Multiobjective Bacterial Foraging Optimization using Archive Strategy

Cuicui Yang and Junzhong Ji

College of Computer, Beijing University of Technology, Beijing Municipal Key Laboratory of Multimedia and
Intelligent Software, Pingleyuan 100, Chaoyang District, Beijing, China

Keywords:  Bacterial Foraging Optimization, Archive Strategy, Conjugation, Multiobjective Optimization.

Abstract: Multiobjective optimization problems widely exist in engineering application and science research. This paper
presents an archive bacterial foraging optimizer to deal with multiobjective optimization problems. Under
the concept of Pareto dominance, the proposed algorithm uses chemotaxis, conjugation, reproduction and
elimination-and-dispersal mechanisms to approximate to the true Pareto fronts in multiobjective optimization
problems. In the optimization process, the proposed algorithm incorporates an external archive to save the
nondominated solutions previously found and utilizes the crowding distance to maintain the diversity of the
obtained nondominated solutions. The proposed algorithm is compared with two state-of-the-art algorithms
on four standard test problems. The experimental results indicate that our approach is a promising algorithm
to deal with multiobjective optimization problems.

1 INTRODUCTION have been a number of methods based on PSO for
solving MOPs (X Li, 2003; Coello C A C, Pulido
The multiobjective optimization problem (MOP) usu- G T, Lechuga M S, 2004; Tripathi P K, Bandyopad-
ally involves more than one conflicting objectives that hyay S, Pal S K, 2007). Bacterial foraging opti-
need to be optimized simultaneously and is an im- mization (BFO) is another popular bio-inspired op-
portant class of scientific and engineering problems timization technology which simulates the foraging
in real-world (Deb, 2001). The solution to a MOP behavior of E. coli bacteria (K.M. Passino, 2002).
is a set of trade-off solutions known as Pareto opti- BFO has been proved to be an efficient optimiza-
mal solutions or non-dominated solutions which can- tion method for single objective optimization prob-
not improve all the objectives simultaneously. Evolu- lems (Agrawal V, Sharma H, Bansal J C, 2011), and
tionary computation methods based on Darwin’s bi- more recently researchers have also shown promising
ological evolution theory deal with a group of candi- results for MOPs (Panigrahi B K, Pandi V R, Das
date solutions, which makes that they are natural to S, et al, 2010; Guzan' M A, Delgado A, De Car-
be used to handle multiobjective optimization prob- valho J, 2010; Niu B, Wang H, Tan L, et al, 2012;
lems (MOPs). In the past two decades, researchersNiu B, Wang H, Wang J, et al, 2013). However, to
have proposed a variety of evolutionary computation- the best of our knowledge, none of these algorithms
based approaches for solving MOPs (Deb, 2001; incorporate an external archive to preserve the elitism
Coello Coello CA, Van Veldhuizen DA, Lamont GB, solutions, namely, there is no way to keep the non-
2007), such as the well-known algorithms PESA- dominated solutions found previously in the optimiza-
Il (Corne D W, Jerram N R, Knowles J D, et al, tion process. Elitism-preservation is an importance
2001), NSGA-II (Deb K, Pratap A, Agarwal S, et strategy in multiobjective search, which has been rec-
al, 2002) and SPEA2 (E Zitzler, M Laumanns, L ognized and supported experimentally (Parks G T,
Thiele, 2002). Evolutionary multiobjective optimiza- Miller I, 1998; Zitzler E, Deb K, Thiele L, 2000).
tion (EMO) that uses evolutionary computation meth- To further explore the potential of BFO algorithm in
ods to solve MOPs has become a relatively hot re- finding Pareto optimal solutions for MOPs, this pa-
search area. per presents an archive bacterial foraging optimizer
In recent years, some new bio-inspired optimiza- for multiobjective optimization, called as MABFO.
tion technologies have been successfully introduced MABFO mainly includes four optimization mech-
to deal with MOPs, where Particle swarm optimiza- anisms: chemotaxis, conjugation, reproduction and
tion (PSO) is a prominent example. So far, there elimination-and-dispersal. The implements of these
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mechanisms are different from other current meth-

ods based on BFO. More improtant, MABFO incor-

Pareto Optimal Solution:; Q is the feasible solu-
tion set of problem (1)x* € Q, x* is a Pareto optimal

porates an external archive to save the nondominatedsolution if and only if:

solutions previously found and uses the crowding dis-

tance to maintain the diversity of the nondominated

solutions. These strategies are conducive to produce

well-distributed and high-quality solutions.
MABFO is validated on four standard test prob-

lems and compared against two start-of-the-art EMO

approaches NSGA-II (Deb K, Pratap A, Agarwal S,
et al, 2002) and SPEA2 (E Zitzler, M Laumanns, L

-Ixec Q: x> X".

®)

Pareto Optimal Set: The Pareto optimal set of
problem (1) includes all the Pareto optimal solutions
and is given as follows:

X" ={X"|-3Ixe Q: x> X"}.

(4)
Pareto Front: The Pareto front of problem (1)

Thiele, 2002) The eXpeI’imenta| results indicate that includes all the Objective vectors Correspondingto

MABFO is a promising algorithm and can be consid-
ered an alternative to deal with MOPs.

The remainder of the paper is structured as fol-
lows. Section Il briefly introduces basic concepts in-
volving MOPs. Section Ill presents the details of the
MABFO algorithm. We then present experiments in
section IV, and finally, section V concludes the paper.

2 BASIC CONCEPTS

and is given as follows:

PF= {F(X*) (fl(x*)a fz(X*),- ) fm(x*))T‘X* S )((*)}
5

3 THE MABFO ALGORITHM

In this section, we will introduce MABFO algorithm.
Algorithm 1 is the framework of MABFO. In the fol-
lowing, we will describe its five important operators
chemotaxis, archive updating, conjugation, reproduc-

A MOP can be described as the problem of finding {jon and elimination-and-dispersal as Algorithm 1

a vector of decision variables that optimizes a vector
function and satisfies some restrictions. Without loss

of generality, a MOP is formulated as follows (Deb,
2001):

min % F(X) E (fl(x afz(x)v“' ) fm(x))T

st. gi(x)§0>i:1727"'>p 1)
h](X)ZO,]:lZ,q ’ (
X <x <%’

wherex= (x1,%2, - ,X,) € X C R"is an-dimensional
decision vectorX represents a-dimensional deci-
sion spacex- andx’ are the upper and lower bound-
ary values ofx;, respectively.y = (y1,¥2,- -+ ,Xm) €
Y ¢ R™is am-dimensional objective vectoy, rep-
resents an-dimensional objective spacd-(x) is a
mapping function fronm-dimensional decision space
to m-dimensional objective spacegi(x) < 0 (i =
1,2,---,p) andh;(x) =0 (j = 1,2,--- ,q) definesp
inequalities andj equalities, respectively.

In the following, we will list four definitions in-
volving MOPs.

Pareto Dominant: Xq, X3 are two feasible solu-
tions for problem (1)xq is Pareto dominant compared
with xg if and only if:

Vi =12---,m, fi(Xq) < fi(XB) A

3 =12, m. (%) < fi(%p) (2)

We call this relationshipy = X3, X dominatexg, or
Xg is dominated by .
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shown.

Algorithm 1: MABFO algorithm (main loop).

Input: Different parameters:
Nc: maximum number of chemotaxis,
Nre: maximum number of reproduction,
Neg: maximum number of elimination-and-dispersal,
N1: the size of populatioR,
N2: the maximum size of external archide
Output: A (Pareto optimal set)
1: Initialization: Generate an initial populatiddand an
empty archive A.
2:for I =1toNgg do
3: for k=1toN, do
4: for j=1toN;do
a). Each bacterium if® takes achemotaxis
process.
b). Archive updating: copy all nondominated
individuals in joint population oA andP to A.
If the size ofA exceeddN2, then reduce it
based on therowding distance.
c). Each bacterium takeseanjugation process.

5: end for
6: The populatiorP perform areproduction process
which selectdN1 superior individuals in the joint
population P and A and then copy them to P.
7: endfor
8: The populatiorP perform arelimination-and-
dispersal process and update the archive A as step
4 ).
9: end for
10: Return A.
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3.1 Chemotaxis in the search process. In MABFO, we use an exter-
nal archiveA with a fixed numbeN2. Whenever the
Chemotaxis simulates the foraging movement of populatiorP carries out a chemotaxis process, we will
E.coli bacteria through tumbling and swimming. To reselect all the nondominated solutions from the joint
absorb more nutrients, each bacterium tries to find population ofP andA, and then update archiveby
food in two ways: tumbling and swimming. A bac- copying them to A. If the size of exceedN2, an
terium tumbles in a random direction to exploratively archive truncation procedure is invoked, which itera-
search for food. If the food is rich in the selected di- tively remove individuals from\ based on the crowd-
rection, the bacterium will swim along this direction, ing distance until the size & is N2. At each itera-
till the food gets bad or the bacterium has swum the tion, the individual which has the minimum distance
fixed steps. to another individual is removed according to the for-
A random direction is a random unit vectorn mula:
dimensional space. In the original BFO algorithm, it
is very cumbersome to calculate a random unit vector Vo< k<|Q:0X=gk v
for each bacterium in every chemotaxis. In the pro- NS a0 K ok
posed MABFO algorithm, we use a simple unitvec- 30 <K<[Q[:[(VO<I <k:0; =0}) A0 < O]
tor ey, with n dimensions as the chemotaxis direction, i o (8,)
in which only one component randomly selected (i.e. whereQis a group of II(rIFiIVIdua!iQ| denptes the_s|ze
themth component) is either -1 or 1 and all the others ©f Qand hereQ = A. o7 is the distance ath solution

are 0. The method of updating a solution is given as % 10 itskth nearest neighbor iQ. _
follows: The external archivé promises not to miss the

P P : nondominated solutions found in the search process.
X U+ Lkl =x(k)+c(i) em, 6) The crowding distance eliminates the individuals in
where X (j,k,1) represents théth bacterium atjth dense area, which can ensure the obtained solutions
chemotaxis,kth reproduction,Ith elimination-and-  distributed evenly. The using of external archive
dispersal step.c(i) is the step size along the direc- and crowding distance is beneficial to find well-
tion en. The original BFO algorithm uses a fixed (istributed Pareto solutions.
step size which would lead to bad convergence per-
formances (S Dasgipta, S Das, A Abraham and A 3 3 Conjugation
Biswas, 2009). In the proposed MABFO algorithm, a
dynamic step size is adopted and is given as follows:

dis(x) < dis(xj) <

Conjugation, as well as chemotaxis, is an important
biological behavior of bacteria. Bacterial conjugation

,C(') =1 (m(i k1) _XIm(J_’k’I))’ i _(7) is the transfer of part of plasmid (genetic material)
wherer is a random number uniformly distributed  from donor bacteria to recipient bacteria by directly
between—1 and 1,x,(j,k,I) denotes thenth com-  physical contact and is often regarded as the sex-
ponent of another different bacteriufrwhich is se-  yal reproduction or mating between bacteria. Some
lected randomly irP. researchers have taken the bacterial conjugation as

When bacterium carries out a chemotaxis oper- a message passaging mechanism in their work (C

ator, it first generates a directiay, and a step sizeé  perales-Gravan, R Lahoz-Beltra, 2008; A Balassub-
c(i) as described above, and then swims a step alongramaniam, Memeber, IEEE, P Lio, 2013).

the directiorer, according to Eq.(6). If the new solu- In this paper, we also simulate the bacterial con-
tionx (j+1,k,1) dominates the old solutioni(j, k1), jugation behavior as an information exchange mech-
bacteriumi will swim another step in the directia®  anism between bacteria in populatiBrand archive

according to Eq.(6). This process is continued until A, To model this biological behavior, we first define
bacteriumi has swum the maximum stepg or the  conjugation length. (L < n) measured by the number
obtained new solutio' (j + 1,k 1) is dominated by  of decision variables. Then each bacterilim pop-
the old solutionx'(j,k,1). Such chemotaxis mecha- ylationP will randomly select another bacteriLifrin
nism is an important driving force for locally opti- A and a conjugation poirBt (Bt < n—L) to take a

lelng each candidate solution, Where each ba.CteriUmconjugation Step_ In this step, the way of updating the
ties its best to search for non-dominated solutions.  so|ution is given as follows:

3.2 Archive Updating Xl i- kD) =X (j,k 1)+ wo (X' (j, k1) =X (j, k1)),
9)

The main goal of the external archive is to keep a his- wherexi .,(j,k,1) denotes the new solution after bac-
torical record of the nondominated solutions obtained terium i performing the conjugation operatow is
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Table 1: Test problems used in this paper.

Problem| n | Variable rangg Objective functions Pareto-optimal solutionfs
ZDT1 |30 [0,1] f1(X) =x1 x1 € [0,]]
f2(x) = g(X)[1— /X1/9(x)] %=0,i=2--,n
90 =1+9(5{,%)/(n—1)
ZDT2 |30 [0,1] f1(X) =x1 x1 € [0,]]
f2(x) = g(x)[1— (x1/9(x))?] %=0,i=2--,n
90 =1+9(5{,%)/(n—1)
ZDT3 |30 [0,1] f1(X) =x1 x1 € [0,]]
f2(3) = g [1— /% /909 — ghgsin(10ma)] % =0,i=2,---.n
900 =1+9(5L%)/(N—1)
ZDT4 10 X1 € [0, 1] fl(X) =X1 X1 € [0, 1]
% € (5,5, | f2(0 = g(X)[1— v/%1/9(X] X =0i=2-.n
i=2--,n |gx)=1+10(n—1)+ 5", [x? — 10cog4rx )]

a n-dimensional random vector in which the values or larger tharN1 if we incorporate théth nondomi-
of componentsBt to Bt + L — 1 are uniformly dis- nated levek. In the first case, the size Bfis exactly
tributed random numbers betweeril and 1, and  equal toN1 if putting i into R, just put it intoR and
those of other components are 00”‘is an opera- this select step is completed. In the second case, the
tor, called Hadamard product, which represents mul- size ofR is larger tharN1 if K is loaded intoR. In
tiplying the corresponding elements of two vectors. this case, we need to first pick oNfL — |R| solutions

Take 3-dimensional vectors for an exampleaif from F based on the crowding distance according to
(a1,a2,ag), b = (by,bz,b3), thenD = AoB = (a1 x (8) and then put them into R. In this wa§g| is also
b1,a2 x bz,a3 x b3). If the new solutionx,q(j.k,I) exactly the same witlN1. Next,Ris used to update
is dominated by the old solutiof(j,k,1), X (j,k,!) is the old populatiorP by copying it toP. Thus, the
kept; otherwisexi..(i.k,|) replaces<(j,k,I). With new populatiorP which contains the best individuals

this communication mechanism, each bacterium in is obtained. Such reproduction mechanism follows
the populationP searches for the nondominated so- the rule of survival of the fittest, which plays a role of
lutions under the guidance of the superior individuals transmitting good information among the whole pop-
in the archiveA. Thus, the bacterial population are ulation and speeding up the convergence.
likely to quickly converge to the global Pareto front.

3.5 Elimination-and-dispersal
3.4 Reproduction
With changes to the local environment in which a
population of bacteria lives, all of the bacteria in
this region may be killed, or a group of bacteria
may be dispersed into a new environment to find bet-
ter food sources. To simulate this phenomenon, an
elimination-and-dispersal step is taken in BFO after
Nre reproduction steps. Each bacterium in the popula-
dion may be eliminated or dispersed to a new location
with a given probabilityPeq. The rule is shown in the
following:

The bacteria grow longer with the increasing of the
nutrients absorbed. The more nutrients a bacterium
gets, the healthier it is. Under appropriate conditions,
some of bacteria in a population who are healthy
enough will asexually split into two bacteria, and
the other ones will die. Essentially, the reproduction
mechanism is to generate new population based on th
superior individuals in current population. In the pro-
posed MABFO algorithm, the reproduction operator
selectsN1 superior individuals from the joint popu- X, if T <Payg
lation of the current populatioR (|P| = N1) and the X= { x, otherwise (10)
external archivéA and produces a new populatién

by copying these selectédil superior individualsto  wherer is a random number uniformly distributed in

P. The way to seledl1 superior individualsis as fol-  [0,1], x is the current solution associated with a bac-
lows: first sort the joint population d? andA into terium, X is a new solution generated at randonmin
different nondominated levels as referen@g (did. dimension search space. That is, for each bacterium,

The first nondominated levél contains all the cur-  if the number generated randomly is smaller tRag
rent nondominated solutions. Then we pick out solu- it will move to a new random solution, otherwise, it
tions in ascending order of the nondominated level to will keep the original solution unchanged. This mech-
form a new grougR until the size oRwould be equal  anism is helpful to escape from local Pareto optima
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Table 2: Performance comparisons of NSGA-II, SPEA2 and M@R four test problems.

. GD SP
Problem|Algorithm Average | Std. Dev.| Average | Std. Dev.
NSGA-II | 5.10e-04| 1.24e-04| 9.14e-03| 1.13e-03
ZDT1 SPEA2 | 3.76e-04| 6.36e-05| 3.28e-03| 3.80e-04
MABFO | 1.96e-04 | 4.55e-05| 3.24e-03 | 5.48e-04
NSGA-II | 3.66e-04| 2.80e-04| 1.02e-02| 3.09e-03
ZDT2 SPEA2 | 1.74e-04| 2.83e-05| 3.15e-03| 3.62e-04
MABFO | 9.26e-05 | 4.42e-06| 3.04e-03 | 2.98e-04
NSGA-Il | 5.22e-04| 2.46e-04| 1.02e-02| 1.50e-03
ZDT3 SPEA2 | 3.73e-04| 1.10e-04| 4.42e-03 | 5.79e-04
MABFO | 1.59e-04 | 1.24e-05| 4.85e-03| 1.11e-03
NSGA-II | 2.45e-03| 9.01e-04| 1.33e-02| 5.07e-03
ZDT4 SPEA2 | 1.88e-03| 7.50e-04| 4.17e-03| 1.25e-03
MABFO | 2.34e-04 | 2.20e-04| 2.40e-03 | 1.52e-03
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Figure 1: Pareto fronts produced by NSGA-II (left), SPEA2ddhe) and MABFO (right) for the ZDT1 test problem.
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and to explore the global Pareto optima in the search
space.

In general, there are two issues to consider for as-
sessing a method in multiobjective optimization area:
(1) the convergence of the obtained Pareto front to-
ward the true Pareto front and (2) spread of the ob-
tained solutions. Based on this notion, we adopt two
common metrics: Generational distance (GD) (Van
Veldhuizen D A, Lamont G B, 1998) and Space
(SP) (Schott J R, 1995).

GD measures the distance between the Pareto
front found so far and the true Pareto front. It is de-
fined as:

4 EXPERIMENTS

In this section, we will compare the proposed
MABFO algorithm with two state-of-the-art algo-
rithms NSGA-1l and SPEA2. The experimental plat-
form is a PC with Inter(R) Core(TM) i5- 3470 CPU
3.20GHz, 4GB RAM and Windows 7, and all the al-

gorithms are implemented using C++ language. GD = Shad?
n )

(11)

4.1 Test Functionsand Evaluation
Metrics

wheren is the number of members in the Pareto front

found so fard; is the Euclidean distance between the

ith member of the Pareto front found and the nearest
We choose four test problems ZDT1, ZDT2, ZzDT3 member of the true Pareto front. The smaller the value
and ZDT4 which are suggested by Zizler and com- Of this metric, the nearer the Pareto front found so far
monly used in a number of significant past studies. to the true Pareto front.

All the test problems have two objective functions and SP judges how well the Pareto front found so far

have not any constraint. Table 1 lists these test prob-distributed and is formulated as follows:

lems and also provides the number of variables, their
ranges, the Pareto-optimal solutions for each prob-
lem.
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where n is the number of members in the Pareto
front found so fard' is the minimum Manhatton dis-
tance between théh member and other members
in the Pareto front found and; = min;j(|fy(x') —

f1 (X)) + [f2(x) = f2(x)] + -+ + [ fm(X) = (1)),
j=1,2,---,n. mis the number of the objectived.is
the average value of all. The smaller the value of
this metric, the more uniform the Pareto front found
is distributed.

4.2 Resultsand Analysis

In the experiments, each algorithm was tested 30 in-
dependent runs on each test problem. To be fair,
the population sizes and the elite archive sizes of the
three algorithms were set to 100. The generations of
NSGA-II and SPEA2 were set to 500. For the other
parameters in NSGA-Il and SPEA2 algorithms, we
tried to use identical settings as suggested in the orig-
inal studies. For the left parameters in the proposed
MABFO algorithm, we didn’'t make any serious at-
tempt to find the best settings and only chose a reason
able set of valuedNs =4, Nc = 10,Nre = 25,Neg = 2,
Peg=0.2andL =0.4xn.

Table 2 provides the average results (Average) and
standard deviations (Std. Dev.) with respect to the
two metrics GD and SP. The best average results with
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Pareto fronts produced by NSGA-II (left), SPEA2ddhe) and MABFO (right) for the ZDT3 test problem.

respect to each metric are shown in bold. It can
be seen from the table, the average performance of
MABFO is the best with respect to the GD and SP
metrics on ZDT1, ZDT3 and ZDT4. As for ZDT2,
MABFO achieves the best result in term of GD and is
only slightly worse than SPEA2 in term of SP, but it
has the smallest deviation with respect to SP.

Figures 1-4 show the Pareto fronts obtained by
NSGA-II, SPEA2 and our MABFO algorithm on the
four test problems—zZDT1, ZDT2, ZDT3 and ZDT4,
respectively. The Pareto fronts displayed correspond
to the median results over 30 runs with respect to
the GD metric. From these figures, we can see
that the three algorithms are able to cover the entire
Pareto fronts on ZDT1, ZDT2 and ZDT3. But our
MABFO algorithm produces better-distributed and
higher-quality Pareto front on these three test prob-
lems, especially on the ZDT3 problem. For the ZDT4
problem, both NSGA-Il and SPEA2 fail to cover the
true Pareto front, whereas our MABFO algorithm
successfully does it. Through the comparison with
two best EMO algorithms NSGA-Il and SPEA2, our
MABFO algorithm is a viable alternative to solve
MOPs.
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Figure 4: Pareto fronts produced by NSGA-II (left), SPEA2ddte) and MABFO (right) for the ZDT4 test problem
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