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Abstract: The paper presents the results of a study of an off-grid electric power system that contains typical generation 
and load devices. The aim of the study is to develop an algorithm for selecting the optimal parameters of 
adaptive control law of the energy characteristics in the off-grid power system at the connection point of a 
varied load. To this end a simulation experiment was carried out and its results were used to numerically 
model the off-grid power system. The authors apply a known method of modelling the complex multi-
parametric systems represented by the Volterra integro-power series. Standard approaches to the 
measurement of dynamic performance were applied to identify a transient response of the system. 

1 INTRODUCTION 

One of the main directions in power engineering is 
the adoption of components applicable to the 
implementation of a smart grid concept. The 
considered system contains the main elements that 
belong to the isolated (off-grid) systems. This makes 
it possible to take into consideration the key features 
of a change in the nature of generation when 
changing the load parameters.  

The input was represented by a symmetrical 
change in a three-phase load of both active and 
reactive components. The load changed in a step-
wise manner toward an increase (decrease) in the 
load current. The parameters of the change in the 
characteristics were taken into account at the 
connection point of the varied load. The step-wise 
change in the load occurred in the steady-state 
operation of the system. Test inputs reached 50% of 
the level of rated conditions. Since there is an 
aperiodic component of three-phase currents in the 
transient conditions a generalized positive-sequence 
current phasor was measured. Also active and 
reactive power flows at the connection point of the 
varied load were taken into account. 

 
 

2 STATEMENT OF THE 
PROBLEM 

The issues dealing with the selection of operating 
conditions, network configuration (in terms of sites 
for placement of generators), and reliability 
assessment are considered by us in (Voropai, 2012; 
Suslov, 2013). 

The facilities to be considered as generators are: 
gas turbine plants, wind turbines and solar panels. 
Also, consideration is given to energy storage 
devices, since the renewable energy output is 
stochastic, their use is necessary to provide the 
required reliability of electricity supply to 
consumers of the off-grid systems. We consider an 
isolated (off-grid) system scheme presented in Fig. 
1. The experience gained in operating a gas turbine 
plant reveals some serious problems when tuning the 
automatic control loops, namely: 

 

1. Lack of a comprehensive approach, because 
power systems are considered separately from one 
another. 

 

2.  The problem of obtaining common 
algorithms for the power system control, which is 
related to the complexity of traditional mathematical 
tools. 
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Figure 1: A scheme of an isolated (off-grid) system 

( 1 2 3, ,e e e - electromotive force of different generators, 

1 2 3, ,Z Z Z - internal impedance of the generators, 

1 2,load loadZ Z -unchangeable fixed load of consumers, 

3loadZ -variable load,). 

We suggest the following approach to solve the 
above problems. The electricity generating systems 
are defined by the external structural input-output 
schemes. The flow chart for the gas turbine plant is 
presented in Figure 2. 
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Figure 2: Flow chart for a single-shaft gas turbine plant 
(UE-excitation voltage, U – voltage at the generator outlet, 
f- network frequency, P- air pressure at the compressor 
inlet,  - angular velocity, Pi- pressure at the compressor 
outlet, F – fuel supplied to the combustion chamber, G- 
gas flow rate, MCC- gas turbine shaft resistance torque 
created by compressor, MCG - turbine shaft resistance 
torque created by electric generator). 

The flow chart for the solar panel is demonstrated in 
Figure 3.  The flow chart for the wind turbine plant 
is shown in Figure 4.  
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Figure 3: Flow chart for solar panel (ES – solar energy, U1 
– voltage at the solar panel outlet). 
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Figure 4: Flow chart for the wind turbine plant (V- wind 
speed, b – attack angle, MWT- engine torque, created by 
wind turbine). 

Each of the generators has their specific features to 
be taken into account in designing the automated 
control system. For example, gas turbine plant 
makes it possible to completely control input 
parameters but has quite high inertia. Generation 
from solar panels is deterministic due to the lack of 
inertia.  

Generation from wind power plants is a vivid 
example of stochastic operation of generators. At the 
same time, apart from the random change in the 
input data such a generation is subject to inertia. 

Figure 5 presents a subsystem of the wind 
turbine module which is described by a system of 
algebraic equations, where the input signals are 
represented by wind speed V, attack angle of turbine 
blade b, current coordinate of angular velocity   
depending on the shaft resistance torque. 

Inertia of the rotating parts in the wind turbine is 
taken into account by the equation of dynamics   

 

T CM Md

dt J






 ,              (1) 

 

where TM - turbine generator shaft torque, CM - 

resistive torque created by generator, J - total 

inertia torque. Generally speaking, the analysis of 
dynamic characteristics of wind power unit is based 
on the methods using differential equations. Most of 
the researches are devoted to the specification of 
characteristics of individual components of wind 
turbine (He, 2009; Li, 2011), specification of various 
coefficients (Manyonge, 2012) or consideration of a 
mechanical part of the turbine as an N-mass system 
(Bhandari, 2014).  

Traditionally, the theory of modelling the control 
systems employs differential equations with constant 
coefficients. These equations are obtained by 
linearizing the nonlinear differential equations with 
variable coefficients of the most typical operating 
conditions of a certain system (Saadat, 2010, Ogata, 
2010). This is explained by the presence of a 
nondeterministic system with distributed parameters. 
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Figure 5: A subsystem of the wind turbine scheme ( Cm - 
torque coefficient,  - air density, V - wind speed, m/s; S - 
blade-swept area, R - wind wheel radius, m, 
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  – specific speed). 

In practice, the initial data are known with some 
error. In this case, as a rule, solutions to the inverse 
problem turn out to be unstable with respect to an 
error in the initial data. Therefore, to construct stable 
methods we use the theory of ill-posed problems 
(Kabanikhin, 2011). 

Thus, all traditional methods are convenient for 
the research and analysis of power system operation 
but are hardly suitable for the implementation of an 
adaptive response of a control system to the real-
time disturbances. 

Also, such systems can be described by the 
system of linear differential equations in the 
neighbourhood of operation point (Salamanca, 2010, 
Chenx, 2011) and by the system of differential 
equations   written   in   the   normal   Cauchy      
form (steady-state) (Al-Jufout, 2010; Wang 2013, 
2014)  

We believe that the study can involve a known 
mathematical modelling approach in which any 
dynamic system is represented as a “black box” 
(Fig.6). In the case, where the output y(t)  
continuously depends  on inputs x(t), the model of 
nonlinear dynamic system can be represented by 
Volterra integro-power series (Volterra, 1959). 

   

( )x t ( )y t

 

Figure 6: The “input-output” system. 

The studies show that wind power plant has the 
greatest impact on the output value y(t). And the 
larger the share of wind generation in the off-grid 
system, the greater this impact is. The qualitative 
character of this impact is demonstrated in Fig.7. 
Here it was assumed that gas turbine plant and 
photovoltaic cells share the rest of generation in 
halves. 
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Figure 7: The qualitative character of the impact. 

Thus, it is reasonable to consider the problem of the 
off-grid system modeling on the example of a wind 
power plant. 

3 ABOUT A NEW APPROACH TO 
THE MATHEMATICAL 
DESCRIPTION OF THE WIND 
POWER PLANT DYNAMICS  

The Volterra integro-power series (Doyle, 2002; 
Rugh, 1981; Venikov, 1982; Pupkov, 1976) are 
widely used in  mathematical modeling of complex 
nonlinear dynamic systems. The nonlinear dynamic 
systems and their properties are fully characterized 
by multidimensional weight functions, i.e. Volterra 
kernels. In this case the problem of constructing  a 
mathematical model of a nonlinear dynamic system 
lies in the identification of Volterra kernels on the 
basis of data obtained from the experimental 
research into an input-output system (Giannakis, 
2001). 

In this research we employ an approach 
(Apartsyn, 2013) based on the physically 
implemented test inputs. The main distinction of this 
approach lies in the fact that the initial problem is 
reduced to solving special integral equations which 
can be explicitly solved. 
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In this research we have developed and 
implemented new algorithms for the construction of 
integral models represented by Volterra polynomials 
with vector input  

1

1

,..., 1
1 1 ,..., 2 10 0

( ) ... ( , ,..., ) ( )
n k

n

t t nN

i i n i k k
n i i k

y t K t s s x s ds
   

     

in the cases which are the most important for 
applications, 2,3.N   The research is a 

continuation of (Suslov, 2015). 
In (Solodusha, 2015) the authors show that the 

problem of the Volterra kernels identification in the 
quadratic Volterra polynomial   

1 1 1 1

0

( ) ( , ) ( ) + 
t

quady t K t s x s ds            (2)  

2

2 1 2
10 0

( , , ) ( )
t t

i i
i

K t s s x s ds


   , [0, ]t T  

can be solved by  using only  two integral equations  

         
1

1 2 1 1 1

0

( , , ) ( , )y t K t s ds


               (3) 

1 2

1
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
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1

1 1 1 1 1 1

0
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

 
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1
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0
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 
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The output 1 2( , , )y t    in the right-hand side of 

(3), (4) is a response of the reference dynamic 
system (1) to the test inputs  
 

1 2, 1 1 2( ( ) 2 ( ) ( ))x e t e t e t
           ,   (5) 

 

where 1 2, , [0, ]t T   , ( )e t  is the Heaviside 

function: 

0, 0,
( )

1, 0.

t
e t

t


  

 

In order to improve the accuracy of modelling we 
will consider a modification of this algorithm for the 
case of cubic Volterra polynomial. Let us consider a 
combined cubic model  

1 1 1 1

0

( ) ( , ) ( ) + 
t

cuby t K t s x s ds              (6) 

2

2 1 2
10 0

( , , ) ( )
t t

i i
i

K t s s x s ds


    

3

3 1 2 3
10 0 0

ˆ ( , , ) ( )
t t t

i i
i

K s s s x t s ds


    . 

Using the above approach it is easy to see that the 
condition of form (3) and outputs of the reference 

dynamic system to the test inputs 
1 2

( ),ix t
   

0,i  1,2,i  1 2   of form (5) make it 

possible to completely identify the 

kernels 1 2 3
ˆ, ,K K K . For example, the restoration of 

kernel 1K  is reduced to solving the integral 

equation  
 

              
1

1 1 1 1 1

0

( , ) ( , )K t s ds f t


 ,                    (7) 

where  

            

1

2

3
1 1

3
1 2

1 1 3
1 1

3
2 2

( , )

( , )
( , )

f t

f t
f t





 
 


 
 

 ,                (8) 

 1 1 1

1
( , ) ( , ,0) ( ,0, )

2
i i if t y t y t       

As applied to the model  

1 1 1 1

0

( ) ( , ) ( ) + 
t

cuby t K t s x s ds              (9) 
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we obtain, that for the unique restoration of 

1 2 3
ˆ ˆ, ,K K K  it is sufficient to have outputs of a 

dynamic system to the test inputs 
1 2

( ),ix t
   

0,i  1,2,i  1 2   of form (4) and 

condition 2 1 2 1 1( , ) ( , )f t f t     . 

In this case the problem of identification, for 

example, of kernel 1K , can be reduced to equation 

(9) with the right-hand side of (8), where   
 

 1 1 1 1

1
( , ) ( , ,0) ( , ,0)

2
i i if t y t y t          

4 CASE STUDY 

Based on the developed algorithms we constructed a 
quadratic model of form (2) and a cubic model of 
form (9). The identification involved the studied 
system outputs (Fig.1) to the test inputs of form (5). 

The input is considered to be a change in the 
character of load power, and the outputs are 
represented by the power system parameters. The 
parameters were calculated for the connection point 
demonstrated in Fig.1.  A generalized vector of a 
three-phase load current was used as a parameter. 
The rest of the parameters were active and reactive 
power at the connection point. 

Figures 8-10 present the outputs of the reference 
model (Fig. 1) to the input disturbances  

 

( , ) 10( ( ) ( ))S t e t e t    , 
 

where S - total load power. 

These data were employed to restore transient 
characteristics in the integral models. The accuracies 
of quadratic and cubic models were compared in the 
description of the studied off-grid electricity supply 
system. The time of the transient process is Т=0.2 
sec., which corresponds to real values of the 
transient process time in the electric power systems. 
The computational experiment demonstrated the 
advantages of cubic model versus quadratic one. 

Figure 11  illustrates the typical outputs of active 
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Figure 8: Values of power current at the connection point. 
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Figure 9: Values of active power at the connection point. 
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Figure 10: Values of reactive power at the connection 
point.  

power at load shedding. They were obtained using 
quadratic and cubic models. Curve 1 denotes a 
steady-state value; curves 2 and 3 were obtained 
using quadratic and cubic models, respectively; 
curve 4 stands for an accurate value obtained using 
the reference model. 

Curve 3 illustrates an effect of the inclusion of 
additional terms, i.e. an essential nonlinear character 
of the studied output. 
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Figure 11: System outputs. 

5 PARAMETER OPTIMIZATION 
IN TEST INPUTS (5) 

Let in (5) 0 . The extreme problem of choosing 
*  for some standard mathematical model is 

formulated in (Apartsyn, 2013). Let us consider by 
analogy the optimal (in some or other sense) choice 

of   in (4) to identify the kernels 1K  and 2K  in 

(1). 
We choose some   from a range ],[ BB . Take 

the set  

( , ) { ( )X B T x t
  ( ( ) ( )),e t e t     

[ , ],0 }B B t T                 (10) 
 

as a class of the admissible inputs )(tx . 

As the system response value at the end of the 
considered transient process ( Tt  ) plays an 
important role in applications, the criterion of model 
accuracy has the form 

 

,
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max | ( , ) ( , ) | minet quad

Bx t X B T
y T y T



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
 


  , 

 

where , ( , )quady T    is response (2) to the input 

( )S t
 (10). Actually, the difference 

,( , ) ( , )et quady T y T     is some function of the 

parameters  ,, . 

Then  
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where 

,( , , ) ( , ) ( , )et quadN y T y T        . 
 

We present the results of mathematical modeling 
that were obtained using the software (Gerasimov, 
2015).  

The set ),( TBX  of such inputs as ( )S t
 ; 

],0[ B , 050% ;B S  0.2T   sec. was taken as 

admissible. The calculations showed that  
 

Tmax ,   






 

2
,max

B
B . 

 

The calculations demonstrate that the value 
* 0.9B  , at 050%B S . 

The plot of the function |),*,(| N with 

050%B S , 0.2T   sec. is given in Fig. 12.   
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N

 

Figure 12: The plot of the function |),*,(| N . 

Analysis of the results obtained for the reference 
model (1) enables us to recommend that for the 
identification of Volterra kernels the parameter   
of test inputs (5) be chosen in the range 
0.75 0.9B B . 

6 CONCLUSIONS 

Consideration is given to a model of an off-grid 
system represented as a quadratic segment of the 
Volterra integro-power series on the basis of a 
reference model. The reference model is represented 
by an isolated electric power system, which contains 
several electricity sources, storage systems, and the 
shunt- and series-connected devices (active 
elements) that allow an on-line change in the energy 
parameters of the system. A system of algorithms is 
developed to control the most characteristic 
operating conditions of the power system, which can 
be used for on-line technical implementation. 
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