
Lightweight Realization of UML Ports for Safety-Critical Real-Time
Embedded Software

Alper Tolga Kocataş1, Mustafa Can1 and Ali Hikmet Doğru2
1Avionics Software Design Department, Aselsan Inc., Ankara, Turkey

2Department of Computer Engineering, Middle East Technical University, Ankara, Turkey

Keywords: UML, Model, Port, Object-Oriented, Realization, Transformation, Safety-Critical, Embedded, Real-Time.

Abstract: UML ports are widely used in the modeling of real-time software due to their advantages in flexibility and
expressiveness. When realizing UML ports in object oriented languages, using objects for each port is one
option. However, this approach causes runtime overhead and renders significant amount of additional
generated code. To meet the performance constraints and decrease the costs of code reviews required in
development of safety-critical real-time embedded software, more efficient approaches are required. In this
article, we propose an approach, which introduces relatively less runtime overhead and results in more
compact source code. A structural model defined with UML ports is transformed into a model that uses
associations instead of objects to efficiently implement the UML port semantics with less lines of code.
Achieved improvements and validation of the proposed approach is demonstrated by a case study; the
design of an existing avionics software.

1 INTRODUCTION

Defining interactions of classes using association
relations which expose the entire public interface of
the classes to their clients makes it hard to observe
the data flow in the model. Since ports function as
an opening in the encapsulation of classes through
which messages are sent either into or out of the
class (Bjerkander and Kobryn, 2003), a model
designed using ports is easier to understand, more
flexible, easier to maintain and more suitable for
communication of design decisions. In UML, a port
is a point defined by a classifier for conducting
interactions between the internals of the classifier
and its environment. The contract based interaction
provided by ports allows the classifiers to be defined
independently from other classifiers (Selic, 2003).

On the other hand, software for safety-critical
real-time embedded systems is becoming more and
more complex (McDermid and Kelly, 2006). These
systems typically require certification and runtime
overhead of any design decision should be justified
because of limited resources. Additionally, the size
of the source code should be compact for easier code
reviews. For instance, DO-178C (RTCA, 2011)
defines several requirements for certification of
airborne systems. In DO-178C, if a development

tool (i.e. a code generator) is not “qualified”, its
outputs must be manually reviewed for correctness.
Since development tool qualification is the most
rigorous type of tool qualification in the scope of
DO-178C, often, instead of qualifying the tools,
their outputs are preferred to be manually reviewed.
As a result, source code, which is more compact and
less complex, is preferred because the effort needed
for code reviews is expected to be lower.

Ports and connectors do not have direct
correspondents in object oriented programming
languages (Mraidha et al., 2013) and yet, UML does
not put constraints on how ports are realized (France
et al., 2006). The UML standard mentions ports as
interaction points which provide “unique references”
(OMG, 2015). According to this definition,
realization of ports using objects seems adequate.
However, this approach causes certain amount of
runtime overhead for the final executable (Douglass,
2007). Ideally, ports should have zero overhead for
transmitting messages for complex real-time systems
(Selic, 1998). Another problem with this approach
is, source code grows significantly because of the
added objects and classes to realize the ports.

In this article, we propose a more efficient
approach for mapping ports to object oriented
languages. The proposed approach enables

258
Kocataş, A., Can, M. and Doğru, A.
Lightweight Realization of UML Ports for Safety-Critical Real-Time Embedded Software.
DOI: 10.5220/0005689602580265
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 258-265
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 1: UML composite structures and port notation.

generation of relatively compact source code and
introduces relatively less runtime overhead. A
source model having been defined using ports and
connectors is transformed into a target model. Code
is then generated from the target model. The target
model includes association relations and
initialization operations, which implement the ports
and connectors in the source model. The presented
approach is evaluated using the design model for an
avionics software.

2 UML PORTS OVERVIEW

Abstract syntax and concrete syntax for composite
structures and ports is given in the "Composite
Structures" section of UML 2.4.1 superstructure
definition (OMG, 2015). Figure 1 presents an
example composite structure diagram using ports. In
the figure, there is a connector which connects the
ports ep1 and tp1. The connector semantically
indicates that a message sent from the tp1 port of the
Throttle object should be sent to the Ecu object via
its ep1 port. When sending the message, source class
(Throttle) specifies the port name, operation name
and operation arguments. An example expression is
presented in Statement 1 using C++:

GetPort(tp1).msg(); (1)
GetPort is used to obtain a reference to the

destination of the message, and it should be
translated to an appropriate statement by the used
port realization approach. In this article, connectors
are categorized as cross connectors and relay
connectors for better communication of ideas. Cross
connectors connect ports of the two objects (i.e. the
connector between ports ep1 and tp1 in Figure 1),
while relay connectors connect a port of an internal
part with a port of the owner class (i.e. the connector
between ports tp2 and ep in Figure 1).

Figure 2: Example source model.

3 APPROACHES FOR
REALIZATION OF PORTS

In order to demonstrate different realization
approaches for ports, the model depicted in Figure 2
is used. In the model, a message is transferred from
object b to c via the path, which is formed by ports
pB, pA and pC. In addition to the example model
transformations presented in the article, UML model
for Figure 1 and the source code generated using all
of the presented approaches are presented in a public
repository1. The C++ language is chosen as the
target language, but the approaches are also
applicable to other object oriented languages.

3.1 Heavyweight Approach

Specific realization of ports as presented in this
section is implemented by one of the existing
modeling tools (IBM, 2015). According to this
approach, each port is transformed to a class and its
corresponding object. Furthermore, in order to
differentiate messages from both directions,
provided and required parts of port contracts are
realized using in and out objects, which are instances
of additionally generated classes. Using this
approach, the example model provided in Figure 2 is
transformed into the model shown in Figure 3. PA,
PB, and PC are the classes generated for ports.
Classes Out and In are generated for outbound and
inbound direction of ports. After the transformation,
the constructor for class C includes:

pC.getIn().setItsX(this); (2)
Statement (2) is required to connect port pC of

class C to object c. Furthermore, the constructor of
class A is generated as:

1https://github.com/alperkocatas/UmlPortStudy

Lightweight Realization of UML Ports for Safety-Critical Real-Time Embedded Software

259

Figure 3: Realization of ports with heavyweight approach.

 b.getPB().getOut().
 setX(getPA().getOut()); (3)

The method setX is a trivial accessor function for
the generated associations itsX. Statement (3) is
required to connect the relay port pA of class A to
the port pB of object b. Finally, constructor for class
D is generated as:

a.getPA().getOut().
 setX(c.getPC().getIn()); (4)

Statement (4) initializes the itsX association of
out object of port pA with the reference of the in
object of object c, so that messages sent from port
pA will be handled by the in object of port pC of
object c. GetPort(PortName) in Statement (1) is
translated as getPortName()->getOut(), which
returns a reference to the out object of the port. This
reference is used to send messages from the port.

Figure 4: Lightweight realization of ports.

3.2 Lightweight Approach

In the lightweight realization, no objects are
generated for ports. Instead, only associations with
required interfaces and the operations to initialize
them are generated. Relay connectors are
particularly transformed into smart getter and setter
methods. The smart getters and setters are used to
connect the ports which are at the ends of a chain of
relay connectors. At runtime, after the initialization
code generated for cross connectors runs, each
object enters a state in which, the final destinations
of the messages that will be sent from its ports are
determined. As a result, when sending messages,
relay port chains spanning multiple ports are
resolved in one step. Using this approach, the
example model in Figure 2 is transformed to the
model, shown in Figure 4. In the transformed model,
associations pA_X and pB_X are used by objects a
and b to send messages through their ports pA and
pB. Since none of its ports requires interfaces, class
C does not have such association. Constructor of
class D is generated as:

a.setPA_X(c.getPC_X()); (5)
Statement (5) is generated for the cross

connector in the source model. It initializes the pA_X
association of object a with the value obtained from
the getPC_X() operation of object c. Since pC is a
behavioral port, generated operation getPC_X()
returns this pointer of object c. The body of
operation setPA_X(X& val), which is a smart setter,
is generated as:

pA_X = val; (6)
b.setPB_X(val); (7)

Port pA is a relay port, which forwards messages
from pB to pC. Statement (6) first sets the pA_X
association of object a to val, so that object a can
also send messages using the port pA. Statement (7)
then forwards the parameter val to object b, which
will set association pB_X of object b to val. Since
the value of val is passed as the this pointer of object
c, Statements (6) and (7) effectively connect the port
pB of object b with object c. As a result, after the
expression in Statement (5) is executed, destination
of messages going out from port pB, which is the
object c, is determined. In the lightweight approach,
the expression GetPort(PortName) in Statement
(1) is translated as PortName_InterfaceName,
which is the name of the association created for the
port and required interface pair. To resolve the
interface which is appended to the port name, an
interface, which implements the operation being

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

260

called is searched in the required interfaces of the
port. This search is performed at the time of port
realization.

3.3 Disconnected Ports and Interfaces

If the source model contains disconnected ports,
problems may occur at runtime. The following two
cases correspond to disconnected ports: First, if a
port is not connected to any other port via a
connector, the port is considered as disconnected.
Second, when there is a connector which connects
two ports, if the ports at both ends of the connector
do not have matching contracts, ports are considered
as partially disconnected. In this paper, the second
case is denoted with the term disconnected
interfaces. When operations declared by the
unmatched interfaces are called, messages cannot be
forwarded because there is no provided interface at
the opposite side of the connector. Figure 5 depicts
an example for disconnected interfaces. The port pA
requires interfaces X and Y, while the port pB
provides interfaces Y and Z. Even if the ports are
connected with a connector, since the port pB does
not provide interface X in its contract, object a
cannot send messages declared by interface X to
object b.

In the lightweight approach, if the source model
has disconnected ports or disconnected interfaces,
messages which are being sent from the generated
associations may cause null pointer exceptions. One
of the following strategies can be employed for
handling disconnected ports and interfaces:

1 - The lightweight approach can be used and
disconnected ports and interfaces can be allowed in
the model. Then, if there is a call from disconnected
ports or interfaces, software may crash at runtime
because of a null pointer exception. Alternatively,
the model can be checked before realization of ports
to ensure that no messages will be sent using
disconnected ports or interfaces during execution.

2 - The lightweight approach can be used but,
disconnected ports and interfaces are not allowed in
the source model. The model can be checked before
the realization of ports to ensure that there are no
disconnected ports or interfaces.

3 - The lightweight approach can be modified so
that all of the messages sent through disconnected
ports and interfaces are handled at runtime, by
ignoring the message or by throwing an exception.

When the first option is used without model
checking, there is a possibility of software crashing
at runtime due to a null pointer exception. However,
if statement coverage for all of the operation calls

Figure 5: An example for disconnected ports/interfaces.

from ports is achieved while testing, it can be
guaranteed that no such crash will occur. For
example, DO-178C (RTCA, 2011) requires full
statement coverage by test cases, beyond a certain
safety-criticality level. Therefore, effort required for
achieving full statement coverage is already
included in the development costs. Alternatively,
instead of achieving the statement coverage, the
model checking mentioned in the first option can be
attempted to be incorporated. However, such model
checking is not trivial, since predicting the dynamic
runtime behavior of software may not be feasible.

The second option is possible to implement.
However, it can be argued that disconnected ports
and interfaces are part of the flexibility offered by
ports. For example, in Figure 5, although object a
cannot send messages declared by interface X, it can
be allowed to send messages declared by interface Y.
Thus, if the operations declared by the interface X
are not crucial for the expected behavior of object a,
the model in Figure 5, which will is invalid
according to the second option, can be assumed as a
valid one.

The third option can retain the flexibility of
ports, while providing graceful runtime error
handling. Indeed, this option is supported by the
presented heavyweight approach. When a separate
object is employed for each port, they can check
whether the destination of a message is null at
runtime. As a result, one of the three options can be
used. Because it allows more flexibility during
modeling, the third option was selected for
implementation. Next section presents how to apply

Figure 6: Lightweight realization of ports with checks for
disconnected ports.

Lightweight Realization of UML Ports for Safety-Critical Real-Time Embedded Software

261

the third option to extend the lightweight approach.

3.4 Extending the Lightweight
Approach for Disconnected Ports

In this approach, a port with a required interface is
implemented using a separate object, which can
check if its generated association is null at runtime.
Ports having only provided interfaces in their
contracts are still implemented as they would be in
the lightweight approach, without any objects.
Generation of smart getters and setters for the relay
connectors is also the same as in the lightweight
approach. Using the approach, example model
presented in Figure 2 is transformed to the model
shown in Figure 6. Associations pA_X and pB_X in
the lightweight approach are generated as objects.
The objects have associations with interface X,
called itsX. The port connection initialization
statements generated in the constructors are identical
with the previous approach. However, now the msg()
operation, which is implemented in the classes PA_X
and PA_B objects checks if the itsX association is
null at runtime. In this extended version of the
lightweight approach, the expression GetPort
(PortName) in Statement (1) is translated as
getPortName_InterfaceName()->getOut().

4 EVALUATION

4.1 Performance Analysis

One of the important performance drawbacks of
ports originate from messages which are redirected
through multiple ports along the path of the
messages. The lightweight approach ensures that at
runtime, the objects hold a reference to the final
destinations of the messages. In this approach,
messages are directed to their final destinations in
one step. In the heavyweight approach, messages
cannot reach their destinations in one step, but they
are redirected multiple times between ports along the
path of the message. When the extension for
disconnected port checking is added to the
lightweight approach, performance is still expected
to be better than the heavyweight approach because
only one level of redirection is added.

Avoiding unnecessary message redirections also
may yield faster performance due to the decrease in
the number of instruction pipeline operations.
Furthermore, the computation required for the
creation of objects during initialization is another

potential drawback for the heavyweight approach.
The lightweight approach and its extension are
expected to perform better since the number of
created objects is zero or at least, fewer.

4.2 Code Size Analysis

Lightweight approach is expected to deliver the most
compact code among the presented approaches
because, no objects and classes are generated for
ports. When the checks for disconnected ports and
interfaces are added, the code size should not grow
as much as it would in the heavyweight approach.
This is because objects are only generated for the
outbound directions of ports. In the heavyweight
approach, resulting code size is considerably larger,
due to the implementation of the operations declared
by the provided and required interfaces in every
class created for ports. Smaller code size is also
expected to improve cache utilization, thus
improving the runtime performance.

4.3 Case Study Design

In order to compare the results from both
approaches, a previously released version of an
avionics software was used. The software was
developed by a team of around fifty software
engineers within a five year schedule, and is still in
progress. The software coordinates more than thirty
avionics devices and provides the pilot with crucial
flight information. IBM Rhapsody (IBM, 2015) is
being used as the development tool. DO-178C
(RTCA, 2011) is complied. Because the code
generator of IBM Rhapsody is not a “qualified”
development tool in the scope of DO-178C,
generated code is reviewed manually.

Software components in the case study run on an
ARINC 653 (Aeronautical Radio Inc., 2003)
compliant real-time operating system. Software
processes run in time and space isolated partitions.
Partitions are scheduled in a fixed, cyclic basis.
Partitions perform their initialization tasks and then
start executing a periodic running task. When the
allocated execution duration finishes for the
scheduled partition, the scheduler switches to the
next partition in the schedule.

For comparison purposes, code was generated
using different approaches. Several metrics were
collected during code generation and runtime.
AVGRT metric indicates the average time in
milliseconds, required for a partition to finish its
periodic execution. The LSLOC metric indicates the
logical source lines of code measured using the

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

262

Figure 7: LSLOC, OVRHD, TGEN, SBIN and AVGRT metrics - Approaches: (a) Heavyweight approach, (b) Lightweight
approach with checks for disconnected ports, (c) Lightweight approach, (d) None (ports are not realized). AVGTR metric -
Left bar: Lightweight approach., Middle bar: Lightweight approach with checks., Right bar: Heavyweight approach.

Unified Code Count tool (Nguyen et al., 2007).
LSLOC is not affected by style and formatting

decisions. OVRHD metric is defined as the
difference between LSLOC measurements for the
source code with and without port realization. Thus,
the OVRHD metric indicates how much LSLOC
increase is induced by port realization. The TGEN
metric indicates the time in seconds, required to
realize the ports in the source model, plus the time
required to generate source code from the target
model. SBIN metric indicates the size of the final
executable binaries in megabytes.

4.4 Results and Discussion

Figure 7 shows charts which correspond to the
measurements for given metrics according to
different approaches. Using the lightweight
approach, LSLOC was dramatically reduced from
316,195 to 181,390. The 42% decrease in the size of
source code may provide significant cost saving
during code reviews. Likewise, OVRHD metric is
the lowest for the lightweight approach. When the
checking for disconnected ports is incorporated,
OVRHD is still significantly less than the OVRHD
measured for the heavyweight approach.

According to the TGEN measurements, the
fastest functional code generation was available with
the lightweight approach, which is followed by the

lightweight approach with checks. SBIN metric
measurements showed that resulting binaries were
most compact with the lightweight approach.

After generation and compilation of source code,
binaries were executed. Generated code ran
successfully. Verification of the build was
demonstrated by running a subset of the test cases
used in the formal software release. With the
lightweight approach, no null pointer exceptions due
to disconnected ports were observed at runtime. This
was not surprising since the previous release of this
software was already tested and full statement
coverage was achieved for statements used to send
messages from ports.

During collection of the AVGRT metrics,
identical set of functions were activated in order to
generate identical load on the system. According to
the results, up to 32% improvement was observed
for the AVGRT metrics. When the runtime
improvements for each partition were averaged,
15.7% over-all performance improvement was
observed over the heavyweight approach by the
lightweight approach. A similar calculation revealed
an average of 10.9% performance improvement by
the lightweight approach with disconnected port
checking over the heavyweight approach. The
variation of improvement percentages for each
partition is due to the different levels of port usage
and composite structure hierarchies. The results

Lightweight Realization of UML Ports for Safety-Critical Real-Time Embedded Software

263

showed that using the lightweight approach and its
extension not only yields more compact code, but
also yields faster execution when compared to the
heavyweight approach.

5 RELATED WORK

The concept of ports is also available in other
modeling languages. UML-RT (Selic, 1998) and
MARTE (OMG, 2011) are two of the UML
extensions for modeling safety-critical embedded
real-time software. In UML-RT, a protocol defines
which kind of messages can be received and sent
from a port. In UML, the provided and required
properties of ports capture the information captured
by the protocol concept. On the other hand, MARTE
categorizes ports as client/server ports and flow
ports. Client/server ports are a syntactic sugar over
UML ports, enabling a more convenient way to
define the port contracts. The flow ports are used to
model the data flow between structured components.
Flow properties and flow specifications are used to
define the messages which can flow through the
ports. If flow specifications and properties are
mapped to interfaces, flow ports can be realized
using the approaches presented in this article, or else
they may need different realization approaches.
Based on the purpose of port representation and
realization, such alternative languages do not offer
additional advantages. Consequently, we have
exploited UML 2.0 due to its wider usage and our
access on vast project material.

UML ports and composite structures are
mentioned in previous studies, which use ports to
model embedded systems. The ports are mapped to
target languages such as SystemC (Andersson,
2008), (Xi et al., 2005), VHDL (Vidal et al., 2009)
and Simulink (Brisolara et al., 2008). In these
studies, one-to-one mapping between UML ports
and the target languages could be performed since
the target languages provided constructs, which
correspond to UML ports.

For mapping ports into object oriented
programming languages, there are studies which
suggest mapping ports using objects (Willersrud,
2006). The heavyweight approach, which is
presented in this paper, is employed by IBM
Rhapsody (IBM, 2015). To cope with the
performance degradation, IBM Rhapsody offers an
optimization, which is performed at runtime to find
the final destinations of ports (Douglass, 2007). The
optimization runs during the initialization of
software and uses algorithms to traverse the relay

connector chains to find the ultimate targets of the
messages. However, the additional computation
during initialization and the use of special data
structures make the code even more complex and
harder to review.

Possibility of a lightweight realization of ports
was mentioned previously (Bock, 2004). It was
argued that ports need not to be realized as objects,
but they can also be realized in a lightweight
fashion, with no port objects created at runtime.
However, the study did not present a specific
method for the mentioned lightweight realization of
ports. Another approach for realization of ports
(Mraidha et al., 2013) is very similar to the
lightweight approach presented in this paper.
However, the approach creates the getter methods
using only the name of the ports, without utilizing
the interface names. This naming scheme cannot
cope with cases where a source port requires more
than one interface in its contract and it is connected
to more than one destination ports, each destination
port providing one of the different interfaces
required by the source port. Moreover, the validity
of the approach was not demonstrated by a case
study or other means.

6 CONCLUSIONS

This article proposed a lightweight approach for
mapping UML ports to object oriented programming
language constructs. The article first presented a
widely used method for realization of UML ports,
which is prone to performance and code size
problems. Afterwards, the lightweight approach,
which enables the use of ports without sacrificing
runtime performance and source code size, was
presented. Additionally, the problems which may be
caused by disconnected ports are discussed and an
extension to the lightweight approach, which can be
used for handling disconnected ports in the source
model was presented.

Presented approaches were compared using
metrics collected from a real-life case study. Metrics
used for comparison are logical source lines of code,
average runtime performance, model transformation
duration and binary size. The case study showed that
the proposed lightweight approach results in more
efficient and more compact code. Additionally, the
time required for realization of ports and the size of
executable binaries produced after compilation were
also lower with the proposed approach. Better
performance may yield more headroom for meeting
hard real-time requirements, while smaller and less

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

264

complex code may enable relatively easier and
accurate code reviews, potentially improving safety.

REFERENCES

OMG, 2015.Unified Modeling Language, Superstructure,
Version 2.4.1, http://www.omg.org/spec/UML/2.4.1/,
last accessed on Sep 16th, 2015.

J. Vidal, F.,Lamotte, G.,Gogniat, P. Soulard, Diguet, J. P.,
2009. A co-design approach for embedded system
modeling and code generation with UML and
MARTE, Design, Automation & Test in Europe
Conference & Exhibition.

Andersson, P. 2008. UML and SystemC – A Comparison
and Mapping Rules for Automatic Code Generation.
In:Villar, E. Ed. Embedded Systems Specification and
Design Languages. Springer Netherlands.

Xi, C., Hua, L., J., Zucheng, Z., YaoHui, S.
2005.Modeling SystemC design in UML and
automatic code generation, Proceedings of the 2005
Asia and South Pacific Design Automation
Conference, pp 932-935.

McDermid, J., Kelly, T. 2006. Software in Safety Critical
Systems: Achievement and Prediction, Journal of The
British Nuclear Energy Society, Vol. 02, pp. 140-146.

France, R., B., Ghosh, S., Dinh-Trong, T., Solberg, A.
2006. Model-driven development using UML 2.0:
promises and pitfalls, Computer, Vol. 39, pp 59-66.

Mraidha, C., Radermacher, A., Gerard, S. 2013. Model-
Based Deployment and Code Generation. In: Hugues,
J., Canals, A., Dohet, A., Kordon., F. ed. Embedded
Systems: Analysis and Modeling with SysML, UML
and AADL, Wiley, 2013.

Willersrud, A. 2006.User-defined Code generation from
UML 2.0. (M.Sc. Thesis). Permanent link:
http://urn.nb.no/URN:NBN:no-12371.

IBM. 2015. Rational Rhapsody Developer, 8.1.1,
http://www-03.ibm.com/software/products/en/ratirhap,
last accessed on May 8th, 2015.

Douglass, B., P. 2007. Systems Architecture, In: Real
Time UML Workshop for Embedded Systems, ISBN:
978-0-7506-7906-0. Newnes, 2007, pp:90-92.

Selic, B. 1998.Using UML for Modeling Complex Real-
Time Systems, Proceedings of the ACM SIGPLAN
Workshop on Languages, Compilers, and Tools for
Embedded Systems. Springer-Verlag, 1998.pp. 250--
260.

Bock, C. 2004.UML 2 Composition Model. Journal of
Object Technology, Vol. 3, No. 10.

Bjerkander, M., Kobryn, C. 2003. Architecting Systems
with UML 2.0, Software, IEEE Volume:20 , Issue: 4,
pp. 57 - 61.

RTCA, 2011.DO-178C Software Considerations in
Airborne Systems and Equipment Certification.

Selic, B. 2003.Architectural Patterns for Real-Time
Systems, In: Lavagno, L., Martin, G., Selic., B. ed.
UML For Real. Kluwer Academic Publishers,
Norwell, MA, 2003, USA 171-188.

Aeronautical Radio Inc. 2003.653-1 Avionics Application
Software Standard Interface.

Nguyen, V., Deeds-Rubin, S. Tan, T., Boehm, B. 2007.A
SLOC Counting Standard, COCOMO II Forum.

Brisolara, L., B., Oliveira, M., F., S., Redin, R., Lamb, L.,
C., Wagner, F. 2008. Using UML as Front-end for
Heterogeneous Software Code Generation Strategies,
Design, Automation and Test in Europe, pp.504,509.

OMG, 2011.UML Profile For MARTE: Modeling And
Analysis Of Real-Time Embedded Systems, Version
1.1 http://www.omg.org/spec/MARTE/1.1/, last
accessed on Sep 16th, 2015.

Lightweight Realization of UML Ports for Safety-Critical Real-Time Embedded Software

265

