothesis we formulated relates to the
question how quickly programmers are able to famil-
iarize themselves with either GOAL or POSH and how
long it takes before they can successfully complete
a coding assignment. We speculated that because
POSH requires programming in Java, a language fa-
miliar to all participants, and GOAL requires pro-
gramming in Prolog, novices would do better when
using POSH rather than GOAL. This seems a rea-
sonable hypothesis given that Prolog is perceived as
difficult to learn for novices (Pane and Myers, 1996).
Moreover, POSH plans, a key feature of the language,
are represented visually which is generally considered
to facilitate novice programmers. We thus hypothe-
sized that there would be a difference in the learning
curve which would it make easier for POSH novices
to perform well on the tasks of our study.

Hypothesis I. POSH novices perform better on all
tasks than GOAL novices.

Here, performance is measured in terms of success-
fully meeting the criteria of the task (see below) and

196

the time-to-complete. Generally, time-to-complete is
considered a relevant measure for establishing differ-
ences in usability.

As discussed, both GOAL and POSH provide sim-
ilar though distinct language features for program-
ming an agent at a conceptual level. Both languages
provide the features needed for solving the tasks of
the study. For a programmer that has been rela-
tively well familiarized with either language, given
the quite reasonable complexity of the tasks, we ex-
pected therefore that it should be possible to perform
well on these tasks. For this reason, we did not ex-
pect advanced programmers to perform very differ-
ently. Therefore we hypothesized that more experi-
enced programmers would achieve similar results in
more or less the same time. In case we would ob-
serve different performance, we would take this as an
indicator that there would be a real and significant dif-
ference between the languages.

Hypothesis II. Advanced POSH and GOAL pro-
grammers perform similarly on all tasks.

Finally, given that novice and more advanced pro-
grammers participated, we hypothesize that advanced
programmers outperform novices. This does not nec-
essarily have to be the case as advanced programmers
may complicate things more than novices but seems a
very reasonable assumption to make.

Hypothesis ITI. Advanced programmers outperform
novices on all tasks.

5.2 Tasks

In task-based evaluations, the relevance of the results
depends directly on the relevance of the tasks with
respect to the purpose of the study. Given that we
want to compare two agent programming languages,
the design of relevant tasks is a challenge. In order
to be able to perform a reasonable comparison, we
need to avoid very basic or trivial tasks but at the same
time design tasks that can be performed within a rea-
sonable amount of time. (Gemrot et al., 2012b) il-
lustrates that it is difficult to strike the right balance
and report that in their comparative study of POSH
and Java subjects became fatigued during an 8 hour
session and could not successfully complete the given
task. To avoid problems like this, we decided that the
duration of the experiment should not take longer than
4 hours. Moreover, multiple tasks were designed that
aim to measure performance on different skills, in-
cluding program comprehension and code writing. A
between-subjects design was used, i.e., each subject
was asked to complete the tasks only in one language.

Due to time constraints in general and the inexpe-
rience of the novice users, for the coding tasks, we did

not consider it feasible for subjects to create a rather
complex agent from scratch. Therefore the choice
was made to ask subjects to extend a given agent, by
means of a set of incremental tasks. Each consecutive
task was designed to be more difficult, starting with a
rather basic task and ending with a task that required
coding of more complex behaviour.

At the start of the experiment, subjects were pro-
vided with some time to familiarize themselves with
the development environment of the language and
were asked to run a given agent connected to the Emo-
hawk environment. This allowed subjects to try and
play with the software they were asked to use for com-
pleting the tasks. At this stage, we could provide
additional explanation where needed, address ques-
tions, or resolve potential issues and thus make sure
that very basic issues unrelated to the study would not
arise during the experiment itself.

Subjects were provided with an initial agent pro-
gram that performs a basic scenario in the Emohawk
environment. The agent controls a virtual character
and makes it do some work at home for a little while
before it then decides to get a cup of coffee. The ac-
tion of working and the need for coffee are graphi-
cally displayed in the environment by means of emoti-
cons. After deciding to get coffee, the agent walks
to the coffee shop, uses emoticons to order a dou-
ble espresso, and then returns home to make a re-
newed attempt to work again. This agent was used
in the comprehension task and provided the starting
point for the coding tasks. To ensure comparable dif-
ficulty of the tasks subjects needed to complete, the
agent was written in both POSH and GOAL follow-
ing a predefined specification. We also made sure that
the GOAL agent was able to provide similar function-
ality as the Pogamut framework provides (on top of
which the POSH agent runs) by means of adding sev-
eral Prolog rules as knowledge to this agent. For more
details on the tasks and the instructions that subjects
received, please see the materials we provided to sub-
jects (Materials, 2015).

Subjects were also provided with the documen-
tation that is distributed with GOAL and POSH. For
POSH, this material consists of the Pogamut source
code and documentation accessible through the IDE.
For GOAL, its programming manual and a manual
of the environment is provided. The lecture materi-
als from the tutorial that introduced the language to
novices were also provided to all subjects.

The experiment consists of two parts: the first part
concerns a program comprehension task and the sec-
ond part involved code writing.

A Comparative Study of Programming Agents in POSH and GOAL

5.2.1 Comprehension Task

For the comprehension task, subjects were provided
with an agent that controls an entity in the Emohawk
environment as discussed above that was written in
either GOAL or POSH. They were asked to examine
the program code and to answer a number of ques-
tions about the behaviour that the agent will display,
the flow of control of the agent, the structure of the
program code, and the interpreter that executes the
agent. The comprehension task was designed to mea-
sure how well subjects comprehend the agent pro-
gram provided to them. It also allowed subjects to fa-
miliarize themselves with the program code that they
needed to extend in subsequent tasks.

5.2.2 Coding Tasks

In the coding tasks subjects were asked to extend the
agent program they examined during the comprehen-
sion task in various ways. The tasks were presented
in order of increasing complexity and each task builds
on results obtained in the previous task. The main aim
of this incremental set of tasks is to create an agent
that implements the following scenario in the Emo-
hawk environment: two people (entities controlled by
agents) meet in a park, have a conversation, and there-
after visit the cinema together. The five coding tasks
asked subjects to write code that:

1. makes the agent walk to the park, a location in the
Emohawk environment,

2. makes the agent walk from that location to the cin-
ema,

3. creates a second agent that is able to do the same
(1,2 above) and makes the agents wait for each
other in the park,

4. simulates a conversation between both agents, and

5. makes the agents walk side by side to the cinema.

Subjects were asked to write down the time they
finished a question or task. This provided us with a
measure of progress for all subjects throughout the
experiment. To check whether subjects successfully
completed a task we ran the agent, observed its be-
haviour, and checked whether this behaviour met a
predefined list of criteria.

5.3 Questionnaire

Subjects were asked to complete three questionnaires
to collect qualitative data. One questionnaire was
given before the actual experiment, one questionnaire
was given in between the two main parts of the ex-
periment, and one questionnaire was given after com-

197

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

pleting the coding tasks (or when time ran out). Each
questionnaire took about 15 minutes.

5.3.1 Experience Questionnaire

The first questionnaire we designed to obtain informa-
tion about the subject (e.g., age), about prior program-
ming experience in relevant languages, and about
their experience with popular IDEs (e.g., Eclipse).
Subjects were asked to rate their own skill in pro-
gramming with Java, Prolog, POSH, and GOAL. Java
is required for programming a POSH agent but also
gives a subjective rating of programming experience
in a common and popular language that is used exten-
sively in education at both universities where students
were recruited. Experience with Prolog is needed to
program a GOAL agent.

The results from this questionnaire also provided
us with a means to check whether the different groups
that got different treatments (based on the various ex-
perimental conditions) were balanced in the following
sense. Groups should have more or less the same ex-
perience in programming, should be familiar with at
least one popular IDE, and age should be similarly
distributed over groups.

5.3.2 Post Comprehension Questionnaire

The second questionnaire was given to subjects af-
ter they finished the comprehension task. This ques-
tionnaire asked subjects to rate on a five point Likert
scale (strongly disagree to strongly agree) how useful
they found selected language features for understand-
ing the agent program provided to them. Questions
were posed in the form “was feature X helpful”. Sub-
jects could also select a “not applicable” option for
each feature. Additionally, they were asked to explain
their rating in words.

5.3.3 Post Coding Questionnaire

After completing the second set of coding tasks, a fi-
nal questionnaire was handed out to subjects. This
questionnaire asked subjects to rate the usefulness of
a language feature for completing the coding tasks.
For each feature they were asked to rate their agree-
ment with the question “was feature X helpful” on a
five point Likert scale (strongly disagree to strongly
agree). For each question there also was the option to
select “not applicable”. Additionally, subjects were
asked to explain their rating.

198

5.4 Treatments and Subjects

Based on the use of either GOAL or POSH and the
level of experience, we obtain four treatments: (i)
POSH novice, (ii) GOAL novice, (iii) advanced POSH
programmer, and (iv) advanced GOAL programmer.
We use ‘novice’ and ‘advanced’ here in the sense that
subjects that we label ‘novice’ had little experience
with a languages whereas ‘advanced programmers’
had received a more extensive training. Subjects as-
signed to the novice condition were only given an in-
troductory tutorial on GOAL or POSH of about two
hours well before the experiment took place. The tu-
torial consisted of a basic lecture on language features
that were needed to complete tasks and a demonstra-
tion of how to use the IDE of the language.

Subjects for the study were recruited from stu-
dents attending University Delft University of Tech-
nology with experience in GOAL and students from
University Charles University in Prague having ex-
perience with POSH.> None of the Delft Univer-
sity students were familiar with POSH and only very
limited experience with GOAL was reported by the
Prague University students. Therefore, we could as-
sign Prague University students to the GOAL novice
treatment and Delft University students to the POSH
novice treatment. GOAL novices should at least have
some experience with Prolog whereas POSH novices
should at least have some experience with Java. Re-
sults shown in Table 1, obtained from the first ques-
tionnaire where subjects were asked to report on their
own programming experience in terms of man months
a language had been used, demonstrate that this was
indeed the case. From self-reports on the use of either
language and the skill rating we also can conclude that
the subjects assigned to the expert treatments indeed
were more advanced than the other students (e.g., skill
is rated significantly higher; pgoar < 0.005, pposy <
0.005).

28 students from Charles University participated.
For 18 of these students participating in the experi-
ment was part of their final exam and students were
graded on the performance of their agent. These stu-
dents were assigned to the advanced POSH program-
mers condition. The other 10 students voluntarily
signed up for the experiment and were assigned to the
GOAL novice condition. 11 students from Delft Uni-
versity of Technology participated, all of which vol-

ZAll Delft students participated in the Multi-
Agent Systems course in which GOAL is taught, see
http://ii.tudelft.nl/trac/goal/wiki/Education. All Prague
students participated in the course Artificial Beings (Brom,
2009) in which POSH is taught. Students took part in the
study at the end of or directly after completing the course.

Table 1: Self-reports on Experience and Skill.

Novice Expert
GOAL Usage | 0.2 (0.3) | 0.7 (0.3)
GOAL Skill 1.5(0.6) | 2.8 (1.1)
Prolog Usage | 1.8 (2.2) | 0.7 (0.3)
Prolog Skill 2.2(1.2) | 3.0(1.0)
POSH Usage | 0.0 (0.0) | 0.3 (0.4)
POSH Skill 1.0 (0.0) | 2.5(0.8)
Java Usage 55(@.4) | 26Q2.9)
Java Skill 3.6 (0.5) | 2.5(1.3)

unteered. These were divided equally over the POSH
novice (6 students) and advanced GOAL programmers
(5 students) condition, stratified by the results of a
Java skill test. All subjects were given an incentive
with an equivalent value of 20 Euros.

The total of 39 students that participated included
4 women and 35 men. Analysis of age shows there
is a clear difference in age distribution (one way
ANOVA, p < 0.001; F = 15.01) between groups as-
signed to different conditions. This was the case be-
cause, contrary to the expectations, a large number of
senior students enrolled in the course in Prague from
which subjects were recruited. Finally, analysis of ex-
perience with IDEs shows that almost all students ex-
cept for a few students assigned to the GOAL expert
condition had experience with either the Eclipse, Net-
beans or Visual Studio IDE.

6 RESULTS

In this Section, we report on the use of language fea-
tures by and the performance of subjects in the ex-
periment. For both language usage as well as per-
formance (time-to-complete) self-reports of subjects
were used. The data obtained from Likert scale ques-
tions is presented by the associated mean and standard
deviation which indicates the general tendency of a
group assigned to one of the four treatments. Com-
parisons between treatments are analyzed using chi-
square or Fisher’s-Exact test whenever the categorical
minimum was not reached.

6.1 Comprehension Task

The comprehension task provided little difficulty for
any of the subjects. Figure 1 shows that all partici-
pants finished this task in roughly the same time (one
way ANOVA, p = 0.707; F = 0.46; time reported in
minutes). Due to the low number of subjects in the
POSH novice and advanced GOAL groups, we report
the individual completion times. Most questions were

A Comparative Study of Programming Agents in POSH and GOAL

POSH Novice Advanced POSH GOAL Novice Advanced GOAL

Figure 1: Comprehension task.

180

160

140

120

100

80

60 |

40 |

20

POSH Novice Advanced POSH GOAL Novice Advanced GOAL

Figure 2: Coding tasks 1-3.

answered correctly. Only one question (out of 8 ques-
tions) about the number of execution cycles that were
needed to perform a specific part of program code
turned out to be difficult for novices. This is also
reflected in the high self-rated satisfaction with the
completion of the task (3.9 4-1.1) for all groups.

6.2 Coding Tasks

The coding tasks were considerably more difficult and
not all participants were able to complete all tasks
in time. The difficulty of these tasks is also re-
flected in the slightly lower satisfaction ratings (3.4 &
1.1) for these tasks. In particular, some subjects in
the POSH novice and advanced GOAL programmers
groups were not able to complete the 4th and 5th task.
As we do not have completion times for all subjects,
these tasks are not included in the discussion below.
The 4th coding task, simulating a conversation us-

199

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

ing emoticons, was found to be difficult for quite a
number of subjects. Most of these subjects had prob-
lems with coding the right length that the emoticons
should be displayed. The 5th task, where one agent
should be coded to follow another, was difficult for
all subjects. Most subjects had problems with estab-
lishing in their code that the the first agent should start
following the other agent (task 5). Given that all sub-
jects had trouble with completing this task, the task
may have been too challenging.

Analysing the cumulative completion times for
the first three tasks (see Figure 2), the advanced POSH
and GOAL novice groups from Prague use signifi-
cantly less time than the groups from Delft Univer-

Duration vs Age

30
el
2 A ‘? A,A AA..A B A
n
20 | |

00:00 00:14 00:28 00:43 00:57 01:12 01:26 01:40 01:55 02:09 02:24
Duration (hh:mm)

M GOAL Expert A POSH Expert © POSH Novice # GOAL Novice

Figure 3: Cumulative time-to-complete versus age.

Duration vs Years Enrolled

10 3
*
8
°
2 * AA
S 6 > AA * o A
9 A AA 2 A
5
R o A A
AN o
2
]]] []]

0
00:00 00:14 00:28 00:43 00:57 01:12 01:26 01:40 01:55 02:09 02:24
Duration (hh:mm)

W GOAL Expert A POSH Expert © POSH Novice ¢ GOAL Novice

Figure 4: Cumulative time-to-complete vs years enrolled.

Duration vs Years Programming Experience

18 .
8 16
g
2
5 14
3
aoq2
2 A
£ 10 A
3 A Ao A
g 8 -
g o Ao
L 6 * A S
S A AA £ A A
£ 4 - A
L *
2
[] []] [1]
0

00:00 00:14 00:28 00:43 00:57 01:12 01:26 01:40 01:55 02:09 02:24

Duration (hh:mm)
M GOAL Expert A POSH Expert ~ POSH Novice ¢ GOAL Novice

Figure 5: Cumulative time-to-complete vs experience.

200

sity X (p < 0.001; F = 9.31). This may be explained
by difference in age, years of enrolment, and years
of programming experience, but separately these only
moderately correlate (R2 of 0.31, 0.26, 0.17, respec-
tively).

Looking more closely at the scatter plots in Fig-
ures 3, 4, and 5 shows that there are clear outliers for
each of the three plots, including in total 5 subjects of
the POSH novice and advanced GOAL programmers
groups. While there is a difference in performance
between the groups from Delft and Prague Univer-
sity, further analysis with Tukeys HSD shows there is
little difference within these groups (ppeis; = 0.77;
PPrague = 0.99). The programming language thus
does not appear to influence the completion times for
the subjects from Prague University. A similar obser-
vation applies to the subjects from Delft University
but due to the low number of subjects no firm conclu-
sion can be drawn here.

6.3 POSH Language Feature Usage

Tables 2 and 3 show the average ratings given by sub-
jects of how useful they found a POSH feature for
the comprehension and coding tasks, respectively; see
Section 4 for discussion of these features. Most sub-
jects used almost all POSH language features while
completing a task. Both novices and advanced pro-
grammers rated features of the language close to a
rating of 4.0 indicating that all features were useful
with only one exception: Advanced programmers did
not find the textual representation of POSH plans use-
ful but novices indicated that they did find it useful.
Novices also appear to rely more on Java when they
are asked to program more complex agent behaviour.

6.4 Language Features GOAL

Tables 4 and 5 show the ratings given for the useful-
ness of GOAL features. Although all main GOAL lan-
guage features were used for completing the compre-
hension task, this is not the case for the coding tasks.
Generally speaking, advanced programmers use more
GoAL language features except maybe for Prolog (the
knowledge representation language on top of which
GOAL runs). It is not entirely clear how to explain
these findings but they suggest a difference in learn-
ing curve between POSH and GOAL. Perhaps novices
that used GOAL, which all had initial experience with
Prolog, may more quickly resort to what they already
know than more advanced programmers (a similar ef-
fect was observed for POSH). However, due to the
low number of subjects as well as the presence of out-
liers, it is difficult to draw any firm conclusions. We

Table 2: POSH Feature Rating: Comprehension Task.

Novice Advanced

Usage | Rating | Usage | Rating
Senses | 100% | 420.4) | 94% | 4.2(0.7)
Actions | 100% | 4.0 (0.6) | 100% | 4.2 (0.8)
Plans 100% | 4.8 (0.4) | 100% | 4.6 (0.8)
Textual | 100% | 3.8(1.0) | 94% | 1.8 (0.8)
Java 100% | 3.0(1.2) | 83% | 2.4(1.2)
Overall 4.0 (0.0) 4.0 (0.7)

Table 3: POSH Feature Rating: Coding Tasks.

Novice Advanced

Usage | Rating | Usage | Rating
Senses | 100% | 3.8 (0.4) | 100% | 3.9 (0.9)
Actions | 100% | 3.6 (0.5) | 100% | 3.9 (0.9)
Plans 100% | 3.8 (0.4) | 100% | 3.8 (1.1)
Textual NA NA NA NA
Java 100% | 4.4(0.5) | 100% | 3.9 (1.3)
Overall 3.8 (1.1) 3.7 (0.8)

Table 4: GOAL Feature Rating: Comprehension Task.

Novice Advanced
Usage | Rating | Usage | Rating
Actions 90% | 2.4(1.2) | 80% | 3.0(1.4)
Modules 90% | 4.9(0.3) | 100% | 4.4 (0.9)
Events 70% | 2.3(1.1) | 100% | 2.8 (1.1)
Knowledge | 100% | 2.8 (1.1) | 100% | 3.4 (1.5)
Prolog 100% | 4.3 (0.7) | 100% | 3.8 (1.3)
Overall 4.6 (0.5) 5.0 (0.0)

Table 5: GOAL Feature Rating: Coding Tasks.

Novice Advanced
Usage | Rating | Usage Rating
Actions 22% | 45(0.7) | 80% | 3.3(0.6)
Modules 89% | 4.6(0.5) | 100% | 4.4(0.9)
Events 22% | 4.0(0.0) | 40% | 4.0(1.4)
Knowledge | 67% | 42(1.2) | 20% | 5.0 (N/A)
Prolog 100% | 4.6(0.7) | 80% | 4.0(1.4)
Overall 4.4 (0.7) 3.2(1.3)

are also not completely sure that all language features
were required for completing the tasks.

7 DISCUSSION

The most surprising finding has been that advanced
POSH programmers as well as GOAL novices (both
subjects from Prague University) completed tasks
much faster than advanced GOAL programmers or
POSH novices (both subjects from Delft University).
As a consequence, contrary to our initial expectations,

A Comparative Study of Programming Agents in POSH and GOAL

all three hypotheses are rejected. In our study, GOAL
novices performed better than POSH novices (and not
vice versa), advanced POSH programmers performed
better than advanced GOAL programmers (and not
similarly), and advanced GOAL programmers did not
clearly outperform GOAL novices.

Nevertheless we can draw some interesting con-
clusions based on our findings. First, the fact that
Java is used in combination with POSH did not yield a
significant difference as we expected. It is important
to note that subjects that used POSH did not exclu-
sively use Java for programming the agent but also
used POSH rules for implementing the agent’s deci-
sion making. Second, an alternative interesting ex-
planation of the performance of subjects from Prague
University is suggested by the fact that these sub-
jects were all more experienced programmers. Our
findings here suggest that, generally speaking, hav-
ing more programming experience improves perfor-
mance more than additional training in any partic-
ular programming language. One might speculate
whether more experienced programmers have devel-
oped a mental model that is more generally applicable
to arbitrary programming language. However, a sim-
pler explanation may be that they are more experi-
enced in using tools for developing programs. In par-
ticular, we observed that the more advanced program-
mers made more use of various IDE features. Bet-
ter handling of the tooling provided with a language
may be quite beneficial for programming in general,
which would point towards the importance of tool
support. As development of most agent programming
languages has focused more on the language features
than on the tooling to make these languages acces-
sible to programmers, a shift in focus may thus be
called for, although more work is needed to confirm
this.

Given these results and the fact that differences
between GOAL novices and advanced POSH pro-
grammers and between advanced GOAL program-
mers and POSH novices are small, we can conclude
that it remains difficult to establish relations between
language features and programming performance. In
this as well as previous studies that compared POSH
with Java (Gemrot et al., 2012a; Gemrot et al., 2012b)
no significant effects of the programming language on
the programmer’s performance was found.

It thus remains difficult to design experimental
tasks for comparative studies of (agent) programming
languages. One issue associated with the experimen-
tal design that we used is the necessarily short amount
of time that is available for completing tasks. Advan-
tages of programming languages that might not show
up in a short study may still manifest themselves in

201

ICAART 2016 - 8th International Conference on Agents and Artificial Intelligence

much larger programming projects which take weeks
or even months. Other issues may be more specific
to the particulars of agent programming languages. It
may, for example, be the case that successfully com-
pleting tasks that involve virtual environments such
as Emohawk require that more time is spend on ob-
serving and testing the agent’s behaviour in that envi-
ronment (if only because virtual characters take more
time to perform actions). A significant amount of time
thus may be used to this end compared to the time
that is actually spend on programming. As a conse-
quence, the use of a virtual environment may make it
more difficult to measure the effect of a programming
language on completing a task. Based on observa-
tions during the experiment we do not believe there
has been a significant difference in amount of test-
ing for either of the platforms used. For future work,
we therefore suggest to also measure the actual time
spent on various subtasks such as testing.

Finally, some language specific conclusions may
still be drawn based on the language feature usage
that we observed. An interesting finding has been
that subjects that programmed in POSH use the plan,
senses and actions language features for completing
the coding tasks. Subjects that programmed in GOAL,
however, can make due with just the modules (con-
sisting of rules) and the knowledge section. These
language features offer more or less the same expres-
sivity and therefore allow programmers to provide the
same functionality by only using these features. This
suggests that for this particular study an agent pro-
gramming language that provides an efficient way to
encode and execute plans that consist of condition-
action rules may be sufficient. Moreover, a likely rea-
son that explains why the event module of GOAL was
not used is that completing the tasks only required
writing of a relatively simple reactive agent that can
derive its behavior directly from the information it
perceives. It may therefore be interesting in future
work to design tasks that require more complicated
decision logic and/or persistent memory in order to
determine when specific language features are actu-
ally used. Such tasks might reveal differences be-
tween e.g., POSH and GOAL, as tasks in which an
agent is required to infer persistent beliefs from per-
cepts might be harder to write in POSH than in GOAL.

8 CONCLUSION

In this paper, we reported the results of a comparative
study of the agent programming languages GOAL and
POSH. We discussed the design of an experiment that
required subjects to complete both comprehension as

202

well as coding tasks for an agent that controls a char-
acter in the virtual environment Emohawk. The tasks
were designed such that they could be completed us-
ing either GOAL or POSH. As in other studies we did
not yet find conclusive results that suggest the agent
programming language used has a significant influ-
ence on programmer performance. We did find that
general programming experience seems to be a rel-
atively big advantage when using a (new) program-
ming language. This may in part be due to the experi-
ence of using tooling support to develop code, which
highlights once more the importance of this aspect
when developing agent programming languages.

In addition, we believe that our study provides
several useful clues for the design of future compar-
ative studies that may actually yield concrete results
about the effectiveness of language features incorpo-
rated in a language. In our study the tasks required
programming a purely reactive agent, whereas pro-
gramming a more goal-oriented agent that needs to
use more complicated decision logic and/or persistent
memory may highlight differences between e.g., lan-
guages such as GOAL and POSH more. As GOAL and
POSH are clearly different programming languages
that are used in different ways, more work on the de-
sign of comparative studies is needed to provide in-
sights on the usability of features of these languages.

REFERENCES

Behrens, T. M., Hindriks, K. V., and Dix, J. (2011). To-
wards an environment interface standard for agent
platforms. Annals of Mathematics and Artificial In-
telligence, 61(4):261-295.

Bida, M. and Brom, C. (2010). Emohawk: learning virtual
characters by doing. Interactive Storytelling, pages
271-274.

Bordini, R., Dastani, M., Dix, J., and El Fallah Seghrouchni,
A. (2009). Multi-agent programming: Languages,
tools and applications, Vol. 15. Berlin: Springer.

Bordini, R., Dastani, M., Dix, J., and Seghrouchni, A.
E. E, editors (2005). Multi-Agent Programming: Lan-
guages, Platforms and Applications. Springer.

Brom, C. (2009). Curricula of the course on modelling be-
haviour of human and animal-like agents. In Proceed-
ings of the Frontiers in Science Education Research
Conference, volume 22, page 24.

Brom, C., Gemrot, J., Bida, M., Burkert, O., Partington, S.,
and Bryson, J. (2006). Posh tools for game agent de-
velopment by students and non-programmers. In 9th
international conference on computer games: Ai, an-
imation, mobile, educational & serious games, pages
126-135.

Bryson, J. (2001). Intelligence by design: principles of
modularity and coordination for engineering complex

adaptive agents. PhD thesis, Massachusetts Institute
of Technology.

Bryson, J. (2003). Action selection and individuation in
agent based modelling. In Proceedings of agent, pages
317-330.

Gemrot, J., Brom, C., Bryson, J., and Bida, M. (2012a).
How to compare usability of techniques for the spec-
ification of virtual agents behavior? an experimental
pilot study with human subjects. Agents for Educa-
tional Games and Simulations, pages 38—62.

Gemrot, J., Hlavka, Z., and Brom, C. (2012b). Does high-
level behavior specification tool make production of
virtual agent behaviors better. In Proceedings of the
International Workshop on Cognitive Agents for Vir-
tual Environments (CAVE’12).

Gemrot, J., Kadlec, R., Bda, M., Burkert, O., Pbil, R.,
Havlek, J., Zemk, L., imlovi, J., Vansa, R., tolba,
M., Plch, T., and Brom, C. (2009). Pogamut 3
can assist developers in building ai (not only) for
their videogame agents. In Dignum, F., Bradshaw,
J., Silverman, B., and Doesburg, W., editors, Agents
for Games and Simulations, volume 5920 of Lec-
ture Notes in Computer Science, pages 1-15. Springer
Berlin Heidelberg.

GOAL (2015). Open source website for GOAL on github.
https://github.com/goalhub.

Heckel, F., Youngblood, G., and Hale, D. (2009). Behavior-
shop: An intuitive interface for interactive character
design. In Proceedings of the Fifth AAAI Conference
on Artificial Intelligence and Interactive Digital En-
tertainment. AAAI Press.

Hindriks, K. (2009). Programming Rational Agents in
GOAL. In Multi-Agent Programming: Languages,
Tools and Applications, pages 119-157. Springer US.

Hindriks, K. V., de Boer, F. S., van der Hoek, W., and
Meyer, J.-J. C. (1998). A Formal Embedding of
Agentspeak(L) in 3APL. In Antoniou, G. and Slaney,
J., editors, Advanced Topics in Artificial Intelligence,
volume 1502 of Lecture Notes in Computer Science,
pages 155-166. Springer Berlin Heidelberg.

Lillis, D., Jordan, H. R., and Collier, R. W. (2012). Evalua-
tion of a Conversation Management Toolkit for Multi
Agent Programming. In Proceedings of the 10th Inter-
national Workshop on Programming Multi-Agent Sys-
tems (ProMAS 2012), Valencia, Spain.

Materials (2015). Experiment materials https://ii.tudelft.
nl/trac/goal/wiki/Projects/PoshVsGoal.

Pane, J. F. and Myers, B. A. (1996). Usability issues in the
design of novice programming systems. Technical Re-
port CMU-CS-96-132, School of Computer Science,
Carnegie Mellon University.

Shapiro, L. and Sterling, E. (1994). The Art of Prolog: Ad-
vanced Programming Techniques. MIT Press.

van Riemsdijk, M. B., Hindriks, K. V., and Jonker, C. M.
(2012). An empirical study of cognitive agent
programs. Multiagent and Grid Systems (MAGS),
8(2):187-222.

A Comparative Study of Programming Agents in POSH and GOAL

203

