
Conceptual Object Exchanges among Software Games by
Non-programmers

Iaakov Exman and Guy Shimoni
Software Engineering Dept., The Jerusalem College of Engineering – JCE - Azrieli, POB 3566, Jerusalem, Israel

Keywords: Conceptual Objects, Software UFOs, Unidentified Flying Objects, Software Games, On-the-Fly, Conceptual
Exchanges, Embedding, Non-programmers.

Abstract: A non-programmer, who is an expert game player, could easily grasp the idea of improving his jumping
avatar by importing a flying property found in another game. But in order to actually exchange conceptual
objects between games one would need a suitably transparent software infra-structure. We propose the
usage of UFOs – Unidentified Flying Objects – that can be smoothly transmitted and embedded into the
target game, and except for their conceptual label, are so-to-speak unidentified by the non-programmer. This
approach has been designed and implemented into a distributed system of multiple software games in
different mobile computers. Beyond games, this system serves as a feasibility proof for on-the-fly exchange
of Conceptual Objects among any kinds of software applications.

1 INTRODUCTION

Software reuse ideas led to the proposal of software
design patterns, of which GoF patterns (Gamma,
1995) are a widely known example. The latter kind
of patterns is indeed composed of small groups of
classes, but their reuse is not supposed to be done in
terms of whole untouchable classes. Software
engineers usually modify internal attributes and
functions of some of the pattern classes, essentially
disrupting class encapsulation.

On the one hand, there is widespread
manipulation of software in daily life by human end-
users which are non-programmers. In the specific
context of software games, people may be expert
players – perfectly understanding the games’
conceptual world – without being aware of the
intricacies of the underlying software. Thus, for such
users, keeping conceptual neatness is very desirable,
in order to preserve world view consistency.

On the other hand, given the trend of increasing
level of abstraction (Exman, 2015) in software
design and implementation, it is suitable from
software development and maintenance
considerations, to work with conceptual classes –
which besides faithfully representing natural
language concepts of the end-users’ world, do not
disrupt encapsulation.

This work demonstrates, in the context of
software games, a system designed, implemented
and run as a feasibility proof of conceptual objects
exchange between different programs located in
diverse mobile computers. The system is usable by
non-programmers, since except for the conceptual
labels natural for the human end-user, the conceptual
exchange software infra-structure is transparent to
the end-user.

In this paper we thoroughly examine the
meaning of “conceptual objects”, describe the
software system architecture, and employ case
studies to demonstrate the approach.

1.1 Related Work

Since we deal with conceptual objects exchanged
among games, a primary question to be asked is
about the scope of these concepts. A generic answer
may be provided by a game ontology. Calleja
(Calleja, 2007) in his course on Computer Game
Theory provides a good introduction to Game
Ontology as a development of a critical vocabulary
for computer games. Zagal and Bruckman (2008)
describe a game ontology project in the context of
learning; a more general description of the same
project is found in Zagal et al., (2005). Chan and
Yuen (2008) refer to a Digital Game Ontology for
developing web game applications. Aarseth

18
Exman, I. and Shimoni, G..
Conceptual Object Exchanges among Software Games by Non-programmers.
In Proceedings of the 6th International Workshop on Software Knowledge (SKY 2015), pages 18-25
ISBN: 978-989-758-162-5
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

(Aarseth, 2010) discusses the purpose of game
ontologies stressing the gap between lay language
and academic language in this domain.

A less formal approach with the same purpose –
to define a vocabulary of games – is taken by
Costikyan (Costikyan, 2002). The issue at stake is
the relevant vocabulary to design games.

Another issue is the characterization of players
as non-programmers. Non-programmers should face
a simple, almost self-explanatory, user interface to
use and compose games. A particular example is the
case of youth which learn “programming” visually
by manipulating blocks, with “Scratch”, as in
Maloney et al., (2008). Poremba’s Master’s thesis
deals with the player as author of digital games
(Poremba, 2003).

Modification of existing games is coined
“modding”. Specific references on this sub-topic
include Sotamaa (Sotamaa, 2005), and Mactavish
(Mactavish, 2005).

There have been systematic efforts for generic
end-user (non-programmers) development or
tailoring of computer programs. Lieberman et al.,
(2006) characterize development by non-
professional end-users and refer to it as an emerging
paradigm. A more recent and more generic review is
found in (Gulwani, 2010), which analyses different
dimensions of program synthesis.

1.2 Paper Organization

In the remaining of the paper we define Conceptual
Objects Exchange (section 2), shortly introduce the
Software Games context (section 3), overview the
UFOs software architecture (section 4), discuss case
studies as a demonstration of the approach (section
5), deal with implementation issues (section 6) and
conclude with a discussion (section 7).

2 CONCEPTUAL OBJECTS
EXCHANGE

In this section we try to specify our understanding of
conceptual objects and their exchange by non-
programmers, e.g. to modify software games.

2.1 Non-programmers

Before we specify the meaning of conceptual objects
we need to characterize non-programmers.

A non-programmer (Exman, 2013) is a person –
a layman – which is neither a professional software

engineer nor a programmer, but it is here assumed to
have two definite characteristics:

 Software Usage Proficiency – the person
skilfully manipulates a common activity
involving software – e.g. playing a software
game;

 Conceptual Comprehension – the person
perfectly grasps the notions of the software
activity, i.e. has a good understanding of the
activity concepts.

2.2 Conceptual Objects

Nowadays it is common to design software systems
using UML – Unified Modelling Language – see
e.g. (Booch, 2005). Within UML there are a set of
diagrams to describe the structure and behavior of
the system. A typical description of the structure of a
software system is provided by a class diagram.

Classes should be designed to represent the main
concepts of a system. In our view of the highest
abstraction levels of the software system, a class
diagram is equivalent to an application ontology
(Exman, 2014b) which represents the system
concepts. In other words, if we abstract ourselves of
the internal details of a class, each class is equivalent
to a single concept in the particular application
ontology linked to the system. In this general sense,
every class is a concept, and its instances – the
objects – are necessarily conceptual objects.

But in this work we use “conceptual objects” to
denote more specific entities. We shall refer to the
objects related to the activity concepts grasped by
non-programmers as “conceptual objects”.

What are conceptual objects?

Conceptual objects technically are instances of
software classes labelled by terms belonging to the
vocabulary of non-programmers. As such their
labels are well-understood by non-programmers. For
instance, “jumping” is a well-understood concept
within games.

What are not conceptual objects?

Labels of conceptual objects do not necessarily
belong to ontologies of the respective domain. They
could be naturally added to the respective
ontologies.

Conceptual objects and their labels are usually
not given a dictionary definition or ontological
definition by the software classes. The non-
programmer is aware of say the “jumping” concept
through his previous knowledge of games or by
receiving an informal explanation on how to play the
game.

Conceptual Object Exchanges among Software Games by Non-programmers

19

2.3 Conceptual Objects Exchange by
Non-programmers

The goal of this work is to allow reasoned decision
of software systems modifications by non-
programmers at their will. This can be achieved,
among other possible ways, by exchanging
conceptual objects between existing systems. In this
way one avoids the need to build from scratch an
object. It already exists in another system.

In order to enable non-programmers to
efficiently exchange conceptual objects between
different programs, one needs to build a transparent
software infra-structure, which externally is easy to
manipulate. The non-programmer does not need to
understand the internal mechanisms of the infra-
structure.

The conceptual object exchange should be
applicable to any software system whatsoever in any
domain. For the purposes of proof of feasibility and
practical demonstration, in this work we apply it to
software games. But the idea is general.

2.4 Conceptual Framework for Objects
Exchange by Non-programmers

There are requirements on a few conditions to allow
the envisioned conceptual exchange by non-
programmers:

 Ontological Super-type – in the relevant
ontological hierarchy, the ontological super-type
should be internally recognized by the software
system; for instance, if one is dealing with
“jumping”, “flying” or “running”, which are
kinds of motion, either a “motion” super-type or
an even higher “player” super-type should be
present in the software game;

 User-interface – existence of some available
GUI (Graphical User Interface – such as
“buttons” or “menus”) to receive the activity
commands and communicate them to the internal
functions within the conceptual objects.

3 THE SOFTWARE GAMES
CONTEXT

The software games context is used in this work just
to convey a feasibility proof for the more general
claim of “conceptual objects exchange” by non-
programmers. This context is convenient, since it is
easily understood due to its concrete visualization of
the demonstration.

Within the software games context we focus for
simplicity on 2-D Platform games. This should
minimize development efforts on inessential issues,
enabling one to concentrate on the essentials of
conceptual objects exchange.

3.1 2-D Platform Games

2-D platform games (Reyno, 2008) are characterized
by a guided avatar which moves and jumps into
suspended platforms, while performing activities
such as overcoming obstacles and collecting prizes.
The player should guide his avatar through the
several stages of the game.

In this work we consider two kinds of concepts
involved in these games:
a. Avatar Appearance – this is seen by the graphic

representation of the avatar, e.g. a ball (smiley)
or a humanoid (astronaut);

b. Kind of Motion – e.g. smooth lateral motion,
jumping or flying.

3.2 Fast Programming by
Non-programmers

The idea of fast programming by non-programmers
is the existence of an infra-structure to exchange
whole concepts from a software system in a given
computer to another software system in a different
computer. Thus software systems are modified by
moving around conceptual objects. It is fast as it is
simple to do it. It is a sort of composition of up-to-
now unknown objects into a different existing
system.

4 SOFTWARE ARCHITECTURE

In this section we shortly describe the system
software architecture principles and the essential
UFOs exchangeable classes within the software
system architecture.

4.1 Software Architecture Principles

There were two main principles guiding the software
architecture:

1. Game Engine Separation – in order to avoid
detailed development of games, we decided to
base the development upon a ready-made game
engine providing the basic library of game
functions;

2. UFO Uniformity – all the exchangeable classes

SKY 2015 - 6th International Workshop on Software Knowledge

20

should inherit from the same basic class, and be
composable into a “super-type” referred above.

4.2 UFOs Software Architecture

The system software architecture is schematically
seen in Fig. 1. It has four modules:
1. Game Engine Class – from which all the active

classes of the games inherit (named Behavior
Class – see the implementation section 6 in this
paper for details) ;

2. Player Class – this is the referred super-type
which is composed of the exchangeable classes;

Figure 1: SYSTEM SOFTWARE ARCHITECTURE – It
has four main class types: 1. Game Engine Class (in light
blue background, named Behavior Class), from which all
active classes inherit; 2. Player Class (in yellow
background) is the “super-type” for exchangeable
uniformity among different games; 3. Player Motion
classes (the exchangeable UFOs: dark blue hatched
background) from which the Player Class is composed; 4.
Game Classes – are additional non-exchangeable classes
(not shown in this figure). In this scheme Game A has two
kinds of PlayerMotion (Class 1 and Class 2), while Game
B has just one PlayerMotion (Class 3).

3. PlayerMotion – the exchangeable motion classes
(the UFOs) existing in different games;

4. Game Classes – additional classes that are not
exchangeable; for instance the graphical
background of the games (not shown in the
scheme of Fig. 1)

One can see that this architecture obeys the above
guiding principles (in sub-section 4.1): it separates
the Behavior Class obtained from the Game Engine
from other classes; it displays a super-type – the
Player Class – composed of exchangeable classes.

The diagram in Fig. 1 clarifies the infra-structure
for conceptual object exchange. For instance, one
could send PlayerMotion Class 2 from Game A to

Game B, since both games have the same “super-
type” PlayerClass. This is analogous to extensible
design patterns such as Strategy (Gamma, 1995).

5 CASE STUDIES

The case studies in this section – two games with
different avatars and distinct player motions
developed with the special purpose to exchange
conceptual objects – illustrate what happens when
appearances and motion objects are exchanged.

The purpose of these case studies is to be a
feasibility proof of conceptual object transfer. They
are not intended to be either an extensive exploration
of the of the games’ space, or a detailed examination
of performance and network bandwidth issues.

A series of experiments was performed:
exchanging avatars with their original properties;
exchanging avatars keeping the properties of the
current game; adding motions to the original avatar.
Next we describe the simplest experiment.

5.1 The Jumping Smiley Game as a
Source

The Jumping Smiley game has a Smiley as an
avatar. The Smiley has two motions:
a. Left-Right motion – on top of a platform;
b. Jumping – continuous jumping up and down on

top of a platform;

The Left-Right motions are performed by means of
keyboard arrows. The Jumping motion is continuous
from the beginning of the game. Its GUI is seen in
Fig. 2. This game is the source of the conceptual
object to be sent to the target game.

Figure 2: JUMPING SMILEY GAME GUI – It displays
the Smiley above a platform and below another one, a
series of platforms, a menu button on top-right and a
restart button on top-left.

Conceptual Object Exchanges among Software Games by Non-programmers

21

5.2 The Space Adventure Game as a
Target

The Space Adventure game has an Astronaut as an
avatar. The astronaut has two kinds of motion:
a. Left-Right motion – on top of a platform;
b. Flight – to achieve another platform from the

present one.

The motions are performed by means of keyboard
arrows. Its GUI is seen in Fig. 3. This game in a
second computer is a target of the conceptual object
to be sent from the source game.

Figure 3: SPACE ADVENTURE GAME GUI – It
displays the astronaut above the middle platform, a left
platform with two square obstacles and a yellow “prize” in
between to be collected, an upper-right platform with
another prize on top of it, a menu button on top-right and a
restart button on top-left.

Figure 4: SPACE ADVENTURE GAME GUI WITH
JUMPING SMILEY – It displays the Smiley, instead of
the astronaut jumping above the middle platform, a left
platform with two square obstacles and a yellow “prize” to
be collected, a right platform with another prize on top of
it, a menu button on top-right and a restart button on top-
left.

After the Smiley is sent from the source game to
the target game, the GUI is as seen in Fig. 4.

The outcomes of the exchange of the astronaut
by the Smiley are:
a. The background has not changed: it is still the

outer Space;
b. The avatar appearance has changed;
c. The motions have changed: the avatar now is

able to perform Left-Right motions and jumping
motions.

6 UFOs SOFTWARE
IMPLEMENTATION

In this section we give details of the UFOs software
system implementation: programming using a game
engine, the tasks performed by the system modules
and characteristics of the main GUI.

6.1 Programming of 2-D Platform
Games

In order to avoid dealing with detailed problems of
Game development – which in this work are only
used for a feasibility proof – we used a ready-made
game engine and its libraries.

The game engine is Unity (Goldstone, 2011),
which has been applied to various devices in several
projects. Unity supports the programming languages
C# and JavaScript. The games were written in C#.

6.2 Implementation of the UFOs
Exchange Software System

The whole UFOs Exchange Software system
involves a series of modules performing the tasks
listed in the next text list:

TASKS in MODULES

a. Transparent Connection – Connect other game
by TCP/IP wireless network;

b. Choice of Classes to Transmit – select objects
(avatar appearance as a jpg file and motion types
as C# classes) in the source game;

c. Classes Packing – serialize (Carpenter, 1999)
and pack the chosen classes into an XML file to
be transmitted through the network;

d. Transmission – transmit the XML file;
e. Classes Unpacking – unpack the transmitted

classes using an XML parser;

SKY 2015 - 6th International Workshop on Software Knowledge

22

f. Chose Classes to Apply – in order to apply
classes in the new game, they must be compiled
at run time;

g. Compile the Chosen Classes – using the Mono
compiler (Mono, 2015) from the Xamarin
company; the compiler is installed in a Windows
operating system;

h. Add the Compiled feaTures to Avatar – in order
to be usable;

i. Final Choice of Game Features – using a
suitable menu (see sub-section 6.3);

j. Play the New Choice.

6.3 GUI for Exchangeable UFOs

We developed a series of friendly menus enabling
the choices referred above. In Fig. 5 one sees a menu
to choose the desired features.

The possible choices are:
a. Original Avatar – with its local properties in the

target game;
b. Newly Added Avatar – with the original

properties in the source game;
c. Newly Composed Avatar – with any combination

of local and original properties.

Figure 5: MENU IN SPACE ADVENTURE GAME
WITH ADDED JUMPING SMILEY – A player may
choose to play with: a- the original astronaut (the current
avatar, marked by a black V sign); b- the newly added
Smiley (which can be chosen by clicking it); c- any of the
two avatars as a newly composed character with any
desired combination of chosen motions.

7 DISCUSSION

This discussion is divided into a few different topics:
fundamental issues, some practical considerations,
applications and future work. It is concluded with a

short statement of the main contribution.

7.1 Fundamental Issues

There have been previous efforts whose purpose is
end-user development and program tailoring, as
referred to in the Related Work sub-section 1.1 in
this paper. The main differences between the current
work and preceding efforts are our focus on two
aspects:
a. Conceptual Objects – The internal modularity

(Exman, 2014a) of our software system
corresponds to the well grasped concepts of the
non-programmer end-user. This characteristic
keeps the software architectural neatness.

b. Interplay between Existing Programs – We are
using two or more programs to move the
conceptual objects among them. In our
demonstration case studies, we move avatars and
their properties from a source game to a target
game.

The next issue to be considered is conceptual
consistency. In the game’s world, probably
astronauts should fly and smileys should jump. But
there are no hard rules, at least for these cases. One
can easily think about inconsistencies in different
worlds, in need of ways to constraint them.

A deeper issue is the eventual and possibly
unpredictable relationships between different
software systems with different goals and strategies.
Keeping control of the different actors in such
systems is a significant problem, beyond the scope
of this work.

7.2 Practical Considerations

Among the practical considerations, we refer to
motion combinations. Any combined motions, such
as both jumping and flying, are added in a
“vectorial” way. In our experiments we observed
that one may add twice the same kind of motion.
Note that both the astronaut and the Smiley may
perform Left-Right motions (as seen in the menu in
Fig. 5). If one adds both motions of the same kind,
the actual outcome is performing twice the same
motion, which means moving a double distance.

In a more sophisticated system, one should add a
few specific functionalities:

 Internal limits – to regulate the number of times
one performs the same motion consecutively;

 Selected Property Transfer – to enable
communication efficiency, e.g. to avoid
transferring motions that one does not intend to

Conceptual Object Exchanges among Software Games by Non-programmers

23

apply; in other words separating properties from
a “character” (or avatar).

7.3 Applications

One should consider real applications with critical
demands. These may include robotic applications in
medical domains or in dangerous environments.

A possible example, of such a complex situation
in a medical domain, is the combination of motions
in a robotic system for remote surgery by a non-
programmer surgeon. In the middle of a surgical
operation, the surgeon could decide as needed to
send a different set of scalpel motions to a remote
system.

Another example, in a dangerous environment, is
to send robots to deal with radioactive materials in
case of disaster such as an earthquake. The robot
may send back to the human controllers photos of
unexpected obstacles, implying additional motions
to overcome the referred obstacles.

7.4 Future Work

A most interesting set of open problems is to extend
the infra-structure to other worlds, besides the very
limited 2-D platform games.

It is an open question, to be investigated in
depth, whether the software architecture principles
formulated in sub-section 4.1 are necessary and
sufficient to apply the approach to more
sophisticated worlds.

In particular we refer to the “super-type”
condition: is it enough for any kind of application?
Or on the contrary, it is too restrictive concerning
the system flexibility: what are the requirements in
order to allow combinations of two or more kinds of
applications?

In straightforward practical terms, the feasibility
proof of this work was done with computers running
Windows operating systems. It would be interesting
to extend these capabilities to diverse platforms, as a
demonstration of the robustness of the core infra-
structure.

7.5 Main Contribution

The main contribution of this work is the feasibility
proof that a non-programmer may modify and
indeed “program” anew existing software systems,
based upon well-understood conceptual objects.

REFERENCES

Aarseth, E., “Define Real, 2010. Moron! Some Remarks
on Game Ontologies”, in Gunzel, S., Liebe, M. and
Marsch, D., (eds.) DIGAREC Keynote-Lectures
2009/10, Potsdam University Press pp. 050-069. Web
site:
http://pub.ub.unipotsdam.de/volltexte/2011/4981/[urn:
nbn:de:kobv:517-opus-49810].

Booch, G., Rumbaugh, J. and Jacobson, I., 2005. The
Unified Modeling Language User Guide, Addison-
Wesley, Cambridge, MA, USA, 2nd ed.

Calleja, G., 2007. “Game Ontology”, Session 2 in the
“Computer Game Theory”. Web site:
http://www.gordoncalleja.com.

Carpenter, B., Fox, G., Ko, S. H. and Lim, S., 1999.
“Object Serialization for Marshalling Data in a Java
Interface to MPI”, Syracuse University, 18 pages. Web
site:http://www.newsubmit.pdfnpac.org/users/fox/doc
uments/JG99mpi/c427resubmit.pdf.

Chan, J. T. C. and Yuen, W. Y. F., 2008. “Digital Game
Ontology: Semantic Web Approach on Enhancing
Game Studies”, in Proc. 9th Int. Conf. on Computer-
Aided Industrial Design and Conceptual Design,
IEEE.

Costikyan, G., 2002. “I Have no Words & I Must Design:
Toward a Critical Vocabulary for Games”, in Proc. of
Computer Games and Digital Cultures Conf., F.
Mayra (ed.), Tampere University Press, pp. 9-33.

Exman, I. and Alfia, A., 2013. “Knowledge-Driven Game
Design by Non-Programmers”, in Proc. SKY’2013 Int.
Workshop on Software Knowledge, pp. 47-54,
ScitePress, Portugal.

Exman, I. 2014a. “Linear Software Models: Standard
Modularity Highlights Residual Coupling”, Int.
Journal of Software Engineering and Knowledge
Engineering, Vol. 24, pp. 183-210, DOI:
10.1142/S0218194014500089.

Exman, I. and Iskusnov, D., 2014b. “Apogee: Application
Ontology Generation from Domain Ontologies”, in
Proc. SKY’2014 Int. Workshop on Software
Knowledge, pp. 31-42, ScitePress, Portugal.

Exman, I., Llorens, J., Fraga, A. and Alvarez-Rodriguez,
J.M., 2015. “SKYWare: The unavoidable convergence
of Software towards Runnable Knowledge”, Accepted
for publication.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1995.
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Boston, MA,
USA.

Goldstone, W., 2011. Unity 3.x Game Development
Essentials, 2nd edition, Packt Publishing, Birmingham,
UK.

Gulwani, S., 2010. “Dimensions in Program Synthesis”, in
Proc. of PPDP’10 12th Int. ACM SIGPLAN Symp.
Principles and Practice of Declarative Programming,
pp. 13-24. DOI: 10.1145/1836089.1836091.

Lieberman, H., Paterno, F., Klann, M. and Wulf, V., 2006.
“End-User Development: An Emerging Paradigm”, in
Human-Computer Interaction Series, Vol. 9, pp. 1-8,

SKY 2015 - 6th International Workshop on Software Knowledge

24

Springer-Verlag, Berlin, Germany. DOI: 10.1007/1-
4020-5386-X_1

Mactavish, A., 2003. “Game Mod(ifying) Theory: The
Cultural Contradictions of Computer Game Modding”,
in Power Up: Computer Games, Ideology, and Play,
Bristol, UK.

Maloney, J., Peppler, K., Kafai, Y. B., Resnick, M. and
Rusk, N., 2008. “Programming by Choice: Urban
Youth Learning Programming with Scratch”, pp. , in
Proc. SIGCSE’08, 39th SIGCSE Technical
Symposium on Computer Science Education, pp. 367-
371.

Mono Compiler, 2015. Web site: http://www.mono-
project.com/docs/about-mono/languages/csharp.

Poremba, C., 2003. “Player as Author: Digital Games and
Agency”, Master Thesis, Dept. Computing Arts and
Design Sciences, Simon Fraser University.

Reyno, E. M. and Cubel, J. A. C., 2008. ”Model-Driven
Game Development: 2D Platform Game Prototyping”,
Polytechnic University of Valencia, 3 pages.

Sotamaa, O., 2005. “Have Fun Working with our Product!
Critical Perspectives on Computer Game Mod
Competitions”, Proc. DiGRA 2005 Conference:
Changing Views – Worlds in Play, Vol., pp. 1-13.

Zagal, J. P., Mateas, M., Fernandez-Vara, C., Hochhalter,
B. and Lichti, N., 2005. “Towards an Ontological
Language for Game Analysis”, in Proc. DiGRA 2005
Conference: Changing Views – Worlds in Play, Vol.
3, pp. 1-13.

Zagal, J. P. and Bruckman, A., 2008. “The game ontology
project: supporting learning while contributing
authentically to game studies”, in Proc. ICLS’08 8th
Int. Conf. for the Learning Sciences, pp. 499-506.

Conceptual Object Exchanges among Software Games by Non-programmers

25

