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Abstract: We consider a two player bimatrix game where the entries of each player’s payoff matrix are independent ran-
dom variables following a certain distribution. We formulate this as a chance-constrained game by considering
that the payoff of each player is defined by using a chance-constraint. We consider the case of normal and
Cauchy distributions. We show that a Nash equilibrium of the chance-constrained game corresponding to nor-
mal distribution can be obtained by solving an equivalent nonlinear complementarity problem. Further if the
entries of the payoff matrices are also identically distributed with non-negative mean, we show that a strategy
pair, where each player’s strategy is the uniform distribution on his action set, is a Nash equilibrium of the
chance-constrained game. We show that a Nash equilibrium of the chance-constrained game corresponding to
Cauchy distribution can be obtained by solving an equivalent linear complementarity problem.

1 INTRODUCTION

It is well known that there exists a mixed strategy sad-
dle point equilibrium for a two player zero sum ma-
trix game (Neumann, 1928). John Nash (Nash, 1950)
showed that there exists a mixed strategy equilibrium
for the games with finite number of players where
each player has finite number of actions. Later such
equilibrium was called Nash equilibrium. For two
player case the game considered in (Nash, 1950) can
be represented by m×n matrices A and B. The matri-
ces A = [ai j] and B = [bi j] denote the payoff matrices
of player 1 and player 2 respectively, and m, n denote
the number of actions of player 1 and player 2 respec-
tively. Let I = {1,2, · · · ,m}, and J = {1,2, · · · ,n}
be the action sets of player 1 and player 2 respec-
tively. The sets I and J are also called the sets of pure
strategies of player 1 and player 2 respectively. The
set of mixed strategies of each player is defined by
the set of all probability distributions over his action
set. Let X = {x = (x1,x2, · · · ,xm)|∑m

i=1 xi = 1,xi ≥
0, ∀ i ∈ I} and Y = {y = (y1,y2, · · · ,yn)|∑n

j=1 y j =

1,y j ≥ 0, ∀ j ∈ J} be the sets of mixed strategies of
player 1 and player 2 respectively. For a given strat-
egy pair (x,y), the payoffs of player 1 and player 2
are given by xT Ay and xT By respectively; T denotes
the transposition. For a fixed strategy of one player,
another player seeks for a strategy that gives him the
highest payoff among all his other strategies. Such a

strategy is called the best response strategy. The set of
best response strategies of player 1 for a fixed strategy
y of player 2 is given by

BR(y) =
{

x̄|x̄T Ay≥ xT Ay, ∀ x ∈ X
}
.

The set of best response strategies of player 2 for a
fixed strategy x of player 1 is given by

BR(x) =
{

ȳ|xT Bȳ≥ xT By, ∀ y ∈ Y
}
.

A strategy pair (x∗,y∗) is said to be a Nash equilib-
rium if and only if x∗ ∈ BR(y∗) and y∗ ∈ BR(x∗). A
Nash equilibrium of above bimatrix game can be ob-
tained by solving a linear complementarity problem
(LCP) (Lemke and Howson, 1964).

Both (Nash, 1950) and (Neumann, 1928) consid-
ered the games where the payoffs of the players are
exact real values. In some cases the payoffs of play-
ers may be within certain ranges. In (Collins and Hu,
2008) these situations are modeled as interval val-
ued matrix game using fuzzy theory. The compu-
tational approaches have been proposed to solve in-
terval valued matrix game

(
see (Deng-Feng Li and

Zhang, 2012), (Li, 2011), (Mitchell et al., 2014)
)
.

However, in many situations payoffs are random vari-
ables due to uncertainty which arises from various
external factors. The wholesale electricity markets
are the good examples

(
see (Mazadi et al., 2013),

(Couchman et al., 2005), (Valenzuela and Mazum-
dar, 2007), (Wolf and Smeers, 1997)

)
. One way to
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handle this type of game is by taking the expecta-
tion of random payoffs and consider the correspond-
ing deterministic game

(
see (Valenzuela and Mazum-

dar, 2007), (Wolf and Smeers, 1997)
)
. Some recent

papers on the games with random payoffs using ex-
pected payoff criterion include (Ravat and Shanbhag,
2011), (Xu and Zhang, 2013), (Jadamba and Raciti,
2015), (DeMiguel and Xu, 2009).

The expected payoff criterion does not take a
proper account of stochasticity in the cases where
the observed sample payoffs are large amounts with
very small probabilities. These situations are bet-
ter handled by considering a satisficing payoff crite-
rion that uses chance-constrained programming

(
see

(Charnes and Cooper, 1963), (Cheng and Lisser,
2012), (Prékopa, 1995)

)
. Under satisficing payoff

criterion the payoff of a player is defined using a
chance-constraint and for this reason these games are
called chance-constrained games. There are few pa-
pers on zero sum chance-constrained games available
in the literature

(
see (Blau, 1974), (Cassidy et al.,

1972), (Charnes et al., 1968), (Song, 1992)
)
. Re-

cently, a chance-constrained game with finite num-
ber of players is considered in (Singh et al., 2015a),
(Singh et al., 2015b) where authors showed the exis-
tence of a mixed strategy Nash equilibrium. In (Singh
et al., 2015a), the case where the random payoff vec-
tor of each player follows a certain distribution is con-
sidered. In particular, the authors considered the case
where the components of the payoff vector of each
player are independent normal random variables, and
they also consider the case where the payoff vector
of each player follows a multivariate elliptically sym-
metric distribution. In (Singh et al., 2015b), the case
where the distribution of payoff vector of each player
is not known completely is considered. The authors
consider a distributionally robust approach to handle
these games. In application regimes some chance-
constrained game models have been considered, e.g.,
see (Mazadi et al., 2013), (Couchman et al., 2005).
In (Mazadi et al., 2013), the randomness in payoffs is
due to the installation of wind generators on electric-
ity market, and they consider the case of independent
normal random variables. Later, for better represen-
tation and ease in computation the authors, in detail,
considered the case where only one wind generator
is installed in the electricity market. In (Couchman
et al., 2005), the payoffs are random due to uncertain
demand from consumers which is assumed to be nor-
mally distributed.

In this paper, we consider the case where the en-
tries of the payoff matrices are independent random
variables following the same distribution (possibly
with different parameters). For a given strategy pair

(x,y), the payoff of each player is a random vari-
able which is a linear combination of the indepen-
dent random variables. We consider the distributions
that are closed under a linear combination of the in-
dependent random variables. The normal and Cauchy
distributions satisfy this property. We consider each
distribution separately. We show that a Nash equi-
librium of the chance-constrained game correspond-
ing to normal distribution can be obtained by solv-
ing an equivalent nonlinear complementarity problem
(NCP). Further we consider a special case where the
entries of the payoff matrices are also identically dis-
tributed with non-negative mean. We show that a
strategy pair, where each player’s strategy is a uni-
form distribution over his action set, is a Nash equilib-
rium. We show that a Nash equilibrium of the chance-
constrained game corresponding to Cauchy distribu-
tion can be obtained by solving an equivalent LCP.

Now, we describe the structure of rest of the pa-
per. Section 2 contains the definition of a chance-
constrained game. Section 3 contains the comple-
mentarity problem formulation of chance-constrained
game. We conclude the paper in Section 4

2 THE MODEL

We consider two player bimatrix game where the en-
tries of the payoff matrices are random variables. We
denote the random payoff matrices of player 1 and
player 2 by Aw and Bw respectively, where w denotes
the uncertainty parameter. Let (Ω,F ,P) be a proba-
bility space. Then, for each i ∈ I, j ∈ J, aw

i j : Ω→ R,
and bw

i j : Ω→ R. For each (x,y) ∈ X ×Y , the payoffs
xT Awy and xT Bwy of player 1 and player 2 respec-
tively would be random variables. We assume that
each player uses satisficing payoff criterion, where
the payoff of each player is defined using a chance-
constraint. At strategy pair (x,y), each player is in-
terested in the highest level of his payoff that he can
attain with at least a specified level of confidence.
The confidence level of each player is given a pri-
ori. We assume that the confidence level of one
player is known to another player. Let α1 ∈ [0,1]
and α2 ∈ [0,1] be the confidence levels of player 1
and player 2 respectively. Let α = (α1,α2) be a con-
fidence level vector. For a given strategy pair (x,y)
and a given confidence level vector α, the payoff of
player 1 is given by

uα1
1 (x,y) = sup{u|P(xT Awy≥ u)≥ α1}, (1)

and the payoff of player 2 is given by

uα2
2 (x,y) = sup{v|P(xT Bwy≥ v)≥ α2}. (2)
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We assume that the probability distributions of the en-
tries of the payoff matrix of one player are known to
another player. Then, for a given α the payoff func-
tion of one player defined above is known to another
player. That is, for a given α the chance constrained
game is a non-cooperative game with complete infor-
mation. For a given α, the set of best response strate-
gies of player 1 against the fixed strategy y of player
2 is given by

BRα1(y) =
{

x̄ ∈ X |uα1
1 (x̄,y)≥ uα1

1 (x,y), ∀ x ∈ X
}
,

and the set of best response strategies of player 2
against the fixed strategy x of player 1 is given by

BRα2(x) =
{

ȳ ∈ Y |uα2
2 (x, ȳ)≥ uα2

2 (x,y), ∀ y ∈ Y
}
.

Next, we give the definition of Nash equilibrium.

Definition 2.1 (Nash equilibrium). For a given con-
fidence level vector α, a strategy pair (x∗,y∗) is said
to be a Nash equilibrium of the chance-constrained
game if the following inequalities hold:

uα1
1 (x∗,y∗)≥ uα1

1 (x,y∗), ∀ x ∈ X ,

uα2
2 (x∗,y∗)≥ uα2

2 (x∗,y). ∀ y ∈ Y.

3 COMPLEMENTARITY
PROBLEM FOR
CHANCE-CONSTRAINED
GAME

In this section, we consider the case where the en-
tries of payoff matrix Aw of player 1 are independent
random variables following a certain distribution, and
the entries of payoff matrix Bw of player 2 are inde-
pendent random variables following a certain distri-
bution. Then, at strategy pair (x,y) the payoff of each
player is a linear combination of the independent ran-
dom variables. We are interested in those probabil-
ity distributions that are closed under a linear com-
bination of the independent random variables. That
is, if Y1,Y2, · · · ,Yk are independent random variables
following the same distribution (possibly with differ-
ent parameters), for any b ∈ Rk, the distribution of
∑k

i=1 biYi is same as Yi up to parameters. The normal
and Cauchy distributions satisfy the above property
(Johnson et al., 1994). We discuss each probability
distribution mentioned above separately. For the case
of normal distribution we show that a Nash equilib-
rium of the chance-constrained game can be obtained
by solving an equivalent NCP, and for the case of
Cauchy distribution we show that a Nash equilibrium
of the chance-constrained game can be obtained by
solving an equivalent LCP.

3.1 Payoffs Following Normal
Distribution

We assume that all the components of matrix Aw

are independent normal random variables, where the
mean and variance of aw

i j, i ∈ I, j ∈ J, are µ1,i j and
σ2

1,i j respectively, and all the components of ma-
trix Bw are independent normal random variables,
where the mean and variance of bw

i j, i ∈ I, j ∈ J,
are µ2,i j and σ2

2,i j respectively. For a given strat-
egy pair (x,y), xT Awy follows a normal distribution
with mean µ1(x,y) = ∑i∈I, j∈J µ1,i jxiy j and variance
σ2

1(x,y) =∑i∈I, j∈J x2
i y2

jσ2
1,i j, and xT Bwy follows a nor-

mal distribution with mean µ2(x,y)=∑i∈I, j∈J µ2,i jxiy j

and variance σ2
2(x,y) = ∑i∈I, j∈J x2

i y2
jσ2

2,i j. Then,

ZN
1 = xT Awy−µ1(x,y)

σ1(x,y)
and ZN

2 = xT Bwy−µ2(x,y)
σ2(x,y)

follow a

standard normal distribution. Let F−1
ZN

1
(·) and F−1

ZN
2
(·)

be the quantile functions of a standard normal distri-
bution. From (1), for a given strategy pair (x,y) and
a given confidence level α1, the payoff of player 1 is
given by

uα1
1 (x,y) = sup{u|P(xT Awy≥ u)≥ α1}

= sup{u|P(xT Awy≤ u)≤ 1−α1}

= sup
{

u|FZN
1

(
u−µ1(x,y)

σ1(x,y)

)
≤ 1−α1

}

= sup
{

u|u≤ µ1(x,y)+σ1(x,y)F−1
ZN

1
(1−α1)

}
.

That is,
uα1

1 (x,y) = ∑
i∈I, j∈J

µ1,i jxiy j

+

(
∑

i∈I, j∈J
x2

i y2
j σ

2
1,i j

)1/2

F−1
ZN

1
(1−α1).

(3)

Similarly, from (2) for a given strategy pair (x,y) and
a given confidence level α2, the payoff of player 2 is
given by

uα2
2 (x,y) = ∑

i∈I, j∈J
µ2,i jxiy j

+

(
∑

i∈I, j∈J
x2

i y2
j σ

2
2,i j

)1/2

F−1
ZN

2
(1−α2).

(4)

Theorem 3.1. Consider a bimatrix game (Aw,Bw).
If all the components of matrix Aw are independent
normal random variables, and all the components
of matrix Bw are also independent normal random
variables, there exists a Nash equilibrium for the
chance-constrained game in mixed strategies for all
α ∈ [0.5,1]2.

Proof. The proof follows from (Singh et al., 2015a)
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3.1.1 Nonlinear Complementarity Problem
Formulation

The payoff function of player 1 defined by (3) can be
written as follows:

uα1
1 (x,y) = xT µ1(y)+ ||Σ1/2

1 (y)x||F−1
ZN

1
(1−α1), (5)

where || · || is the Euclidean norm, and
µ1(y) =

(
µ1,i(y)

)
i∈I is an m × 1 vector where

µ1,i(y) = ∑ j∈J µ1,i jy j, and Σ1(y) is an m × m
diagonal matrix whose ith diagonal entry
Σ1,ii(y) = ∑ j∈J σ2

1,i jy
2
j . Similarly, the payoff

function of player 2 defined by (4) can be written as
follows:

uα2
2 (x,y) = yT µ2(x)+ ||Σ1/2

2 (x)y||F−1
ZN

2
(1−α2), (6)

where µ2(x) =
(
µ2, j(x)

)
j∈J is an n× 1 vector where

µ2, j(x) = ∑i∈I µ2,i jxi, and Σ2(x) is an n× n diag-
onal matrix whose jth diagonal entry Σ2, j j(x) =

∑i∈I σ2
2,i jx

2
i . For fixed y ∈ Y and α1 ∈ [0.5,1], the

payoff function uα1
1 (·,y) of player 1 defined by (5)

is a concave function of x because F−1
ZN

1
(1−α1) ≤ 0

for all α1 ∈ [0.5,1]. Similarly, for fixed x ∈ X and
α2 ∈ [0.5,1], the payoff function uα2

2 (x, ·) of player 2
defined by (6) is a concave function of y.

Then, for a fixed y ∈Y and α1 ∈ [0.5,1], a best re-
sponse strategy of player 1 can be obtained by solving
the convex quadratic program [QP1] given below:

[QP1] max
x

xT µ1(y)+ ||Σ1/2
1 (y)x||F−1

ZN
1
(1−α1)

s.t

(i) ∑
i∈I

xi = 1

(ii) xi ≥ 0, i ∈ I.

It is easy to see that a feasible solution of [QP1]
satisfies the linear independence constraint qualifica-
tion. Then, Karush-Kuhn-Tucker (KKT) conditions
of [QP1] will be necessary and sufficient conditions
for optimal solution

(
for details see (Nocedal and

Wright, 2006), (Bazaraa et al., 2006)
)
. For a given

vector ν, ν ≥ 0 means νk ≥ 0, for all k. The equal-
ity constraint of [QP1] can be replaced by two equiv-
alent inequality constraints, and the free Lagrange
multiplier corresponding to equality constraint can be
replaced by the difference of two nonnegative vari-
ables. By using these transformations, the best re-
sponse strategy of player 1 can be obtained by solving

the following KKT conditions of [QP1]:



0≤ x⊥−µ1(y)−
Σ1(y)x · cα1

||Σ1/2
1 (y)x||

−λ1em +λ2em ≥ 0,

0≤ λ1 ⊥∑
i∈I

xi−1≥ 0,

0≤ λ2 ⊥ 1−∑
i∈I

xi ≥ 0,

(7)
where em is the m × 1 vector of ones, and
cα1 = F−1

ZN
1
(1− α1), and ⊥ means that element-

wise equality must hold at one or both sides. For
fixed x ∈ X and α2 ∈ [0.5,1], a best response strat-
egy of player 2 can be obtained by solving the convex
quadratic program [QP2] given below:

[QP2] max
y

yT µ2(x)+ ||Σ1/2
2 (x)y||F−1

ZN
2
(1−α2)

s.t

(i) ∑
j∈J

y j = 1

(ii) y j ≥ 0, j ∈ J.
From the similar arguments used in previous case, the
best response strategy of player 2 can be obtained by
solving the following KKT conditions of [QP2]:



0≤ y⊥−µ2(x)−
Σ2(x)y · cα2

||Σ1/2
2 (x)y||

−λ3en +λ4en ≥ 0,

0≤ λ3 ⊥∑
j∈J

y j−1≥ 0,

0≤ λ4 ⊥ 1−∑
j∈J

y j ≥ 0,

(8)
where cα2 = F−1

ZN
2
(1−α2).

Nonlinear Complementarity Problem: By combin-
ing the KKT conditions given by (7) and (8), a Nash
equilibrium (x,y) can be obtained by solving the fol-
lowing NCP:

0≤ ζ⊥ G(ζ)≥ 0, (9)
where ζ,G(ζ) ∈ Rm+n+4 are given below:

ζT = (xT ,yT ,λ1,λ2,λ3,λ4),

G(ζ) =




−µ1(y)− Σ1(y)x·cα1

||Σ1/2
1 (y)x||

−λ1em +λ2em

−µ2(x)− Σ2(x)y·cα2

||Σ1/2
2 (x)y||

−λ3en +λ4en

∑i∈I xi−1

1−∑i∈I xi

∑ j∈J y j−1

1−∑ j∈J y j




.

A Complementarity Problem Formulation for Chance-constraine Games

61



For given k, l, 0k×l is a k× l zero matrix and 0k is a
k×1 zero vector. Define,

Q =




0m×m −µ1 −em em 0m 0m

−µT
2 0n×n 0n 0n −en en

eT
m 0T

n 0 0 0 0

−eT
m 0T

n 0 0 0 0

0T
m eT

n 0 0 0 0

0T
m −eT

n 0 0 0 0




,

where µ1 = (µ1,i j)i∈I, j∈J , µ2 = (µ2,i j)i∈I, j∈J are m×n
matrices. Define,

R(ζ) =




−cα1 ·Σ1(y)

||Σ1/2
1 (y)x||

0m×n 0m×4

0n×m
−cα2 ·Σ2(x)

||Σ1/2
2 (x)y||

0n×4

04×m 04×n 04×4


 , r =




0m

0n

−1

1

−1

1




.

Then, G(ζ) =
(
Q+R(ζ)

)
ζ+ r.

Theorem 3.2. Consider a bimatrix game (Aw,Bw)
where all the components of matrix Aw are indepen-
dent normal random variables, and all the compo-
nents of matrix Bw are also independent normal ran-
dom variables. Let ζ∗T = (x∗T ,y∗T ,λ∗1,λ

∗
2,λ
∗
3,λ
∗
4) be

a vector. Then, the strategy part (x∗,y∗) of ζ∗ is a
Nash equilibrium of the chance-constrained game for
a given α ∈ [0.5,1]2 if and only if ζ∗ is a solution of
NCP (9).

Proof. Let α ∈ [0.5,1]2, then (x∗,y∗) is a Nash equi-
librium of the chance-constrained game if and only if
x∗ is an optimal solution of [QP1] for fixed y∗ and y∗

is an optimal solution of [QP2] for fixed x∗. Since,
[QP1] and [QP2] are convex optimization problems
and linear independence constraint qualification holds
at all feasible points, then the KKT conditions (7) and
(8) are both necessary and sufficient conditions for
optimality. Then, the proof follows by combining the
KKT conditions (7), (8).

For computational purpose freely available
solvers for complementarity problems can be used,
e.g., see (Schmelzer, 2012), (Ferris and Munson,
2000), (Munson, 2000).

3.1.2 Special Case

Here we consider the case where the components of
payoff matrices Aw and Bw are independent as well

as identically distributed. We assume that the com-
ponents of matrix Aw are independent and identi-
cally distributed (i.i.d.) normal random variables with
mean µ1 ≥ 0 and variance σ2

1, and the components
of matrix Bw are i.i.d. normal random variables with
mean µ2 ≥ 0 and variance σ2

2.

Theorem 3.3. Consider a bimatrix game (Aw,Bw)
where all the components of matrix Aw are i.i.d. nor-
mal random variables with mean µ1 ≥ 0 and variance
σ2

1, and all the components of matrix Bw are also i.i.d.
normal random variables with mean µ2 ≥ 0 and vari-
ance σ2

2. The strategy pair (x∗,y∗), where,

x∗i =
1
m
, ∀ i ∈ I, y∗j =

1
n
,∀ j ∈ J, (10)

is a Nash equilibrium of the chance-constrained game
for all α ∈ [0.5,1]2.

Proof. Fix α ∈ [0.5,1]2. From Theorem 3.2, it is
enough to show that there exist (λ∗1,λ

∗
2,λ
∗
3,λ
∗
4) which

together with (x∗,y∗) defined by (10) is a solution
of NCP (9). For all (x,y), we have µ1(y) = µ1em
and µ2(x) = µ2en because µ1,i j = µ1 and µ2,i j = µ2
for all i ∈ I, j ∈ J, and Σ1(y) = σ2

1||y||2Im×m and
Σ2(x) = σ2

2||x||2In×n because σ2
1,i j =σ2

1 and σ2
2,i j =σ2

2
for all i∈ I, j∈ J; Ik×k is a k×k identity matrix. Using
above expressions, we have

G(ζ) =




−µ1em− σ1||y||x·cα1
||x|| − (λ1−λ2)em

−µ2en− σ2||x||y·cα2
||y|| − (λ3−λ4)en

∑i∈I xi−1

1−∑i∈I xi

∑ j∈J y j−1

1−∑ j∈J y j




.

Consider the Lagrange multipliers (λ∗1,λ
∗
2,λ
∗
3,λ
∗
4) as

follows:

λ∗1 =−
σ1 · cα1√

mn
, λ∗2 = µ1, λ∗3 =−

σ2 · cα2√
mn

, λ∗4 = µ2.

Since, µ1 ≥ 0, µ2 ≥ 0, and for α ∈ [0.5,1]2, cα1 ≤ 0
and cα2 ≤ 0, then, λ∗1 ≥ 0, λ∗2 ≥ 0, λ∗3 ≥ 0, λ∗4 ≥ 0. It is
easy to check that (x∗,y∗,λ∗1,λ

∗
2,λ
∗
3,λ
∗
4) is a solution

of NCP (9). That is, (x∗,y∗) defined by (10) is a Nash
equilibrium of chance-constrained game.

3.2 Payoffs Following Cauchy
Distribution

We assume that all the components of matrix Aw

are independent Cauchy random variables, where the
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location and scale parameters of aw
i j, i ∈ I, j ∈ J,

are µ1,i j and σ1,i j respectively, and all the compo-
nents of matrix Bw are independent Cauchy ran-
dom variables, where the location and scale param-
eters of bw

i j, i ∈ I, j ∈ J, are µ2,i j and σ2,i j re-
spectively. Since, a linear combination of the in-
dependent Cauchy random variables is a Cauchy
random variable (Johnson et al., 1994), then, for
a given strategy pair (x,y), the payoff xT Awy of
player 1 follows a Cauchy distribution with location
parameter µ1(x,y) = ∑i∈I, j∈J xiy jµ1,i j and scale pa-
rameter σ1(x,y) = ∑i∈I, j∈J xiy jσ1,i j, and the payoff
xT Bwy of player 2 follows a Cauchy distribution with
location parameter µ2(x,y) = ∑i∈I, j∈J xiy jµ2,i j and
scale parameter σ2(x,y) = ∑i∈I, j∈J xiy jσ2,i j. Then,

ZC
1 = xT Awy−µ1(x,y)

σ1(x,y)
and ZC

2 = xT Bwy−µ2(x,y)
σ2(x,y)

follow a

standard Cauchy distribution. Let F−1
ZC

1
(·) and F−1

ZC
2
(·)

be the quantile functions of a standard Cauchy dis-
tribution. For more details about Cauchy distribution
see (Johnson et al., 1994). Similar to the normal dis-
tribution case, for a given strategy pair (x,y) and a
given α the payoff of player 1 is given by

uα1
1 (x,y) = sup

{
u|FZC

1

(
u−µ1(x,y)

σ1(x,y)

)
≤ 1−α1

}

= sup
{

u|u≤ µ1(x,y)+σ1(x,y)F−1
ZC

1
(1−α1)

}
.

That is,

uα1
1 (x,y) = ∑

i∈I, j∈J
xiy j

(
µ1,i j +σ1,i jF−1

ZC
1
(1−α1)

)
.

(11)

Similarly, the payoff of player 2 is given by

uα2
2 (x,y) = ∑

i∈I, j∈J
xiy j

(
µ2,i j +σ2,i jF−1

ZC
2
(1−α2)

)
.

(12)

The quantile function of a standard Cauchy distribu-
tion is not finite at 0 and 1. Therefore, we consider
the case of α ∈ (0,1)2, so that payoff functions de-
fined by (11) and (12) have finite values. Define, a
matrix Ã(α1) = (ãi j(α1))i∈I, j∈J , where

ãi j(α1) = µ1,i j +σ1,i jF−1
ZC

1
(1−α1), (13)

and a matrix B̃(α2) =
(
b̃i j(α2)

)
i∈I, j∈J , where

b̃i j(α2) = µ2,i j +σ2,i jF−1
ZC

2
(1−α2). (14)

Then, we can write (11) as

uα1
1 (x,y) = xT Ã(α1)y,

and we can write (12) as

uα2
2 (x,y) = xT B̃(α2)y.

Then, for a given α ∈ (0,1)2, the chance-
constrained game is equivalent to the bimatrix game(
Ã(α1), B̃(α2)

)
.

Theorem 3.4. Consider a bimatrix game (Aw,Bw). If
all components of matrix Aw are independent Cauchy
random variables, and all components of matrix Bw

are also independent Cauchy random variables, there
exists a Nash equilibrium for the chance-constrained
game in mixed strategies for all α ∈ (0,1)2.

Proof. For each α ∈ (0,1)2 the chance-constrained
game is equivalent to the bimatrix game(
Ã(α1), B̃(α2)

)
. Hence, the existence of a Nash

equilibrium in mixed strategies follows from (Nash,
1950).

Remark 3.5. For case of i.i.d. Cauchy random vari-
ables each strategy pair (x,y) is a Nash equilibrium
because from (11), (12) the payoff functions of both
the players are constant.

3.2.1 Linear Complementarity Problem

For a given matrix N = [Ni j], N > 0 means that Ni j > 0
for all i, j. Let E be the m×n matrix with all 1’s. Let k
be the large enough such that kET −(B̃(α2))

T > 0 and
kE − Ã(α1) > 0. Then, from (Lemke and Howson,
1964), (Lemke, 1965) it follows that for a given α, a
Nash equilibrium of the chance-constrained game can
be obtained by following LCP:

0≤ z⊥Mz+q≥ 0, (15)

where

z =
(

x
y

)
, M =

(
0m×m kE− Ã(α1)

kET − (B̃(α2))
T 0n×n

)
,

q =

(
−em
−en

)
.

Theorem 3.6. Consider a bimatrix game (Aw,Bw)
where all the components of matrix Aw are indepen-
dent Cauchy random variables, and all the compo-
nents of matrix Bw are also independent Cauchy ran-
dom variables, then,
1. For a α ∈ (0,1)2, if (x∗,y∗) is a Nash equi-

librium of the chance-constrained game, z∗T =(
x∗T

k−x∗T B̃(α2)y∗
, y∗T

k−x∗T Ã(α1)y∗

)
is a solution of LCP

(15) at α.
2. For a α ∈ (0,1)2, if z̄T = (x̄T , ȳT ) is a solution

of LCP (15), (x∗,y∗) =
(

x̄
∑i∈I x̄i

, ȳ
∑i∈I ȳ j

)
is a Nash

equilibrium of the chance-constrained game at α.
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Proof. For a α∈ (0,1)2, the chance-constrained game
corresponding to Cauchy distribution is equivalent
to a bimatrix game

(
Ã(α1), B̃(α2)

)
, where Ã(α1)

and B̃(α2) is defined by (13) and (14) respectively.
Then, the proof follows from (Lemke and Howson,
1964).

3.2.2 Numerical Results

We consider few instances of random bimatrix game
of different sizes. We compute the Nash equilib-
ria of corresponding chance-constrained game by us-
ing Lemke-Howson algorithm (Lemke and Howson,
1964). We use the MATLAB code of Lemke-Howson
algorithm given in (Katzwer, 2013).

(i) 3× 3 random bimatrix game: We consider five
instances of random bimatrix game of size 3×3. The
datasets consisting of location parameters µ1 = [µ1,i j],
µ2 = [µ2,i j], and scale parameters σ1 = [σ1,i j], σ2 =
[σ2,i j] of independent Cauchy random variables that
characterizes chance-constrained game are follows:

1. µ1 =




1 2 1
2 3 1
1 2 3


 , σ1 =




1 1 2
1 2 3
2 1 2


 ,

µ2 =




2 1 2
3 2 1
1 2 3


 , σ2 =




1 2 3
3 1 2
2 3 1


 .

2. µ1 =




1 1 2
2 1 1
2 1 3


 , σ1 =




2 2 3
3 2 1
1 2 3


 ,

µ2 =




2 2 1
3 2 3
2 1 2


 , σ2 =




1 2 2
2 3 1
2 1 3


 .

3. µ1 =




2 1 3
3 2 1
1 3 2


 , σ1 =




2 3 1
3 1 2
1 2 3


 ,

µ2 =




1 2 3
2 1 3
3 1 2


 , σ2 =




1 1 2
1 2 1
3 1 1


 .

4. µ1 =




3 1 2
2 1 3
1 2 3


 , σ1 =




2 4 1
1 2 3
3 2 1


 ,

µ2 =




4 1 3
3 2 4
2 1 3


 , σ2 =




5 2 3
3 2 1
4 2 3


 .

5. µ1 =




1 2 1
2 3 1
1 2 3


 , σ1 =




2 2 3
3 2 1
1 2 3


,

µ2 =




1 2 3
2 1 3
3 1 2


 , σ2 =




5 2 3
3 2 1
4 2 3


 .

The entries of µ1, σ1, µ2, σ2 defined above are the
location and scale parameters of corresponding in-
dependent Cauchy random variables. For example,
in dataset 1 random payoff a11 is a Cauchy random
variable with location parameter 1 and scale param-
eter 1. The Table 1 summarizes the Nash equilibria
of chance-constrained game corresponding to datasets
given for five instances of 3× 3 random bimatrix
game.

Table 1: Nash equilibria for various values of α.

No.

α Nash Equilibrium

α1 α2 x∗ y∗

1

0.4 0.4 (0, 0, 1) (0, 0, 1)

0.5 0.5 (0, 1, 0) (1, 0, 0)

0.7 0.7 (0, 1, 0) (0, 1, 0)

2

0.4 0.4 (1, 0, 0) (0, 1, 0)

0.5 0.5 (0, 1, 0) (1, 0, 0)

0.7 0.7 (0, 0, 1) (1, 0, 0)

3

0.4 0.4 (1, 0, 0) (0, 0, 1)

0.5 0.5 (1, 0, 0) (0, 0, 1)

0.7 0.7 (1, 0, 0) (0, 0, 1)

4

0.4 0.4 (1, 0, 0) (1, 0, 0)

0.5 0.5 (1, 0, 0) (1, 0, 0)

0.7 0.7 (0, 0, 1) (0, 0, 1)

5

0.4 0.4
(
0, 791

1000 ,
209
1000

) ( 616
1000 ,0,

384
1000

)

0.5 0.5
(
0, 1

2 ,
1
2

) ( 2
3 ,0,

1
3

)

0.7 0.7 (0, 0, 1) (1, 0, 0)

(ii) 5× 5 random bimatrix game: We consider two
instances of random bimatrix game of size 5×5. The
location parameters µ1, µ2, and scale parameters σ1,
σ2 of independent Cauchy random variables are as
follows:

1. µ1 =




1 2 1 1 3
2 3 1 1 2
1 2 3 2 3
2 1 3 4 2
1 2 4 5 2


 ,σ1 =




2 2 3 2 1
1 2 3 2 1
1 2 3 3 1
2 1 3 4 2
3 1 2 5 2


 ,
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µ2 =




1 2 3 2 1
3 2 2 1 3
1 2 3 1 2
2 1 4 2 1
1 1 2 1 3


 , σ2 =




5 2 3 2 3
2 4 3 2 1
1 3 4 2 3
2 1 3 5 1
2 1 2 3 4


 .

2. µ1 =




1 2 2 4 3
2 1 3 2 2
1 2 4 2 1
2 2 3 4 1
1 2 4 5 2


 ,σ1 =




2 3 1 2 1
1 1 3 1 2
3 1 3 3 1
2 2 5 4 2
3 1 3 5 2


 ,

µ2 =




1 2 3 2 1
3 1 2 1 4
2 1 3 4 2
3 2 4 2 1
2 4 2 1 3


 , σ2 =




5 2 4 2 1
2 4 3 2 1
4 3 3 2 3
2 1 3 5 3
1 3 4 3 4


 .

The Table 2 summarizes the Nash equilibria of
chance-constrained game corresponding to datasets
given for two instances of 5× 5 random bimatrix
game.

Table 2: Nash equilibria for various values of α.

No.

α Nash Equilibrium

α1 α2 x∗ y∗

1

0.4 0.4
(
0,0, 555

1000 ,0,
445
1000

) (
0,0, 1

2 ,0,
1
2

)

0.5 0.5
(
0,0, 1

2 ,0,
1
2

) (
0,0, 1

2 ,0,
1
2

)

0.7 0.7 (0,0,0,0,1) (0,0,1,0,0)

2

0.4 0.4
(
0,0, 663

1000 ,0,
337
1000

)
(0,0,1,0,0)

0.5 0.5
(
0,0, 1

2 ,0,
1
2

)
(0,1,0,0,0)

0.7 0.7
(
0,0, 446

1000 ,0,
554
1000

)
(0,1,0,0,0)

(iii) 7×7 random bimatrix game: We consider two
instances of random bimatrix game of size 7×7. The
location parameters µ1, µ2, and scale parameters σ1,
σ2 of independent Cauchy random variables are as
follows:

1. µ1 =




1 2 2 4 3 2 1
1 1 2 1 3 2 2
3 2 1 2 4 2 1
2 4 2 2 3 4 1
1 2 4 5 2 2 3
1 3 4 3 2 2 3
2 1 4 2 3 2 1



,σ1 =




2 3 1 2 1 1 2
1 1 3 1 2 2 4
2 1 3 1 3 3 1
2 2 5 4 2 1 3
2 1 3 1 3 5 2
1 2 3 1 2 3 2
2 1 4 2 3 1 2



,

µ2 =




1 2 3 2 3 2 1
1 2 3 1 2 1 4
2 1 2 1 3 4 2
1 2 3 2 4 2 1
2 3 1 4 2 1 3
1 2 3 2 1 3 4
2 3 1 2 3 4 2



, σ2 =




5 2 4 2 1 2 3
1 2 2 4 3 2 1
2 3 4 3 3 2 3
2 3 2 1 3 5 3
2 1 2 3 4 3 4
1 2 2 3 1 3 1
2 4 1 2 3 1 2



.

2. µ1 =




1 2 3 1 3 4 1
2 1 2 1 2 4 2
1 2 1 5 3 2 1
1 3 2 2 3 2 1
2 3 4 5 2 1 3
1 3 2 1 2 4 3
2 1 3 2 1 2 1



,σ1 =




1 3 1 2 1 2 2
2 1 3 1 2 2 4
2 1 3 2 3 4 1
2 2 3 4 2 1 3
2 4 3 1 3 2 2
1 2 3 2 2 4 2
2 3 4 1 3 1 2



,

µ2 =




2 1 3 4 3 2 1
1 2 3 3 2 1 4
2 1 2 1 3 4 2
1 2 3 2 4 2 1
2 3 2 4 2 1 3
1 2 1 2 5 3 4
2 3 1 2 1 4 2



, σ2 =




5 2 4 3 1 2 3
1 2 3 4 3 2 3
1 3 4 2 1 2 3
2 3 2 2 3 4 3
2 1 2 2 4 1 4
2 3 2 3 4 3 1
2 4 3 2 3 1 2



.

The Table 3 summarizes the Nash equilibria of
chance-constrained game corresponding to datasets
given for two instances of 7× 7 random bimatrix
game.

Table 3: Nash equilibria for various values of α.

No.

α Nash Equilibrium

α1 α2 x∗ y∗

1

0.4 0.4

(
0,0, 2

3 ,
1
3 ,

0,0,0
)

(
0,0,0,0,

505
1000 ,

495
1000 ,0

)

0.5 0.5

(
0,0, 2

3 ,
1
3 ,

0,0,0
)

(
0,0,0,0,

2
3 ,

1
3 ,0
)

0.7 0.7

(
1,0,0,0,

0,0,0
)

(
0,0,0,0,

1,0,0)

2

0.4 0.4

(
1
5 ,0,

13
25 ,0,

7
25 ,0,0

)

(
0,0, 13

50 ,0,

675
1000 ,

65
1000 ,0

)

0.5 0.5

(
1
2 ,0,

1
2 ,0,

0,0,0
)

(
0,0,0,0,

1,0,0
)

0.7 0.7

(
1,0,0,0,

0,0,0
)

(
0,0,0,0,

1,0,0
)
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4 CONCLUSIONS

We formulate the bimatrix game with random payoffs
as a chance-constrained game. We consider the case
where the entries of payoff matrices are independent
random variables following a certain distribution. In
particular, we discuss the case of normal and Cauchy
distributions. We show that the chance-constrained
game corresponding to normal distribution can be for-
mulated as an equivalent NCP. Further if the entries of
payoff matrices are also identically distributed with
non-negative mean, a uniform strategy pair is a Nash
equilibrium. We show that the chance-constrained
game corresponding to Cauchy distribution can be
formulated as an equivalent LCP. Recently, the elec-
tricity markets over the past few years have been
transformed from nationalized monopolies into com-
petitive markets with privately owned participants.
The uncertainties in electricity markets are present
due to various external factors. These situations can
be modeled as chance-constrained games and the ap-
proaches developed in this paper can be applied to
compute the Nash equilibrium.
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