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Abstract: Existing researches on error-diffusion mainly focus on sampling over a single channel of input signal. But
there are cases where multiple channels of signal need to be sampled simultaneously while keeping their
blue-noise property for each individual channel as well as their superimposition. To solve this problem,
we propose a novel discrete sampling algorithm called Multi-Class Error-Diffusion (MCED). The algorithm
couples multiple processes of error-diffusion to maintain a sampling output with blue-noise distribution. The
correlation among the classes are considered and a threshold displacement is introduced into each process of
error-diffusion for solving the sampling conflicts. To minimize the destruction to the blue-noise property, an
optimization method is used to find a set of optimal key threshold displacements. Experiments demonstrate
that our MCED algorithm is able to generate satisfactory multi-class sampling output. Several application
cases including color image halftoning and vectorization are also explored.

1 INTRODUCTION

Error-diffusion (ED) is originally a halftoning tech-
nique that quantizes a multi-level image to a binary
one while preserving its visual appearance through
diffusing the quantization error of one pixel to its
neighborhood (Floyd and Steinberg, 1976). It is
widely used in the industry of printing and displaying,
and also an important sampling algorithm working on
discrete domain. Some researchers extend its usage
into digital geometry processing (Alliez et al., 2002).

Previous research mainly focused on the behavior
of error-diffusion sampling over a single channel of
input signal (Ulichney, 1988; Ostromoukhov, 2001;
Zhou and Fang, 2003; Chang et al., 2009). However,
there are cases where multiple channels of input sig-
nal need to be sampled simultaneously, while certain
ideal properties such as blue-noise are also required
for all the sampling output of these channels.

Simply overlapping the output of blue-noise sam-
pling for multiple individual channels can not guaran-
tee the blue-noise property of their superimposition.
Hence, we are aiming to propose a novel Multi-Class
Error-diffusion (MCED) algorithm to solve this prob-
lem. Here, a class refers to the sampling process for a
single channel of input signal as well as its sampling
output. For an ideal multi-class error-diffusion with
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blue-noise property, the following requirements must
be satisfied:
1. The sampling point distribution of each individual

class should possess blue-noise property.
2. When the sampling output of all the classes are

superimposed, no two sampling points from dif-
ferent classes can occupy the same position.

3. When all the sampling points from all the classes
are superimposed and considered as a whole, their
distribution should possess blue-noise property.
The first requirement is naturally guaranteed by

the standard ED algorithm. For the second, we
remain only one class with the highest priority and
disable the others when conflict occurs. However,
the selection of a certain class may disrupt the point
distribution of other classes which violates the first
requirement. To solve this problem, we introduce a
threshold displacement into each process of ED and
they are optimized to minimize the destruction to the
blue-noise property. Since the frequency spectrum
property of each class and the final output is consid-
ered during the threshold displacement optimization,
the blue-noise property is promised after all classes
are superimposed (the third requirement). After meet-
ing these requirements, our MCED algorithm gener-
ates satisfactory multi-class sampling output.

Contribution. The contributions of of our work
includes: (1) Proposing a multi-class error-diffusion
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framework, the validity of which can be explained
by the commonly used Fourier transform (Knox and
Eschbach, 1993); (2) Giving a parameter optimiza-
tion method to ensure the blue-noise property of
the output. Experiment results using these optimal
parameters show the effectiveness of the method;
(3) Several applications of the MCED are explored,
showing that our algorithm is generic and applicable
in many areas in computer graphics.

2 RELATED WORK

The original ED is an algorithm invented for gray-
scale image displaying and printing (Floyd and Stein-
berg, 1976). It is also frequently used in many other
areas in computer graphics as a sampling algorithm
(Alliez et al., 2002; Bourguignon et al., 2004; Kim
et al., 2009). Its principle is shown inside the dashed
line of Fig.1. In this algorithm, each pixel p(x,y) ∈
[0,1] in the input image p is parsed with a serpentine
scan line order and quantized by a quantizer:

Q(p,,u) =

{
1, p, > u
0, otherwise

(1)

After that, the quantization error e(x,y) is calculated
and distributed into multiple unparsed pixels by accu-
mulating to an error buffer b(·, ·), which is used to
compensate the error. Therefore, for pixel p(x,y),
the actual input p, to the quantizer Q(·, ·) is p, =
p(x,y)+ b(x,y). Here, the error filter a jk is a set of
constant coefficients, and the quantization threshold u
in Q(·, ·) is also a fixed value, e.g. u = 0.5.

Some important improvements to the original ED
algorithm include the introduction of a variable error
filter (Ostromoukhov, 2001) and a variable threshold
value (Zhou and Fang, 2003) to ensure the blue-
noise property of the sampling output. In this paper,
we use Zhou and Fang’s threshold modulated ED
algorithm to build our MCED framework. Similar as
in (Chang et al., 2009), we refer to that algorithm as
the standard ED, and its diagram is given by Fig.1 as
a whole. Unlike the original ED, the threshold u and
the error filter a jk here are not constant, but functions
of the input pixel p = p(x,y), that is, u = 0.5+ r(p),
and a jk = a jk(p). Here, r(p) = δ(p) · λ(x,y) is a
modulated white noise. The modulation strength δ(p)
for the white noise λ(x,y), and the error filter a jk(p)
are pre-optimized so that the output of the standard
ED possesses blue-noise property.

Some mathematical analysis about the behavior of
error-diffusion is given in (Weissbach and Wyrowski,
1992; Knox and Eschbach, 1993), which helps to
explain and predict the result of many techniques

Q(p’, u)p(x, y) c(x, y)

Error filter:ajk

+

++ −

p’
u

+0.5 r(p)

Details of standard E-D 4-1

b(x,y)

ajk(p)

e(x,y)

Original error diffusion

Error 
buffer 
b(j,k)

Figure 1: The principle of the standard error-diffusion.

derived from the original ED algorithm. Ulichney
first proposed the concept of blue-noise (Ulichney,
1988) and used it as a tool to measure the quality of
ED output. For single-class ED, some ideal results
have been achieved for generating sampling points
with such a property (Ostromoukhov, 2001; Li and
Allebach, 2001; Zhou and Fang, 2003).

Using ED to sample multiple channels of input
signals in a coordinated way is not a novel problem. It
traditionally exists in the area of color printing, where
a limited number of colorants are used to reproduce
a continuous-tone color image (Baqai et al., 2005).
Many studies focus on solving this problem using
ED technique, which is called vector error-diffusion
in some literature, because they quantized the input
signals simultaneously by treating them as a vector
(Haneishi et al., 1996; Kang, 1999; Damera-Venkata
et al., 2003). For example, the vector ED algorithm
proposed in (Damera-Venkata and Evans, 2001) uses
an optimum matrix-valued error filter to take into
account the correlation among color planes. It can
generate sampling output with blue-noise property for
color images, but cannot guarantee this property for
each individual color channel.

Wei extends the traditional Poisson disk sampling
for a single channel of signal into a multi-class blue-
noise sampling algorithm (Wei, 2010). The algorithm
is able to sample a set of input signals in a correlated
way while keeping the blue-noise property of the
whole output. It can also precisely control the number
or density of the generated sampling points. Unlike
the ED which works directly in a discrete domain,
this algorithm is originally designed in a continuous
domain. Hence it is not suitable to be applied
in certain application areas that deal with discrete
domain, such as color image halftoning (Wei, 2012).

3 MULTI-CLASS
ERROR-DIFFUSION

Our MCED algorithm mainly concerns about simul-
taneously sampling on multiple channels of input
signals and maintaining the blue-noise property for all
the classes as well as their superimposition. If simply
performing the standard ED independently on each
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Figure 2: The framework of our MCED algorithm, where
{pi|i = 1, · · · ,n} are the input signals, and p0 = ∑n

i=1 pi is
an internal reference signal. After two processing steps of
modified standard ED, Qi and Ei, the framework generates
blue-noise sampling outputs {ci|i = 0, · · · ,n}. The pseudo
code for the framework can be found in the appendix.

channel of input signal, there may be sampling points
from different classes situated at the same sampling
position when they are superimposed, which is called
sampling conflict. Hence, the blue-noise property of
the superimposed output cannot be guaranteed. To
solve this problem, we first perform the quantization
on each channel of signal, and produce a set of initial
sampling outputs with sampling conflicts. Then, the
conflicts are removed by disabling the outputs of
certain classes based on the inter-class correlation. In
this way, the initial outputs are modified to generate
the final sampling points. During the process of quan-
tization and error-diffusion, a threshold displacement
is introduced to decrease the occurrence of sampling
conflict and maintain the blue-noise property.

3.1 MCED Framework

Fig.2 illustrates the framework of our MCED algo-
rithm. It takes n channels of signals {pi|i = 1, · · · ,n}
as input, where pi = pi(x,y) is a 2-D discrete function
that satisfies pi(x,y) ∈ [0,1] and ∑n

i=1 pi(x,y) ≤ 1.
In fact, it defines the density of sampling points to
be generated at the spatial position (x,y). Specially,
when pi represents an image, element pi(x,y) is the
intensity of the pixel at position (x,y). Our framework
concerns the processing of individual channels of
signals as well as their correlations, and produces
corresponding sampling point sets {ci|i = 1, · · · ,n},
where ci(x,y) = 1 indicates a sampling point gener-
ated at (x,y) for signal pi, while 0 means no point
generated. Therefore, the sampling process from the
input pi to the output ci is referred as a class Ci.

To facilitate the inter-class correlation, we define
a special internal signal p0, whose sampling density
is p0(x,y) = ∑n

i=1 pi(x,y). Sampling to p0 with the
standard ED, we can also obtain a blue-noise output,
which is used as a reference for the superimposition
of the sampling output of all the classes. That means

Qi(p’, u)pi(x, y) ci(x, y)

+ p’
u

+

0.5 r(p)

bi(x,y)
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+
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Figure 3: Two processing steps of modified ED: Qi (left)
performs only the quantization and Ei (right) complete the
final error-diffusion (i = 0, ...,n).

the corresponding output of p0, denoted as c0, will be
identical to the superimposition of {ci|i = 1, · · · ,n}.
Hence, we name C0 as a reference class.

Our framework parses the elements {pi(x,y)|i =
0, · · · ,n} in a serpentine scan line order. All pi(x,y) at
the same position (x,y) are processed simultaneously,
and then the processing moves to the next position.
For each group of {pi(x,y)|i = 0, · · · ,n} at (x,y), the
processing of each class includes two steps: Qi and
Ei. Qi performs independent sampling and produces
initial output c0

i (x,y) for each individual class Ci;
while Ei modifies the initial output according to the
correlation between the sampling classes and generate
the final output ci(x,y).

3.2 Quantization and Error-Diffusion

The work flow of the two processing steps, Qi and Ei,
are shown in Fig.3. Acturally, Ei is a modified version
of the standard ED given in Fig.1. It simply adds one
more variable mi to the latter’s quantization threshold.
This simple modification plays an important role in
our framework, because mi will be used to introduce
the inter-class correlation into the sampling, and that
is the key to avoid sampling conflict and ensure the
blue-noise property of ci.

It is notable that Qi produces only the initial sam-
pling output, hence it performs only the quantization
part of Ei. Although Qi shares the error buffer bi(·, ·)
with Ei, it does not modify bi(·, ·). This is because
the output of Qi will be modified in Ei and thus the
quantization error made in the latter step is the one
that is to be distributed for the further processing.

3.3 Removing Sampling Conflicts

In our framework, the input signal pi, i = 0, · · · ,n, of
each class is firstly processed by Qi, and generates
corresponding uncorrelated blue-noise output c0

i . In
order to eliminate the conflict after superimposition,
the correlation between classes are introduced by the
reference class C0. Based on that, some classes with
sampling conflicts will be disabled, i.e. they will be
prohibited to produce a sampling point.

As shown in Fig.4, when Q0 of class C0 does not
generate a sampling point at current position (x,y),
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Figure 4: Eliminating sampling conflicts by disabling some
of the classes.

the output of all {Ei|i 6= 0} should be forced to be 0. In
other words, all Ei should be disabled from generating
a sampling point at (x,y), for there is no correspon-
dence in the final superimposition. Similarly, when
Q0 generates sampling point but none of {Qi|i 6= 0}
does, E0 should also be disabled because no Ei will
provide sampling point to form this superimposition.
The third case, in which {Qi|i 6= 0} generate sampling
points without conflicts, is the ideal case that we are
expecting and no modification to {c0

i |i 6= 0} is needed.
Finally, when sampling conflicts occur (∑ j 6=0 c0

j > 1),
most of the conflicting classes must be disabled, and
only one of them with the highest priority is allowed
to remain. Here, we give the priority to the class Ck
with the highest average sampling density, i.e. k =
argmax j ∑(x,y) p j(x,y), for j 6= 0 and c0

j = 1. Then,
a binary selecting signal si (i 6= 0) is defined, where
si = 0 means Ei should be disabled:

si =





0, ∑ j 6=0 c0
j > 1 and i 6= k;

1, ∑ j 6=0 c0
j > 1 and i = k;

1, ∑ j 6=0 c0
j ≤ 1.

(2)

To disable a class, we utilize another disabling
signal to modify the quantization threshold. It is
based on an important fact about the ED: If the thresh-
old u in the quantizer Q(p,,u) takes a value larger than
any possible value of input p, the output of Q will be
forced to be 0, and the corresponding class will be
disabled. As shown in Fig.2, the disabling signals are
obtained based on the initial outputs {c0

i |i = 0, · · · ,n}
by the Disable control, where d0 = ¬(c0

1∨ c0
2 · · ·∨ c0

n)

and d1 = ¬(c0
0). Then, combining with the selecting

signal si, d1 turns into a d1i = d1∧ si for each Ei (i 6=
0). Therefore, if d0/d1i = 1, a large value (+∞) will
be added to the corresponding quantization threshold,
and the class will be disabled.

In this way, d0, d1 and si facilitate the correlation
described in Fig.4. For example, when c0

0 = 1 and
c0

i = 1 (i 6= 0), we have d0 = 0 and d1 = 0, and

the output of Ei will be decided by its priority: if
si = 0, Ei will be disabled. After the class disabling,
sampling conflicts can be removed and no more than
one sampling point will be generated at each position.

3.4 Maintaining Blue-noise Property

Modifying the output of certain Qi to remove the
sampling conflicts may cause the destruction of the
blue-noise property of the initial outputs. To solve
this problem, we make use of another important
fact for ED: For a given input signal, a constant
variation of the quantization threshold u will change
the distribution of output sampling points, but will not
affect the average sampling density, as long as u is
not constantly +∞. This fact can be proofed with
the analysis tool provided in (Knox and Eschbach,
1993), which will be briefly described in section
7. Therefore, adding a properly chosen threshold
displacement ti to the threshold u will help to decrease
the chance of the sampling conflict occurrence and
restore the blue-noise distribution. The detail of ti will
be discussed in the next section.

Hence, the disabling signals d0/d1i, along with
the threshold displacement ti, are finally added to the
thresholds of Ei via the modification term mi in the
second step. Then, Ei quantizes the input element
pi(x,y) at current position (x,y), and the quantization
error is distributed and accumulated to the error buffer
b( j,k). The above processing is repeated during the
parsing of the input elements. When all the elements
pi(x,y) are parsed, the final blue-noise MCED output
ci that satisfies all the requirements given in Section 1
can be generated.

4 THRESHOLD DISPLACEMENT

After the first step of the MCED, the output of some of
the classes is disabled due to sampling conflicts. This
may disrupt the blue-noise property that originally
existed in the standard ED output. We solve this
problem by adding a constant displacement value ti
to the quantization threshold for the input pi, since a
shift of the threshold may change the distribution of
sampling points and thus may decrease the chance of
sampling conflicts. Therefore, it is possible to ensure
a better blue-noise output with a properly chosen ti.

4.1 Displacement Optimization

Our goal is to find a set of optimal threshold displace-
ments {ti|i = 0,1, · · · ,n}, to decrease the probability
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of sampling conflict occurrence. Since the sampling
conflict is a interference among all the classes, the
value of the displacement ti is related to all the
input signals {pi|i = 1, · · · ,n}. For each class Ci, i =
0, · · · ,n, in a n-class MCED, we treat the influence
from all other sampling classes as a noise, which is
characterized by its strength σi = ∑ j 6=0∧ j 6=i p j. We
assume that the same amount of σi for a given pi
will result in similar output. Since σi can be derived
from σi = p0 − pi, then ti can be simplified as a
function of pi and p0. As class C0 is designed as a
reference for the superimposition of other n classes, t0
is related with only the sum of other classes inputs, i.e.
p0 = ∑n

i=1 pi. Therefore, given an input combination
(p0, pi), i = 1, · · · ,n, in a n-class MCED, we have:

{
ti = g(p0, pi), i = 1, · · · ,n,
t0 = f (p0).

(3)

Then, optimal ti are calculated by solving an op-
timization problem. The optimization target function
is defined according to the Fourier power spectrum of
the sampling output. Based on the existing research
(Ulichney, 1988; Zhou and Fang, 2003), the blue-
noise property of a sampling set can be measured by
the anisotropy and the lower frequency ratio of its
spectrum. In this paper, the sampling output of ED are
affected by both the input signal pi and the threshold
displacement ti. Therefore, the anisotropy α(pi, ti)
and lower frequency ratio β(pi, ti) for the final output
ci can be modified from their original formulations in
(Zhou and Fang, 2003):
{

α(pi, ti) =Corre(P0(pi, ti),P45(pi, ti),P90(pi, ti)),
β(pi, ti) = L(pi, ti),

(4)

where Corre(·) is a cross-correlation function; P0(·),
P45(·) and P90(·) are segmented radially averaged
power spectrums; L(·) is the lower frequency ratio.

Therefore, our target function T to be minimized
in the searching of optimal threshold displacements ti
is defined as:

T = ω1 ·
(

ω0 ·
N

∑
i=1

α(pi, ti)+(1−ω0) ·
N

∑
i=1

β(pi, ti)

)

+(1−ω1) · (ω0 ·α(p0, t0)+(1−ω0) ·β(p0, t0)) ,

(5)

where the weights ω0 = 0.5 and ω1 = 0.7 are taken
in our implementation. A simplex method (Press
et al., 1992) is adopted to automatically search for the
optimal displacement {ti|i = 0,1, · · · ,n}.

Fig.51 demonstrates an example of the displace-
ment optimization. Given p1 = 32

255 , p2 = 21
255 , p3 =

1Config the PDF reader with 100% scaling ratio and the
given DPI for best viewing of the details, similar for the
following figures.

(a) C1 (b) C2 (c) C3 (d) C4

(e) C5 (f) C6 (g) C7 (h) C0

(i) C1 (j) C2 (k) C3 (l) C4

(m) C5 (n) C6 (o) C7 (p) C0

Figure 5: Optimization result for a 7-class ED. (a)-(h)
Sampling outputs of each classes Ci. (i)-(p) Corresponding
Fourier power spectra. (Image best viewed at 306 DPI).

16
255 , p4 = 12

255 , p5 = 8
255 , p6 = 6

255 , p7 = 5
255 , and

p0 = ∑i6=0 pi =
100
255 , the optimized threshold displace-

ments are: t1 = 34
255 , t2 = 18

255 , t3 = 52
255 , t4 = 23

255 ,
t5 = 80

255 , t6 = 46
255 , t7 = 17

255 , and t0 = − 9
255 . The

sampling outputs of classes {Ci|i = 0, · · · ,7}, and
their corresponding Fourier power spectra are given in
the figure. Fig.5(h) is the superimposition of the dots
from the 7 classes, which are colored in red, green,
blue, yellow, magenta, cyan and white, respectively.
The optimization is performed on 256×256 patches.

4.2 Displacement Interpolation

To decrease computational costs, we perform dis-
placement optimization only on a set of selected key
input combinations, by minimizing the target function
T in Eq.5. Then, the optimal threshold displacements
for other input combinations can be calculated by
interpolation, where ti = g(p0, pi), i = 1, · · · ,n, is
implemented with a bilinear interpolation, and t0 =
f (p0) with a 1-D linear interpolation.

The key input combinations and their correspond-
ing optimal threshold displacement values are shown
in the tables contained in Fig.6. The key levels are
selected by an interval of 16

255 . For convenience, all
the numbers filled into the table are 255 times of their
real values. The right table gives the correspondence
between the threshold displacement t0 and the input
p0 of the reference class C0, as t0 = f (p0). The left
table is composed of two parts:
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0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255 p0 pi

0 0 0

16 0 0 16

32 0 39 0 32

48 0 49 -3 0 48

64 0 14 51 -23 0 64

80 0 28 35 3 37 0 80

96 0 56 18 43 6 -6 0 96

112 0 49 30 53 96 12 59 0 112

128 0 34 10 11 62 -26 2 93 0 128

144 0 6 26 59 5 -1 12 18 14 0 144

160 0 14 100 106 12 56 44 98 90 22 0 160

176 0 12 43 47 42 48 39 100 52 25 47 0 176

192 0 -46 28 6 0 -7 45 -36 0 25 37 1 0 192

208 0 75 54 -7 71 -33 59 23 -1 13 9 13 0 0 208

224 0 12 18 89 12 -2 75 0 0 0 12 3 0 50 0 224

240 0 16 12 9 9 12 49 -20 -2 14 50 1 9 50 46 0 240

255 0 12 12 20 12 0 29 12 44 50 18 0 50 43 50 86 0 255

p0 pi 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 255

1

p0 t0

0 0

16 0

32 65

48 -35

64 -39

80 -90

96 -20

112 -15

128 -79

144 0

160 169

176 13

192 61

208 109

224 168

240 166

255 64

1

Figure 6: Threshold displacement t0 and ti with their Fourier analysis results for different key input combinations (p0, pi).
For convenience, the numbers in this table are all 255 times of the value by their definition.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7: Two-class ED with density changing horizontally
in opposite directions: in (a)-(c) from 255

255 to 0, and in (d)-
(f) from 51

255 to 0. (a)&(d) are the superimposition, (b)&(c)
and (e)&(f) are the sampling points for the two classes,
respectively. (Image best viewed at 150 DPI).

• The values of the threshold displacement ti =
g(p0, pi) for the given key input combinations are
enumerated in the lower-left triangle area. They
are obtained by solving the optimization problem
of Eq.5. The indices of p0 and pi are given in the
bottom row and the leftmost column, respectively.

• The corresponding power spectra of the sampling
outputs for pi and p0 can be found in the upper-
right triangle area, where the left image is for pi
and the right for p0. The indices of p0 and pi
are given in the top row and the rightmost col-
umn. The power spectra show that, for the given
input combinations, our optimization successfully
converges to threshold displacements that can
produce outputs with ideal blue-noise property.

Hence, the threshold displacement of a key input
combination can be read directly from the table.
For example: given p0 = 112

255 and pi =
16
255 , the

displacement value ti = g( 112
255 ,

16
255 ) = 49

255 can be
found in the cell at the 8th row and the 2nd column
of the left table, and the corresponding power spectra
are in the cell at the 2nd row and 8th column.

Then, for arbitrary combination (p0, pi) that is
not included in Fig.6, we use a bilinear interpolation
to obtain their t0 and ti. For example, for an input
(p0, pi)= ( 122

255 ,
21
255 ), its ti is interpolated between four

key values g( 112
255 ,

16
255 ), g( 112

255 ,
32
255 ), g( 128

255 ,
16
255 ) and

g( 128
255 ,

32
255 ) that exist in the table. The value of t0 is

interpolated in a similar way, but using a 1-d linear
interpolation between the values in the right table.
Fig.7 gives two groups of experiment results of a two-
class MCED using our key values and interpolation
mechanism. It can be seen that the sampling results
meet the requirement of MCED given in Section 1.

5 EXPERIMENTAL RESULTS

We proposed a multi-class ED algorithm that is able
to produce blue-noise sampling points on multiple
input signals as well as their superimposition. Given
k channel of signals, each with n elements, the time
complexity of our algorithm (Alg.1) is O(kn). Some
experimental results have been shown in Section 4.

In this section, we compare our MCED with the
per-channel standard ED (Zhou and Fang, 2003), and
our method achieves results significantly better than
the latter. As illustrated in Fig.8(b)-(g), applying
our MCED to three channels of input signal, three
sampling point sets with blue-noise distribution can
be produced (Fig.8(b)(d)(f), colored with red, green
and blue for distinction). The corresponding Fourier
power spectra in Fig.8(c)(e)(g) demonstrate the per-
fect blue-noise property of each class. Fig.8(a) is a
colored superimposition of the three classes. Since
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 8: A 3-class MCED sampling result. Each individual
class (b-g) and their superimposition (h-i) possess perfect
blue-noise property. (Best viewed at 150 DPI).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: A 3-class sampling using standard ED. Large
number of conflicting sampling points exists (e-h), and the
superimposition does not possess blue-noise property (i-j).
(Best viewed at 150 DPI).

no sampling conflicts exist, i.e., none of the sampling
point overlaps with others, there are no color other
then red, green and blue in the image. Fig.8(h)-(i)
show that the superimposed point sets also possesses
blue-noise property.

On the contrary, if applying the standard ED to
each channel of signal separately, though each set of
sampling points has blue-noise distribution, a large
number of sampling conflicts will occur when the
three point sets are superimposed. Fig.9(a) is also a
colored superimposition of the sampling point sets,
where each color channel correspond to a class. Then,
in Fig.9(b)-(d) are the sampling points that do not
overlap with others, and Fig.9(e)-(h) show the con-
flicting sampling points, generated by the overlapping
of points from different classes (The colors indicate
the combination). Consequently, the superimposition
set can not maintain blue-noise property (Fig.9(i)-(j)).

The sampling conflicts are harmful in certain
application areas, such as color printing. For the per-
channel ED, uncontrollable overlapping of sampling
points will affect the controlling of the maximum ink
amount at each position, and the final printing quality.
Our MCED method can help to solve this problem
and hence brings an important improvement.

6 APPLICATIONS

6.1 MCED for Color Image Halftoning

ED algorithm is widely used in grayscale image
halftoning due to its ideal blue-noise property (Os-
tromoukhov, 2001; Zhou and Fang, 2003). For color
image halftoning, a commonly used way is to perform
standard ED independently on each color plane, and
then superimpose the results to create a color halfton-
ing. Since halftoning dots for each color plane are
generated independently, the blue-noise property for
their superimposition can not be guaranteed. This
may result in uncontrolled color appearance in the
generated halftone image (Fig.10(p)).

In this section, we utilize our MCED to generate
color halftone images that meet the requirements: The
distribution of the halftone dots with the same color
should possess blue-noise property; The distribution
of all the dots contained in the halftone image as a
whole should also possess blue-noise property.

6.1.1 15-Class ED for CMYK Color Halftoning

CMYK Color Images. In the state-of-the-art color
printing systems, the device-independent colors are
converted to the densities of the ink dots in four
primary colors: Cyan, Magenta, Yellow and Black.
We denote them as well as their densities as D1, D2,
D3, D4, respectively, and they are the input of the
halftoning algorithms. When the output halftoning
image is printed using the four color inks, the dots
generated on paper will appear in totally 15 colors,
corresponding to all possible ink overprints.

If ∑4
i=1 Di > 1 within a local area in a CMYK

halftone image, there must be dots with different
primary colors placed at the same position, and new
colors will be created. The colors generated by 2
primary colors, namely the 2nd order colors, are
denoted as C12, C13, C14, C23, C24, C34. The subscript
indicate the overprinted primary colors, e.g., C12 is
an overprinting of D1 and D2. In the six colors,
C12, C13 and C23 correspond to blue, green and red
respectively, and the remaining are very dark colors
because they contain black. Similarly, the 3rd and the
4th order colors generated by 3 or 4 primary colors
are denoted as C123, C124, C134, C234, C1234. Specially,
the subsets of halftone dots generated by only one
primary color are denote as C1, C2, C3, C4.

Without ambiguity, we use the same notations for
the dot density and the sampling class for each color.
Hence, there is a total of 15 classes to be sampled
in MCED. Before applying our MCED in CMYK
color halftoning, the densities of the 15 classes need
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to decided.

Linear Programming for Dot Densities. For a color
image pixel with ∑4

i=1 Di ≤ 1, the dot densities are
simply C1 = D1, C2 = D2, C3 = D3, C4 = D4, and the
densities for higher order colors are 0. While for a
pixel with ∑4

i=1 Di > 1, the dot densities must satisfy:




C1 +C2 +C3 +C4

+C12 +C13 +C14 +C23 +C24 +C34

+C123 +C124 +C134 +C234 +C1234 = 1,
C1 +C12 +C13 +C14 +C123 +C124 +C134 +C1234 = D1,

C2 +C12 +C23 +C24 +C123 +C124 +C234 +C1234 = D2,

C3 +C13 +C23 +C34 +C123 +C134 +C234 +C1234 = D3,

C4 +C14 +C24 +C34 +C124 +C134 +C234 +C1234 = D4.

(6)

Eq.6 is a linear programming problem, which can
be solved by specifying one or more optimization
target to be maximized (Press et al., 1992). In our
experiments, we define the optimization target h as:

h = C1 +C2 +C3 +C12 +C13 +C23 +C123. (7)

This target function maximizes the colors created by
C, M and Y, and minimizes those mixed with black,
because black always tends to cover the appearance of
other colors. When the densities of each class at each
pixel are obtained, they are sent into our 15-class ED
and produce an output halftone image.

Fig.10 shows an example of our 15-class ED
color halftoning. It is able to create blue-noise dot
distributions for all of the classes (Fig.10(a)-(m),
some empty classes are omitted), as well as their
superimposition (Fig.10(n)). Comparing our result
(Fig.10(o)) with that of the standard ED (Fig.10(p)),
it can be seen that our result demonstrates better blue-
noise property. More CMYK image halftoning results
using our MCED are given in Fig.11.

6.1.2 Comparison with Vector Error-Diffusion

We also compared the performance of our MCED
with the vector error diffusion (VED) (Damera-
Venkata and Evans, 2001) on color image halftoning.
Both algorithms process multiple channels of signals
using ED in a coordinated way. The VED treats the
signals as a vector, and uses an optimum matrix-
valued error filter to introduce the correlation among
the color planes, hence it can generate good color
halftoning results. However, it does not evaluate
the dot distribution on each color planes and the
conflict between them. Thus, the blue-noise property
on each individual color plane cannot be promised.
On the contrary, our MCED can generate blue-noise
outputs on each individual channel of input signal, as
well as their superimposition. Fig.12 demonstrates
a per-channel comparison of the two algorithms on
RGB color image halftoning. It can be seen that our

(a) C1(C) (b) C2(M) (c) C3(Y) (d) C4(K)

(e) C12(CM) (f) C13(CY) (g) C14(CK) (h) C23(MY)

(i) C24 (MK) (j) C123(CMY) (k) C124(CMK) (l) C234(MYK)

(m) C1234(CMYK) (n) Superimposition (o) Colored (p) Standard ED

Figure 10: CMYK color image halftoning using our 15-
class MCED. Blue-noise dot distributions are generated for
all classes (a)-(m), as well as their superimposition (n).
(o): colored superimposition. (p): halftoning result by the
standard ED. (Best viewed at 100% scaling ratio, 600 DPI).

Figure 11: More CMYK color image halftoning results
using MCED. (Best viewed at 100% scaling ratio, 300DPI).

MCED produce obviously better sampling results
with smoother distribution and less artificial textures.

6.2 Multi-tone Error-Diffusion

Multi-toning, also known as multi-level halftoning
(Kang, 1999; Rodrłguez et al., 2008), aims to repro-
duce a continuous tone image with dots of a limited
number of intensities {ki|i = 1, · · · ,n} (ki < k j, if i <
j). It is useful in printing with multiple types of inks
or dot sizes. Blue-noise property is also required in
multi-tone images for visually pleasant result, hence
our MCED method is also a solution for multi-tone
image generation.

Given a pixel (x,y) in a continuous tone image
with intensity p(x,y), if ki < p(x,y) < ki+1, then
p(x,y) can be simulated with a linear combination of
the halftone patterns with intensity ki and ki+1:

p(x,y) = pi(x,y) · ki + pi+1(x,y) · ki+1, (8)
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Figure 12: Color image halftoning using our MCED method and the Vector ED (Damera-Venkata and Evans, 2001). (a) The
superimposed color halftoning image; (b) Zoom-in viewing of the dot distribution in the red box in (a); (c)-(h) The halftoning
output of the corresponding color plane. (Images best viewed at 100% scaling ratio, 600 DPI).

where pi(x,y) and pi+1(x,y) are respectively the den-
sities of the halftone pattern of pixels with intensity
ki and ki+1 at (x,y), and pi(x,y)+ pi+1(x,y) = 1. For
j 6= i and j 6= i+1, we let p j(x,y) = 0.

Therefore, considering pi(x,y) as the input of
class Ci in a n-class ED, a n-tone image can be
generated by our MCED algorithm. Fig.13 shows an
example of 7-tone image generated with our method.
The halftone patterns for the given intensities {ki|i =
1, ...,7} can be found in Fig.13(a)-(g), and all of them
possess ideal blue-noise property.

6.3 Color Image Vectorization

A typical catalog of color image vectorization meth-
ods (Swaminarayan and Prasad, 2006) build polygon
meshes on the image plane based on a set of sampling
points. Then, by assigning each polygon node the
image color at the same position, the original image
can be converted to a vector form. The colors inside
a polygon is calculated by interpolating between the
colors of its nodes. Hence, the quality of the sampling
point distribution is crucial for the quality of final
vectorization results.

Our MCED method can provide ideal sampling
point distribution for such a vectorization task. Here,
the input image is in RGB, and the sampling points
can be generated in the three color planes using our
MCED in a similar way as in Section 6.1.1. After
superimposing the sampling points, a planar triangle
mesh is obtained by Delaunay triangulation, which

can be used as the foundation of the vector image.
To preserve the image features during vectoriza-

tion, we extract a salience map from the gradient of
the original color image. At each pixel, the salience
is defined as the sum of the absolute value of the
gradient components, which is calculated by a Sobel
operator. The salience is separately computed in the
three color planes, and the resulting salience map is
also a RGB image. Hence, sampling on the salience
map instead of the original image, we can obtain a
sampling point set that better preserves the features.

7 ANALYSIS AND CONCLUSION

This paper gives an algorithm for multi-class ED.
The key technique of this algorithm is to use the
optimized threshold displacement to minimize the
distortion to the blue-noise property caused by inter-
class correlation in multi-class error-diffusion. Our
experiment shows that this technique can effectively
maintain the blue-noise property that the standard
error-diffusion possesses. The reason for this can be
explained by Fourier transform-based analysis (Knox
and Eschbach, 1993; Gonzalez and Woods, 2001).

7.1 Analysis

According to (Knox and Eschbach, 1993), for the
original ED, the power spectrum B(u,v) of the Fourier
transform of the output image can be written as:

B(u,v) = I(u,v)+F(u,v)E(u,v), (9)
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(a) k1 = 0 (b) k2 = 43
255 (c) k3 = 86

255 (d) k4 = 129
255

(e) k5 = 172
255 (f) k6 = 215

255 (g) k7 = 255
255 (h) M-tone image

Figure 13: An example of 7-tone ED. For an image with
intensity ranges from 1 to 0 (from center to border), a
multi-tone rendering of the image (h) is generated by our
MCED using 7 intensities (tones) given in the figure. (a)-
(g) show the distribution of the pixels with these intensities
respectively. (Images best viewed at 300 DPI).

where I(·) and E(·) are the Fourier transform of the
input image and the error map e(x,y) generated dur-
ing error-diffusion; F(·) is a high-pass filter defined
solely by the diffusion filter.

For each class Ci, our algorithm is based on (Zhou
and Fang, 2003) by adding an extra modulation mi
to its threshold, and mi includes the displacement ti,
which is in nature a noise from other ED classes. Also
according to (Knox and Eschbach, 1993), threshold
modulation is equivalent to sending to the original
ED an equivalent image that is the sum of the original
image and a filtered modulation, where the filter F(·)
is exactly the one in Eq.9. Therefore we have:

B(u,v) = I(u,v)+F(u,v)(Di(u,v)+M(u,v))

+F(u,v)E ′(u,v),
(10)

where Di(u,v) is the Fourier transform of d1i, M(u,v)
is the Fourier transform of the threshold modulation
r(p) defined in Fig.1 , E ′(u,v) is the Fourier transform
of the error map e(x,y) for the equivalent image.
Note that ti does not appear in Eq.10 because it is a
DC component and is filtered out by F(·). Hence,
threshold displacements do not have influence on the
average density of the output image of any class.

It is also noted that in Eq.10, only Di(·) and
E ′(·) are decided by the threshold displacement {ti}.
Considering the fact that ti actually has the effect of
decreasing or increasing the amount of slow response
phenomenon at the beginning of the ED, so properly
chosen {ti} are able to minimize the amount of
sampling conflict, which in turn can improve the
anisotropy and lower frequency ratio defined in Eq.4.

7.2 Limitation and Future Work

In the experiment results of our paper, smear artifacts
may appear in the sampling classes with low average

(a) (b) (c) (d)

Figure 14: Color image vectorization using our MCED
vs. the standard ED. (a) and (d) are triangulation on
points sampled by Standard ED and MCED, (b) and (c) are
correspong rendering result. The input image is in RGB.

sampling density (Fig.13(g)). This is because we
use si to choose the class with the highest average
intensity when sampling conflict occurs and this may
cause classes with less average intensity to generate
output with lower quality. Hence, the selection of si
is a topic to be investigated.

The optimal threshold displacement ti = g(p0, pi)
has the effect of reducing slow response (Haneishi
et al., 1996), which is also called transient effect in
some literature (Zhou and Fang, 2003). That effect
in our MCED is shown obliviously in Fig.14. At
the top of the image, our sampling result (Fig.14(d))
has very weak slow response than that generated by
the standard ED (Fig.14(a)). In fact, the amount of
slow response directly affects the lower frequency
ratio β(pi, ti) in Eq.4. Our displacement optimiza-
tion automatically guides ti to a proper value to
decrease the anisotropy and lower frequency ratio,
and consequently, reduces the slow response. Hence,
introducing threshold displacement into the single-
class standard ED to further reduce its slow response
is also a future research topic to be explored.
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APPENDIX: Pseudo Code of MCED

Alg.1 is the pseudo-code for the framework of
MCED, and the main functions are explained as
follows:

GetDisplacement() evaluates ti by accessing the
lookup table (Fig.6) we described in Section 4.2.

GetCoe f f icient() and GetStandardT hreshold()
are functions for finding appropriate diffusion coef-
ficients and threshold for the standard ED.

Quantize() compares pixel value to the threshold
and returns 0 if below, 1 otherwise. (Eq.1)

HaveCon f lict() returns TRUE if more than one
sampling points from different classes situate at the
current position, and NoCon f lict() indicates only one
class sampled at the position.

FindMaxClass() finds the class whose sum of
densities at all the spatial positions is the maximum.

DistributeError() distributes the quantization er-
rors to neighboring pixels according to the error filter.

Algorithm 1: Multi-Class Error-Diffusion.

1: for each spatial position (x,y) do

2: p0(x,y)←
n
∑

i=1
pi(x,y)

3:
4: for each spatial position (x,y) do
5: // The first step Qi
6: for each class i := 0 to n do
7: ti(x,y)← GetDisplacement(p0(x,y), pi(x,y))
8: a(i)jk ← GetCoe f f icient(pi(x,y))
9: ui(x,y)← GetStandardT hreshold(pi(x,y))

10: ui(x,y)← ui(x,y)+ ti(x,y)
11: for each class i := 0 to n do
12: c0

i ← Q(pi(x,y)+bi(x,y),ui(x,y)) // Eq.1

13:
14: // The second step Ei
15: if c0

0(x,y) = 1 then
16: if HaveCon f lict() then // i.e.:∑i 6=0 c0

i > 1

17: c0(x,y)← 1
18: e0(x,y)← p0(x,y)− c0(x,y)
19: minclass← FindMaxClass()
20: for each class i := 1 to n do
21: if i = minclass then // i.e.:si = T RUE

22: ci(x,y)← 1
23: else
24: ci(x,y)← 0
25: ei(x,y)← pi(x,y)− ci(x,y)
26: else if NoCon f lict() then // i.e.:∑i 6=0 c0

i = 1

27: for each class i := 0 to n do
28: ci(x,y)← c0

i
29: ei(x,y)← pi(x,y)− ci(x,y)
30: else // No class sampled:∑i 6=0 c0

i = 0

31: for each class i := 0 to n do
32: ci(x,y)← 0
33: ei(x,y)← pi(x,y)− ci(x,y)
34: else // When c0

0 = 0

35: for each class i := 0 to n do
36: ci(x,y)← 0
37: ei(x,y)← pi(x,y)− ci(x,y)
38:
39: for each class i := 0 to n do
40: DistributeError(i,x,y,ei(x,y),a

(i)
jk )
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