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Abstract: UML ports are widely used in the modeling of real-time software due to their advantages in flexibility and 
expressiveness. When realizing UML ports in object oriented languages, using objects for each port is one 
option. However, this approach causes runtime overhead and renders significant amount of additional 
generated code. To meet the performance constraints and decrease the costs of code reviews required in 
development of safety-critical real-time embedded software, more efficient approaches are required. In this 
article, we propose an approach, which introduces relatively less runtime overhead and results in more 
compact source code. A structural model defined with UML ports is transformed into a model that uses 
associations instead of objects to efficiently implement the UML port semantics with less lines of code. 
Achieved improvements and validation of the proposed approach is demonstrated by a case study; the 
design of an existing avionics software. 

1 INTRODUCTION 

Defining interactions of classes using association 
relations which expose the entire public interface of 
the classes to their clients makes it hard to observe 
the data flow in the model. Since ports function as 
an opening in the encapsulation of classes through 
which messages are sent either into or out of the 
class (Bjerkander and Kobryn, 2003), a model 
designed using ports is easier to understand, more 
flexible, easier to maintain and more suitable for 
communication of design decisions. In UML, a port 
is a point defined by a classifier for conducting 
interactions between the internals of the classifier 
and its environment. The contract based interaction 
provided by ports allows the classifiers to be defined 
independently from other classifiers (Selic, 2003).  

On the other hand, software for safety-critical 
real-time embedded systems is becoming more and 
more complex (McDermid and Kelly, 2006). These 
systems typically require certification and runtime 
overhead of any design decision should be justified 
because of limited resources. Additionally, the size 
of the source code should be compact for easier code 
reviews. For instance, DO-178C (RTCA, 2011) 
defines several requirements for certification of 
airborne systems. In DO-178C, if a development 

tool (i.e. a code generator) is not “qualified”, its 
outputs must be manually reviewed for correctness. 
Since development tool qualification is the most 
rigorous type of tool qualification in the scope of 
DO-178C, often, instead of qualifying the tools, 
their outputs are preferred to be manually reviewed. 
As a result, source code, which is more compact and 
less complex, is preferred because the effort needed 
for code reviews is expected to be lower. 

Ports and connectors do not have direct 
correspondents in object oriented programming 
languages (Mraidha et al., 2013) and yet, UML does 
not put constraints on how ports are realized (France 
et al., 2006).  The UML standard mentions ports as 
interaction points which provide “unique references” 
(OMG, 2015). According to this definition, 
realization of ports using objects seems adequate. 
However, this approach causes certain amount of 
runtime overhead for the final executable (Douglass, 
2007). Ideally, ports should have zero overhead for 
transmitting messages for complex real-time systems 
(Selic, 1998).  Another problem with this approach 
is, source code grows significantly because of the 
added objects and classes to realize the ports.  

In this article, we propose a more efficient 
approach for mapping ports to object oriented 
languages. The proposed approach enables
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Figure 1: UML composite structures and port notation. 

generation of relatively compact source code and 
introduces relatively less runtime overhead. A 
source model having been defined using ports and 
connectors is transformed into a target model. Code 
is then generated from the target model. The target 
model includes association relations and 
initialization operations, which implement the ports 
and connectors in the source model. The presented 
approach is evaluated using the design model for an 
avionics software. 

2 UML PORTS OVERVIEW 

Abstract syntax and concrete syntax for composite 
structures and ports is given in the "Composite 
Structures" section of UML 2.4.1 superstructure 
definition (OMG, 2015). Figure 1 presents an 
example composite structure diagram using ports. In 
the figure, there is a connector which connects the 
ports ep1 and tp1. The connector semantically 
indicates that a message sent from the tp1 port of the 
Throttle object should be sent to the Ecu object via 
its ep1 port. When sending the message, source class 
(Throttle) specifies the port name, operation name 
and operation arguments. An example expression is 
presented in Statement 1 using C++: 

GetPort(tp1).msg(); (1)
GetPort is used to obtain a reference to the 

destination of the message, and it should be 
translated to an appropriate statement by the used 
port realization approach. In this article, connectors 
are categorized as cross connectors and relay 
connectors for better communication of ideas. Cross 
connectors connect ports of the two objects (i.e. the 
connector between ports ep1 and tp1 in Figure 1), 
while relay connectors connect a port of an internal 
part with a port of the owner class (i.e. the connector 
between ports tp2 and ep in Figure 1).   

 
Figure 2: Example source model. 

3 APPROACHES FOR 
REALIZATION OF PORTS 

In order to demonstrate different realization 
approaches for ports, the model depicted in Figure 2 
is used. In the model, a message is transferred from 
object b to c via the path, which is formed by ports 
pB, pA and pC. In addition to the example model 
transformations presented in the article, UML model 
for Figure 1 and the source code generated using all 
of the presented approaches are presented in a public 
repository1. The C++ language is chosen as the 
target language, but the approaches are also 
applicable to other object oriented languages. 

3.1 Heavyweight Approach 

Specific realization of ports as presented in this 
section is implemented by one of the existing 
modeling tools (IBM, 2015). According to this 
approach, each port is transformed to a class and its 
corresponding object. Furthermore, in order to 
differentiate messages from both directions, 
provided and required parts of port contracts are 
realized using in and out objects, which are instances 
of additionally generated classes. Using this 
approach, the example model provided in Figure 2 is 
transformed into the model shown in Figure 3. PA, 
PB, and PC are the classes generated for ports. 
Classes Out and In are generated for outbound and 
inbound direction of ports. After the transformation, 
the constructor for class C includes: 

pC.getIn().setItsX(this); (2)
Statement (2) is required to connect port pC of 

class C to object c. Furthermore, the constructor of 
class A is generated as: 

 
1https://github.com/alperkocatas/UmlPortStudy 
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Figure 3: Realization of ports with heavyweight approach. 

  b.getPB().getOut(). 
       setX(getPA().getOut()); (3) 

The method setX is a trivial accessor function for 
the generated associations itsX. Statement (3) is 
required to connect the relay port pA of class A to 
the port pB of object b. Finally, constructor for class 
D is generated as: 

a.getPA().getOut(). 
      setX(c.getPC().getIn()); (4)

Statement (4) initializes the itsX association of 
out object of port pA with the reference of the in 
object of object c, so that messages sent from port 
pA will be handled by the in object of port pC of 
object c. GetPort(PortName) in Statement (1) is 
translated as getPortName()->getOut(), which 
returns a reference to the out object of the port. This 
reference is used to send messages from the port. 

 
Figure 4: Lightweight realization of ports. 

3.2 Lightweight Approach 

In the lightweight realization, no objects are 
generated for ports. Instead, only associations with 
required interfaces and the operations to initialize 
them are generated. Relay connectors are 
particularly transformed into smart getter and setter 
methods. The smart getters and setters are used to 
connect the ports which are at the ends of a chain of 
relay connectors. At runtime, after the initialization 
code generated for cross connectors runs, each 
object enters a state in which, the final destinations 
of the messages that will be sent from its ports are 
determined. As a result, when sending messages, 
relay port chains spanning multiple ports are 
resolved in one step. Using this approach, the 
example model in Figure 2 is transformed to the 
model, shown in Figure 4. In the transformed model, 
associations pA_X and pB_X are used by objects a 
and b to send messages through their ports pA and 
pB. Since none of its ports requires interfaces, class 
C does not have such association. Constructor of 
class D is generated as: 

a.setPA_X(c.getPC_X()); (5) 
Statement (5) is generated for the cross 

connector in the source model. It initializes the pA_X 
association of object a with the value obtained from 
the getPC_X() operation of object c. Since pC is a 
behavioral port, generated operation getPC_X() 
returns this pointer of object c. The body of 
operation setPA_X(X& val), which is a smart setter, 
is generated as: 

pA_X = val; (6)
b.setPB_X(val); (7)

Port pA is a relay port, which forwards messages 
from pB to pC. Statement (6) first sets the pA_X 
association of object a to val, so that object a can 
also send messages using the port pA. Statement (7) 
then forwards the parameter val to object b, which 
will set association pB_X of object b to val. Since 
the value of val is passed as the this pointer of object 
c, Statements (6) and (7) effectively connect the port 
pB of object b with object c. As a result, after the 
expression in Statement (5) is executed, destination 
of messages going out from port pB, which is the 
object c, is determined. In the lightweight approach, 
the expression GetPort(PortName) in Statement 
(1) is translated as PortName_InterfaceName, 
which is the name of the association created for the 
port and required interface pair. To resolve the 
interface which is appended to the port name, an 
interface, which implements the operation being 
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called is searched in the required interfaces of the 
port. This search is performed at the time of port 
realization. 

3.3 Disconnected Ports and Interfaces 

If the source model contains disconnected ports, 
problems may occur at runtime. The following two 
cases correspond to disconnected ports: First, if a 
port is not connected to any other port via a 
connector, the port is considered as disconnected. 
Second, when there is a connector which connects 
two ports, if the ports at both ends of the connector 
do not have matching contracts, ports are considered 
as partially disconnected. In this paper, the second 
case is denoted with the term disconnected 
interfaces. When operations declared by the 
unmatched interfaces are called, messages cannot be 
forwarded because there is no provided interface at 
the opposite side of the connector. Figure 5 depicts 
an example for disconnected interfaces.  The port pA 
requires interfaces X and Y, while the port pB 
provides interfaces Y and Z. Even if the ports are 
connected with a connector, since the port pB does 
not provide interface X in its contract, object a 
cannot send messages declared by interface X to 
object b.  

In the lightweight approach, if the source model 
has disconnected ports or disconnected interfaces, 
messages which are being sent from the generated 
associations may cause null pointer exceptions. One 
of the following strategies can be employed for 
handling disconnected ports and interfaces:  

1 - The lightweight approach can be used and 
disconnected ports and interfaces can be allowed in 
the model. Then, if there is a call from disconnected 
ports or interfaces, software may crash at runtime 
because of a null pointer exception. Alternatively, 
the model can be checked before realization of ports 
to ensure that no messages will be sent using 
disconnected ports or interfaces during execution.  

2 - The lightweight approach can be used but, 
disconnected ports and interfaces are not allowed in 
the source model. The model can be checked before 
the realization of ports to ensure that there are no 
disconnected ports or interfaces. 

3 - The lightweight approach can be modified so 
that all of the messages sent through disconnected 
ports and interfaces are handled at runtime, by 
ignoring the message or by throwing an exception. 

When the first option is used without model 
checking, there is a possibility of software crashing 
at runtime due to a null pointer exception. However, 
if  statement  coverage  for  all  of the operation calls 

 
Figure 5: An example for disconnected ports/interfaces. 

from ports is achieved while testing, it can be 
guaranteed that no such crash will occur. For 
example, DO-178C (RTCA, 2011) requires full 
statement coverage by test cases, beyond a certain 
safety-criticality level. Therefore, effort required for 
achieving full statement coverage is already 
included in the development costs. Alternatively, 
instead of achieving the statement coverage, the 
model checking mentioned in the first option can be 
attempted to be incorporated. However, such model 
checking is not trivial, since predicting the dynamic 
runtime behavior of software may not be feasible.  

The second option is possible to implement. 
However, it can be argued that disconnected ports 
and interfaces are part of the flexibility offered by 
ports. For example, in Figure 5, although object a 
cannot send messages declared by interface X, it can 
be allowed to send messages declared by interface Y. 
Thus, if the operations declared by the interface X 
are not crucial for the expected behavior of object a, 
the model in Figure 5, which will is invalid 
according to the second option, can be assumed as a 
valid one.  

The third option can retain the flexibility of 
ports, while providing graceful runtime error 
handling. Indeed, this option is supported by the 
presented heavyweight approach. When a separate 
object is employed for each port, they can check 
whether the destination of a message is null at 
runtime. As a result, one of the three options can be 
used. Because it allows more flexibility during 
modeling, the third option was selected for 
implementation. Next  section presents how to apply 

 
Figure 6: Lightweight realization of ports with checks for 
disconnected ports. 
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the third option to extend the lightweight approach. 

3.4 Extending the Lightweight 
Approach for Disconnected Ports 

In this approach, a port with a required interface is 
implemented using a separate object, which can 
check if its generated association is null at runtime. 
Ports having only provided interfaces in their 
contracts are still implemented as they would be in 
the lightweight approach, without any objects. 
Generation of smart getters and setters for the relay 
connectors is also the same as in the lightweight 
approach. Using the approach, example model 
presented in Figure 2 is transformed to the model 
shown in Figure 6. Associations pA_X and pB_X in 
the lightweight approach are generated as objects. 
The objects have associations with interface X, 
called itsX. The port connection initialization 
statements generated in the constructors are identical 
with the previous approach. However, now the msg() 
operation, which is implemented in the classes PA_X 
and PA_B objects checks if the itsX association is 
null at runtime. In this extended version of the 
lightweight approach, the expression GetPort 
(PortName) in Statement (1) is translated as 
getPortName_InterfaceName()->getOut(). 

4 EVALUATION 

4.1 Performance Analysis 

One of the important performance drawbacks of 
ports originate from messages which are redirected 
through multiple ports along the path of the 
messages. The lightweight approach ensures that at 
runtime, the objects hold a reference to the final 
destinations of the messages. In this approach, 
messages are directed to their final destinations in 
one step. In the heavyweight approach, messages 
cannot reach their destinations in one step, but they 
are redirected multiple times between ports along the 
path of the message. When the extension for 
disconnected port checking is added to the 
lightweight approach, performance is still expected 
to be better than the heavyweight approach because  
only one level of redirection is added.  

Avoiding unnecessary message redirections also 
may yield faster performance due to the decrease in 
the number of instruction pipeline operations. 
Furthermore, the computation required for the 
creation of objects during initialization is another 

potential drawback for the heavyweight approach. 
The lightweight approach and its extension are 
expected to perform better since the number of 
created objects is zero or at least, fewer.  

4.2 Code Size Analysis 

Lightweight approach is expected to deliver the most 
compact code among the presented approaches 
because, no objects and classes are generated for 
ports. When the checks for disconnected ports and 
interfaces are added, the code size should not grow 
as much as it would in the heavyweight approach. 
This is because objects are only generated for the 
outbound directions of ports. In the heavyweight 
approach, resulting code size is considerably larger, 
due to the implementation of the operations declared 
by the provided and required interfaces in every 
class created for ports. Smaller code size is also 
expected to improve cache utilization, thus 
improving the runtime performance. 

4.3 Case Study Design 

In order to compare the results from both 
approaches, a previously released version of an 
avionics software was used. The software was 
developed by a team of around fifty software 
engineers within a five year schedule, and is still in 
progress. The software coordinates more than thirty 
avionics devices and provides the pilot with crucial 
flight information. IBM Rhapsody (IBM, 2015) is 
being used as the development tool. DO-178C 
(RTCA, 2011) is complied. Because the code 
generator of IBM Rhapsody is not a “qualified” 
development tool in the scope of DO-178C, 
generated code is reviewed manually.   

Software components in the case study run on an 
ARINC 653 (Aeronautical Radio Inc., 2003) 
compliant real-time operating system. Software 
processes run in time and space isolated partitions. 
Partitions are scheduled in a fixed, cyclic basis. 
Partitions perform their initialization tasks and then 
start executing a periodic running task. When the 
allocated execution duration finishes for the 
scheduled partition, the scheduler switches to the 
next partition in the schedule.  

For comparison purposes, code was generated 
using different approaches. Several metrics were 
collected during code generation and runtime. 
AVGRT metric indicates the average time in 
milliseconds, required for a partition to finish its 
periodic execution. The LSLOC metric indicates the 
logical   source  lines   of  code  measured  using  the 
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Figure 7: LSLOC, OVRHD, TGEN, SBIN and AVGRT metrics - Approaches: (a) Heavyweight approach, (b) Lightweight 
approach with checks for disconnected ports, (c) Lightweight approach, (d) None (ports are not realized). AVGTR metric - 
Left bar: Lightweight approach., Middle bar: Lightweight approach with checks., Right bar: Heavyweight approach. 

Unified Code Count tool (Nguyen et al., 2007). 
LSLOC is not affected by style and formatting 

decisions. OVRHD metric is defined as the 
difference between LSLOC measurements for the 
source code with and without port realization. Thus, 
the OVRHD metric indicates how much LSLOC 
increase is induced by port realization. The TGEN 
metric indicates the time in seconds, required to 
realize the ports in the source model, plus the time 
required to generate source code from the target 
model. SBIN metric indicates the size of the final 
executable binaries in megabytes.   

4.4 Results and Discussion 

Figure 7 shows charts which correspond to the 
measurements for given metrics according to 
different approaches. Using the lightweight 
approach, LSLOC was dramatically reduced from 
316,195 to 181,390. The 42% decrease in the size of 
source code may provide significant cost saving 
during code reviews. Likewise, OVRHD metric is 
the lowest for the lightweight approach. When the 
checking for disconnected ports is incorporated, 
OVRHD is still significantly less than the OVRHD 
measured for the heavyweight approach. 

According to the TGEN measurements, the 
fastest functional code generation was available with 
the lightweight approach, which is followed by the 

lightweight approach with checks. SBIN metric 
measurements showed that resulting binaries were 
most compact with the lightweight approach.  

After generation and compilation of source code, 
binaries were executed. Generated code ran 
successfully. Verification of the build was 
demonstrated by running a subset of the test cases 
used in the formal software release. With the 
lightweight approach, no null pointer exceptions due 
to disconnected ports were observed at runtime. This 
was not surprising since the previous release of this 
software was already tested and full statement 
coverage was achieved for statements used to send 
messages from ports.  

During collection of the AVGRT metrics, 
identical set of functions were activated in order to 
generate identical load on the system. According to 
the results, up to 32% improvement was observed 
for the AVGRT metrics. When the runtime 
improvements for each partition were averaged, 
15.7% over-all performance improvement was 
observed over the heavyweight approach by the 
lightweight approach. A similar calculation revealed 
an average of 10.9% performance improvement by 
the lightweight approach with disconnected port 
checking over the heavyweight approach. The 
variation of improvement percentages for each 
partition is due to the different levels of port usage  
and composite structure hierarchies. The results 
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showed that using the lightweight approach and its 
extension not only yields more compact code, but 
also yields faster execution when compared to the 
heavyweight approach.  

5 RELATED WORK 

The concept of ports is also available in other 
modeling languages. UML-RT (Selic, 1998) and 
MARTE (OMG, 2011) are two of the UML 
extensions for modeling safety-critical embedded 
real-time software. In UML-RT, a protocol defines 
which kind of messages can be received and sent 
from a port. In UML, the provided and required 
properties of ports capture the information captured 
by the protocol concept. On the other hand, MARTE 
categorizes ports as client/server ports and flow 
ports. Client/server ports are a syntactic sugar over 
UML ports, enabling a more convenient way to 
define the port contracts. The flow ports are used to 
model the data flow between structured components. 
Flow properties and flow specifications are used to 
define the messages which can flow through the 
ports. If flow specifications and properties are 
mapped to interfaces, flow ports can be realized 
using the approaches presented in this article, or else 
they may need different realization approaches. 
Based on the purpose of port representation and 
realization, such alternative languages do not offer 
additional advantages.  Consequently, we have 
exploited UML 2.0 due to its wider usage and our 
access on vast project material. 

UML ports and composite structures are 
mentioned in previous studies, which use ports to 
model embedded systems. The ports are mapped to 
target languages such as SystemC (Andersson, 
2008), (Xi et al., 2005), VHDL (Vidal et al., 2009) 
and Simulink (Brisolara et al., 2008). In these 
studies, one-to-one mapping between UML ports 
and the target languages could be performed since 
the target languages provided constructs, which 
correspond to UML ports.  

For mapping ports into object oriented 
programming languages, there are studies which 
suggest mapping ports using objects (Willersrud, 
2006). The heavyweight approach, which is 
presented in this paper, is employed by IBM 
Rhapsody (IBM, 2015). To cope with the 
performance degradation, IBM Rhapsody offers an 
optimization, which is performed at runtime to find 
the final destinations of ports (Douglass, 2007). The 
optimization runs during the initialization of 
software and uses algorithms to traverse the relay 

connector chains to find the ultimate targets of the 
messages. However, the additional computation 
during initialization and the use of special data 
structures make the code even more complex and 
harder to review.  

Possibility of a lightweight realization of ports 
was mentioned previously (Bock, 2004). It was 
argued that ports need not to be realized as objects, 
but they can also be realized in a lightweight 
fashion, with no port objects created at runtime. 
However, the study did not present a specific 
method for the mentioned lightweight realization of 
ports. Another approach for realization of ports 
(Mraidha et al., 2013) is very similar to the 
lightweight approach presented in this paper. 
However, the approach creates the getter methods 
using only the name of the ports, without utilizing 
the interface names. This naming scheme cannot 
cope with cases where a source port requires more 
than one interface in its contract and it is connected 
to more than one destination ports, each destination 
port providing one of the different interfaces 
required by the source port. Moreover, the validity 
of the approach was not demonstrated by a case 
study or other means.  

6 CONCLUSIONS 

This article proposed a lightweight approach for 
mapping UML ports to object oriented programming 
language constructs. The article first presented a 
widely used method for realization of UML ports, 
which is prone to performance and code size 
problems. Afterwards, the lightweight approach, 
which enables the use of ports without sacrificing 
runtime performance and source code size, was 
presented. Additionally, the problems which may be 
caused by disconnected ports are discussed and an 
extension to the lightweight approach, which can be 
used for handling disconnected ports in the source 
model was presented.  

Presented approaches were compared using 
metrics collected from a real-life case study. Metrics 
used for comparison are logical source lines of code, 
average runtime performance, model transformation 
duration and binary size. The case study showed that 
the proposed lightweight approach results in more 
efficient and more compact code. Additionally, the 
time required for realization of ports and the size of 
executable binaries produced after compilation were 
also lower with the proposed approach. Better 
performance may yield more headroom for meeting 
hard real-time requirements, while smaller and less 
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complex code may enable relatively easier and 
accurate code reviews, potentially improving safety.  
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