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Abstract: Traditionally, context in software is modeled as a global variable, static class, or similar mechanisms that are 
initialized when an application is loaded and updated periodically through the lifetime of the application as 
the end user interacts with instructions.  This approach is limited to customizations, personalization and 
initialization based on previously captured, mostly static information.  It is a replay of a previous state. In this 
paper we propose a new approach to defining and modeling context for software applications using graphs. 
Context is fundamentally interaction-based and comes into play when one entity interacts with another to 
achieve a goal in a given environment constrained by time and location.  By capturing the interactions between 
entities in a graph, context becomes emergent rather than declarative and can be learned from user 
interactions.  The context is discovered by first-degree graph traversal of interacting entities. The discovered 
context is used to achieve context sensitive goals in environments with a large number of interconnected 
entities such as the Internet of Things (IoT). 

1 INTRODUCTION 

To support decisions based on goals and actions in 
industrial scenarios, it is critical to detect and evolve 
context of operational environments in such a way 
that the system remains adaptive and dynamic and 
can react to changing goals in real time (Loren, 2015). 

For the purpose of this paper we start with the 
following definition of context: ‘Context is any 
information that can be used to characterize the 
situation of an entity. An entity is a person, place, or 
object that is considered relevant to the interaction 
between a user and an application, including the user 
and applications themselves.’ (Abowd et al., 1999) 

Entities can be modeled as vertices in a graph and 
relationships can be modeled as edges. This enables 
us to represent any set of relationships as a graph. 
Using graph relationships and paths, the use of simple 
graph operations enables us to determine context and 
leverage it to achieve goals.  We present a novel 
approach that allows context to emerge organically 
based on the entity relationship graph rather than 
being explicitly maintained.  

2 GRAPH APPROACH TO 
CONTEXT 

2.1 Information as a Graph 

All known information at any given time may be 
represented as a graph. The graph itself is made up of 
a set of vertices and edges. 

ܩ  = (ܸ,  (1)   .	(ܧ
 

In an open world assumption, all vertices are 
presumed to exist and a graph can simply be defined 
as a set of edges bounded by two vertices. Such a 
graph can be described as a directed, labeled multi-
graph. Such multi-graphs may be modeled as a set of 
triples (W3C, 2014), each triple ݐ is a 3-tuple 
containing the subject ݏ, predicate ݌ and object ݋ 
representing an arc in a directed graph. The subject is 
the vertex at the origin of the arc, the object is the 
destination and the predicate is the label on the arc.  

ݐ  = ,ݏ) ,݌ ࣡ (2)   ,	(݋ =  (3)    . {ݐ}
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Maintaining the relationship graph then simply 

becomes a matter of adding a triple when a new 
relationship is formed and removing a triple when a 
relationship is dissolved and archived.  

2.2 Context as a Function of Graph 

For context modeling we present a light asset-centric 
ontological approach (RDF) and leverage graph 
theory for both the storage of the asset related data 
and the inference of new contexts dependent on goals. 

As edges are added and removed over time, a 
characteristic pattern develops around an entity as an 
emergence (Lewes, 1874). This emergent context 
may be used to avoid manually maintaining a context. 

More context does not necessarily improve the 
accuracy of the inference in a considerable manner. 
(Guan et al., 2007) Rather than creating an exhaustive 
context model, our approach is to let it grow 
organically. 

 
Definition 1: The context of any entity is the set of its 
first-degree connections.  ܥఌ = ݏ	|	ݐ} = 	ߝ	 ⋁ 	 ݋ =  (4) 	.		{ߝ	

The entity ߝ may be connected to other entities or may 
simply point to a value. This includes both inbound 
and outbound connections in case of directed graphs. 
 
Definition 2: The common context between any two 
entities is the intersection of their individual contexts, 
i.e., their first-degree connections.  
஺஻ܥ  = 		஺ܥ	 ⋂ 	   .    (5)	஻ܥ

 
Definition 3: Emergent Context of entities is the union 
of their contexts that naturally arises as old 
connections dissolve and new connections form. 
 

ாܥ      = 		஺ܥ	 ⋃ 	   .   (6)	஻ܥ
 
Definition 4: Goal based context is a subset of the 
emergent context that is relevant for the aforesaid 
goal.  

ீܥ   ⊆  .       (7)		ாܥ

2.3 Graph Path Notation 

We introduce the following notation for describing 
sets of graph paths from ࣡, which may be effectively 
used as queries. 

A path ܲ is a non-empty sub-graph of ࣡ such that 
the edges ݁௜	connect one vertex to the next and every 
vertex ݔ௜ is distinct.   

 ܲ	 = 	 ,(ଵݔ݁଴	଴ݔ)} ,(ଵݔ଴݁ଵݔ) . . . , ௜݁ ,	{(௞ݔ௞ିଵ݁௞ݔ) = 	 	வ݁௜	⋁		ழ݁௜	,   (8) 
 
Where 	வ݁௜ and 	ழ݁௜ represent outgoing and 

incoming arcs from vertex ݔ௜	respectively. 
Let the path expression	ୀݏ௜ be the subset of all 

paths in ࣡ that start with vertex ݏ௜. 
 	ୀݏ	 = 	 { 	ܲ =	଴ݔ	|	  (9)  .		{ݏ

 
Let the path expression	வ݌ be the subset of all 

paths in ࣡ that start from any subject having a 
predicate ݌ (i.e., all paths beginning from any vertices 
and an outgoing edge with label ݌) to any vertices. 

 	வ݌	 = 	 { (	ଵݔ	வ݁଴		଴ݔ)	|	ܲ	  (10)  .		{(	ଵݔ	݌	଴ݔ)=
 

Let the path expression	ழ݌ be the subset of all 
paths in ࣡  that start from any object having a predicate ݌ (i.e., all paths beginning from any vertices and an 
incoming edge with label ݌) to any vertices. 

 	ழ݌	 = 	 { (	ଵݔ	ழ݁଴		଴ݔ)	|	ܲ	  (11)      .		{(	ଵݔ	݌	଴ݔ)=
 

Let the path expression	°݌ be the subset of all 
paths in ࣡ that have p as its first predicate.  
݌°	  = 	 	வ݌	⋃	ழ(12)                       . ݌ 
 

The path elements in (9) to (12) can be chained to 
specify a subset of paths that follow any specific 
pattern. For example, the path expression	ୀݏ	வ݌ is the 
subset of all paths from (9) that begin with subject ݏ 
and predicate ݌ (i.e., all paths beginning from a vertex ݏ and an outgoing edge with label ݌) to any vertices.  

   	ୀݏ	வ݌	 = 	 { =	଴ݔ	|	ܲ	 =வ݁଴		⋀	ݏ  (13)        .		{݌
 
The expression 	ୀݏ	வ݌	வݍ is the subset of all paths 

from (13) that have a successor predicate ݍ. 
 	ୀݏ	வ݌	வݍ = 	 { =଴ݔ	|ܲ	 =வ݁଴	⋀ݏ =வ݁ଵ		⋀	݌  .		{ݍ	
 
The expression 	ୀݏ	வ݌	ୀ݋	represents the set of all 

paths beginning with the subject ݏ and having an 
outgoing predicate ݌ and an incoming object ݋. 

 	ୀݏ	வ݌	ୀ݋	 = 	 { =	଴ݔ	|	ܲ	 =வ݁଴		⋀	ݏ	 =ଵݔ	⋀	݌	  .		{݋
 

Let the path expression ߨ଴{ߨଵ,  ଷ represent aߨ{ଶߨ
branched path which splits after ߨ଴ into as many 
branches as the number terms within the braces where ߨ௜ represents a chain of path expressions defined in 
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(9) to (12). This notation may be nested, enabling us 
to specify arbitrary branching. 

,ଵߨ}଴ߨ  ଷߨ{ଶߨ = ,ଷߨଵߨ}଴ߨ	 ={ଷߨଶߨ 	 ,ଷߨଵߨ଴ߨ} ,ଵߨ}଴ߨ ,	{ଷߨଶߨ଴ߨ ଷߨ{ଶߨ = ଷߨଵߨ଴ߨ	 ⋀ 	  .          (14)	ଷߨଶߨ଴ߨ
 
For example,  
 	ୀݏ	{வ݌, 	வݍ} = 	ୀݏ	வ݌ ⋀	ୀݏ	வݍ	. 	ୀݏ	}°	݌,  . ݍ°	ݏୀ	⋀ ݌°	ݏୀ	 = {ݍ

2.4 Contextual Goals  

Defining how the system behaves in a given context 
is key to context sensitive computing. This context-
specific behaviour can be modeled as a set of goals. 
Goals are composed of constraints and actions. In a 
general graph, especially one as large as the IoT, there 
could be billions of entities and some of the more 
complex entities such as power plants may have 
thousands of goals per entity. In an environment 
where multiple entities interact, prioritizing goals to 
evaluate can be a complex problem. An entity needs 
to quickly prioritize goals to evaluate. Mapping the 
common context from Definition 2 to a set of goals 
would ensure that goals in the common context are 
given priority.  

In our example below, goals relating to 
California Plant 3 and Repair Process 
are prioritized and can be obtained by a simple 
lookup.  

 
Figure 1: Portion of graph of entities and their known 
relationships. 

 
Figure 1 represents a small portion of the graph 

that’s relevant to a specific goal, the assignment of a 
work-order to a qualified operator.  The Assignment 
link from WorkOrder to the operator does not yet 
exist; adding it is the goal of this exercise. 

 
From our definitions, we have: 
 
Operator’s context, from (4):  

Location: California Plant 3 
Certification: Repair Process 
Employer: GE 
Type: Operator 
 
Asset’s context, from (4):  
Location: California Plant 3 
Certification: Repair Process 
applicableTo: WorkOrder 
Type: Turbine 
 
Common context for the Operator and Asset 

Interaction, from (5): 
California Plant 3 
Repair Process  

2.5 Contextual Constraints 

Constraints define when a goal is applicable and are 
specified as a set of paths. If all constraint paths 
specified by the goal exist, then the goal can be 
evaluated. 

Let ߮ be the path expression that represents a 
contextual constraint as in Section 2.3 
 ߮ .	ଵߨ଴ߨ	= .  .          (15)	௞ߨ

 ߮ is said to exist when it contains at least one path 
satisfying ߮. For a branched path as in (14), all 
branches should exist. 

 
Example Contextual Constraint 1: Only an 

operator present in the same location should service 
Asset. 

 ݎ݋ݐܽݎ݁݌݋ୀ	݁݌ݕݐவ	݊݋݅ݐܽܿ݋ழ݈	݊݋݅ݐܽܿ݋வ݈ݐ݁ݏݏܣ 
 
Decomposing the path expression above by its 

constituents, the initial term ݐ݁ݏݏܣவ݈݊݋݅ݐܽܿ݋ 
represent the location of Asset, the succeeding 
term	ழ݈݊݋݅ݐܽܿ݋ represents all entities that are in the 
same location as Asset and the final term 	வ݁݌ݕݐ	ୀݎ݋ݐܽݎ݁݌݋ limits the above to our contextual 
goal of all operators in the same location as Asset. 

Example Contextual Constraint 2: Only an 
Operator who is a GE employee and is certified in the 
relevant repair process should service Turbines.  

 {ܧܩୀ	ݎ݁ݕ݋݈݌݉݁ 	,ݎ݋ݐܽݎ݁݌݋ୀ	݁݌ݕݐ}°	݊݋݅ݐ݂ܽܿ݅݅ݐݎ݁ܿ°	݁݌ݕݐழ	ܾ݁݊݅ݎݑܶ 
 

This path expression uses the direction agnostic 
operator from (12) and branching from (14) 
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2.6 Contextual Actions 

Actions are simply graph changes such as new arcs 
added to the graph. These added arcs grow the context 
and are the elemental constituents of the emerging 
context.  

 
A contextual action Γ specifies the exact paths to 
subject and object and supplies the predicate used to 
insert or remove an arc into the context graph. 
 

Let ∏ represent the union of all contextual 
constraints ߮଴ to ߮௞ 

 ∏ =	߮଴	⋃	߮ଵ⋃…	⋃	߮௞ .        (16) 
 
Let Γ∏ be the contextual action where p୻ 

represents the predicate to be added and ߮௦ and ߮௢represent the path to the subject and object within ∏  
 Γ∏ 	= (߮௦, p୻, ߮௢)  .                        (17) 
 
Example Contextual Action: Assign WorkOrder 

to Operator. 
 Γ∏ 	= ,݋݈ܾ݈ܶ݁ܽܿ݅݌݌ழܽ	ݐ݁ݏݏܣ)  (18)     . (݊݋݅ݐܽܿ݋ழ݈	݊݋݅ݐܽܿ݋வ݈ݐ݁ݏݏܣ ݐ݊݁݉݊݃݅ݏݏܣ

 
In the above: 
Subject path: ݐ݁ݏݏܣ	ழܽ݋݈ܾ݈ܶ݁ܽܿ݅݌݌ 
Predicate: ݐ݊݁݉݊݃݅ݏݏܣ 
Object path: ݐ݁ݏݏܣவ݈݊݋݅ݐܽܿ݋	ழ݈݊݋݅ݐܽܿ݋ 
 
From figure 1, its clear that both constraint paths 

exist in ࣡ and therefore the action can be performed. 
The new arc can be inserted at the location specified 
in (18). If multiple matches are found, then the system 
may simply pick one. If none are found, the operation 
may not be performed or be deferred to a human.   

3 APPLICATIONS 

We believe that the technique above is generally 
applicable to any software-defined context.  

We have shown an example of operator 
assignment based on discovered context. This can be 
extended to the context discovery of any interacting 
entities whose relationships and attributes are 
modeled as a graph. 

Context discovery and modeling in large graphs 
such as the Internet of things (IoT) poses special 

challenges (Pereira et al., 2013). The IoT is a very 
large graph, possibly in the tens or hundreds of 
billions of entities and quickly finding the context of 
any entity or between any two entities is critical to 
scalability.  

In addition, many IoT entities are likely to lose 
connectivity to the Internet but need to interact with 
other entities that they are connected to on a local or 
ad-hoc network. 

Our approach enables us to emerge context in a 
decentralized manner by focusing on the context of 
any interacting entities and deal with the challenge of 
huge graphs by reducing the context to a small 
subgraph as described in section 2. 

Entities can maintain a graph model of their 
attributes and relationships and let the context emerge 
naturally over their lifetime. This enables them to act 
independently without the need for a central 
repository that aggregates and serves as the authority 
for context of billions of entities. 

4 RELATED WORK 

Goals in the IoT and the Industrial Internet space are 
related to events.  Detecting events in real time is 
another major challenge for context-aware 
frameworks in the IoT paradigm (Pereira et. al, 2013).  
The graph of entities and their relations is 
continuously and dynamically updated as the users of 
the system interact with the graph triggered by sensor 
events or time-based events.   

Nguyen et. al. address this challenge using a 
context-aware framework that uses a form of context 
graph.  They introduce the notion of a graph made of 
context nodes and action nodes: ‘the basic idea of 
contextual graph relies on the fact that past contexts 
can be remembered and adapted to solve the current 
context. The context is managed to organize in the 
graph type. In the contextual graph, rather than 
creating a solution from scratch, the contexts similar 
to the current context are retrieved from memory. The 
best match is selected and adapted to fit the current 
context based on the differences and similarities 
between the two contexts.’ (Nguyen et. al., 2008.) 

Their approach is also focused on the paths going 
through a node to discover context.  We improve 
upon Nguyen et al. by further constraining the model 
by introducing the definitions of context goal, 
constraints, and common context.   
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5 CONCLUSIONS AND FUTURE 
WORK 

No single system yet exists that could fully satisfy the 
criteria and challenges for the context-aware 
requirements for any large system of interconnected 
entities, especially one on the scale of IoT. The 
inherent complexity requires more dynamic approach 
that emerges from the system interactions as the 
system evolves rather than being pre-calculated.  We 
believe that our graph approach to emergent context 
gets us closer to the larger goal of a complete 
contextual system for the Internet of Things. 

Our approach can be generalized by extending 
Definition 1 to context from one to the nth degree, 
enabling a much larger graph and more indirect 
constraints and goals. 

We could also extend the approach to interaction 
of multiple entities by extending Definition 2 from 
two to n entities. 

Although Definition 3 implies an archived 
historical record of every link ever formed and 
dissolved, we only use the current state of the graph 
in this paper. The ability to use historical arcs could 
open new possibilities such as affinity discovery.  

GE Software is currently investigating methods 
connected to this paper’s contributions on a broad 
class of complex industrial and IoT applications such 
as analytics on large asset graphs.  
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