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Abstract: This paper studies two parallelization techniques for the implementation of a SPSO algorithm applied to 
optimize electromagnetic field devices, GPGPU and Pthreads for multiprocessor architectures. The GPGPU 
and Pthreads implementations are compared in terms of solution quality and speed up. The electromagnetic 
optimization problems chosen for testing the efficiency of the parallelization techniques are the TEAM22 
benchmark problem and Loney’s solenoid problem. As we will show, there is no single best parallel 
implementation strategy since the performances depend on the optimization function. 

1 INTRODUCTION 

Electromagnetic optimizations are problems in 
which the objective function has a high degree of 
complexity, because the electromagnetic field 
equations are solved for its evaluation. This function 
is usually a multidimensional one, with multiple 
local minimum, difficult constraints to be observed, 
defined on a large search space. That is why the 
evaluation of such an objective function is often 
very computational intensive, needing a large 
number of instructions, with high branching level, 
sometimes using recursive calls (Takagi and 
Fukutomi, 2001) (Duca et al., 2014) . Moreover, the 
evaluation is often poorly conditioned and therefore 
it is noise sensitive (Takagi and Fukutomi, 2001). 

Since deterministic methods such as the steepest 
descent method, or conjugate gradient method can 
not be applied because of many local minimum of 
the objective function, in recent decades heuristics 
based on tabu search, simulated annealing, genetic 
algorithms, particle swarm optimization, etc, were 
imposed as standard techniques for solving 
electromagnetic optimization problems (Duca et al., 
2014) (Li et al, 2004). The main advantages of these 
stochastic methods are robustness and their ability to 
find the global minimum of the objective functions 
without knowing their derivatives. The main 
disadvantage of these methods, important for real 
life problems for which the objective function 

evaluation cost is high, is the significant number of 
objective function evaluations. 

To reduce the solving time the following 
solutions are used: reducing the number of 
evaluations of the objective function by improving 
the stochastic optimization method (Ciuprina et al., 
2002) (Ioan et al., 1999), implementation of parallel 
/ distributed architectures for the optimization 
algorithm (Duca and Tomescu, 2006), decrease the 
evaluation time for the objective function using 
more efficient problem specific methods (Chen et 
al., 2006). 

The purpose of this paper is to investigate and 
compare two parallelization techniques, namely 
GPGPU (General Purpose Computation on Graphics 
Processing Units) and Pthreads (POSIX threads), for 
reducing the solving time of some electromagnetic 
optimization problems. To solve the electromagnetic 
problems a parallel SPSO (Standard Particle Swarm 
Optimization) algorithm is used. The parallel 
implementations, one based on CUDA (Compute 
Unified Device Architecture) language and one 
based on Pthreads, first running on a GPU (Graphics 
Processing Unit) while second running on a 
multiprocessor architecture, are compared using as 
criteria the solution fitness and the speed up for 
different SPSO (Standard Particle Swarm 
Optimization) swarm sizes. For testing and 
comparing the parallelization techniques of the 
SPSO algorithm the TEAM22 benchmark problem 
(TEAM22, 2015) and Loney’s solenoid problem (Di 
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Barba and Savini, 1995) were chosen as 
optimization problems.  

2 SPSO ALGORITHM 

Initially proposed by Kennedy and Eberhart 
(Kennedy and Eberhart, 1995), PSO (Particle Swarm 
Optimization) is an iterative optimization algorithm 
which has the roots in biology and is inspired from 
the social behavior inside a bird flock or a fish 
school. Each particle in the swarm is described by 
position and velocity. The position encapsulates the 
potential solution of the optimization problem (its 
coordinates in the searching space) while the 
velocity describes the way the position is modified. 

At iteration (time) t + 1 the position xi  and the 
velocity vi of each particle i in the swarm are 
computed as follows: 
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where xPB, xGB are the best personal position and the 
best position in the group (swarm), wv, wPB, wGB  are 
the weights for velocity, “cognitive” term and 
“social” term, and r1, r2 two random numbers 
distributed uniformly in the interval [0, 1). So the 
time step is considered 1 and the velocity vector is 
computed as a weighted average, assuring a random 
but enough smooth movement of particles, attracted 
to the best known position. 

The main issues of the original PSO are the high 
probability of being trapped in local minima and the 
large number of objective function evaluations 
needed to find the global solution. During time, for 
improving the performance of the PSO different 
approaches were proposed. Some of the most 
efficient PSO based algorithms available today are 
IPSO (Intelligent PSO) (Ciuprina et al., 2002), 
SPSO (Standard PSO) (Bratton and Kennedy, 2007), 
QPSO (Quantum-behaved PSO) (Sun et al., 2011) 
and DPSO (Discrete PSO) (Pan et al., 2008). 

Currently at its third version (Clerc, 2012), SPSO 
modifies the classical algorithm in terms of 
initialization, velocity / position update equations, 
neighborhood and confinement. In the case of SPSO, 
the particles of the swarm are connected, each 

connection representing a link between two different 
particles. A connection has an informed and an 
informing particle, the first particle knowing the 
personal best and the position of the second particle. 
Thus, each informed particle has a set of informing 
particles called neighborhood. SPSO uses a random 
topology which changes the connections graph at 
each unsuccessful iteration (when the global best 
solution is not improved). 

The initializations for position and velocity are 
made to avoid leaving the search area, especially 
when the optimization variables number is high. The 
position coordinates are generated randomly for 
each direction (d) using a uniform distribution, while 
the velocity coordinates are generated taken into 
consideration the generated position coordinates: 
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The velocity formula introduces a new term, the 
center of gravity, for obtaining “exploration” and 
“exploitation”. The center of gravity depends on 
three terms: the current position, a term relative to 
the previous best xPB,i, and a term relative to the 
previous best in the neighborhood xLB,i. Thus, the 
update equations for velocity and positions are 
changed comparing with the original PSO algorithm, 
as follows: 
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where x'i is a random point inside a hypersphere of 
radius ||Gi – xi|| and center Gi, with Gi being the 
center of gravity for the particle i: 
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or if the particle i is the best particle in its 
neighborhood (has the best fitness value): 
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Another feature of the SPSO algorithm is the 
confinement. If during the iterative process a particle 
moves outside the search space on some coordinate 
d, its velocity and position are modified as follows: 
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The main disadvantage of stochastic methods is 
the large number of objective function evaluations, 
especially in real problems when the objective 
function evaluation cost is significant. In this case, 
the solving time for the sequential implementations 
is significat, the need for a parallel optimization 
algorithm being obvious.  

3 SPSO PARALLELIZATION – 
GPGPU APPROACH 

Due to market demand for high-definition 3D 
graphics, and realtime processing, the GPU evolved 
into a parallel, multithreaded, and manycore 
processor with high computational power and 
memory bandwidth (Nvidia CUDA, 2015). If a CPU 
focuses on flow control and data caching, a GPU is 
designed for parallel computational applications, 
like graphics rendering, and is suitable for problems 
where the same program is run in parallel on many 
and different sets of data. In order to use the GPU 
for general purpose computation and to solve 
complex computational problems from different and 
various domains (not only graphics rendering) 
several programming models such as CUDA and 
OpenCL have been created. 

3.1 Existing Approaches 

The idea of using implementations based on GPGPU 
for PSO is not new. In (Zhou, Tan, 2009) GPGPU 
implementation of SPSO 2007 showed acceleration 
up to 11 times compared with traditional CPU 
implementations. 

In (Mussi, Cagnoni, 2009) the authors focus on 
the data representation in memory (especially on the 
best global position / local) such that reading / 
writing operations to be carried out effectively. The 
obtained acceleration was up to 100 times 
comparing to the sequential CPU implementation, 
for a problem with 100 variables and PSO 
algorithms with 3 sub-swarms. 

In (Mussi et al., 2009) and (Bastos-Filho et al., 
2010) the authors study the results quality of the 
GPGPU implementations depending on where the 
random numbers are generated (CPU or GPU). Both 
studies suggest ways of generating random numbers 
on the GPU, the results having a good quality. 

In (Solomon et al., 2011) the authors study the 
parallelization of a multi-swarm PSO algorithm to 
solve combinatorial problems such as the allocation 
of tasks. Again, it was observed that the GPGPU 

implementation led to an acceleration of 37 times 
compared with the sequential version of the 
algorithm, especially for large problems. 

In (Hung and Wang, 2011) a multi-objective 
PSO version which uses one subswarm for each 
objective is parallelized. The GPGPU 
implementation performed 3 to 7 times faster than 
CPU implementation. 

Other GPGPU implementations of the PSO 
based algorithms are proposed in (Castro-Liera et 
al., 2011) and (Mussi et al., 2011). 

Most of the proposed solutions are tested (like 
many others) on functions with simple analytical 
expressions (with many local minimum but not 
computational intensive), and focus on the influence 
over the performance of: the data transfer between 
the host and the device (GPU), the manner and the 
place of generating random values, the type of 
implementation synchronous / asynchronous, etc. 
Unfortunately the solutions do not address specific 
aspects of the objective function implementation 
such as the level of branching or the code 
complexity. 

3.2 Proposed CUDA Implementation 

To implement the parallel version of the SPSO 
algorithm the CUDA-C language was chosen. 
Introduced by Nvidia, CUDA (Nvidia CUDA, 2015) 
is a programming model a parallel computing 
platform. The CUDA developer kit allows software 
developers to create general purpose parallel 
applications with languages such as Java, C++, C 
Fortran and others. 

Because of the hardware variety of the GPUs, 
which can have a different stream multiprocessors 
number, CUDA was built as a scalable software 
programming model. Thus, a CUDA software 
program can be executed (compiled) on any GPU 
device independent of the multiprocessors number. 

The CUDA programming model has as its core 
the following three key concepts: a memory model, 
synchronization mechanisms and a hierarchy of 
thread blocks. These concepts help the developer to 
split the task into smaller tasks which can be solved 
separately by different blocks of threads. For solving 
a task, the threads inside a CUDA program can work 
independently or can cooperate.  

In order to solve a problem the threads can use 
barrier mechanisms to synchronize their execution. 
These barrier mechanisms can only be used to 
synchronize threads from the same block, and can 
not synchronize blocks. To synchronize blocks the 
software developer must split the program into 
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smaller sections and implement those with different 
functions (kernels). 

For implementing the SPSO parallel algorithm 
with CUDA there are the following two possible 
options: an implementation for configurations with 
all threads in a single block (one thread block), or an 
implementation for cases with multiple thread 
blocks. In both implementations each thread 
simulates a particle’s behavior and calls functions as 
evaluation, movement, personal/local best 
calculation, etc. 

In first case, the SPSO parallel implementation is 
done using one kernel. The synchronization between 
particles (threads), necessary at certain steps, is 
obtained using __syncthreads function (a barrier 
mechanism for synchronization). This strategy has 
as main advantage the avoidance of kernels 
relaunch. The disadvantages of this implementation 
are: the maximum number of particles is 1024 (a 
block may have at most 1024 threads), multiple 
warps of threads (if the particles number exceeds the 
warp size – 32), and threads branching possibility 
(depending on the objective function). 

For the second implementation, because the 
barrier mechanism can not be used to synchronize 
threads from different blocks, the particles 
synchronization is realized by implementing each 
function of a particle as a kernel. The main 
disadvantage of this strategy is the delay because of 
the kernels relaunch at each SPSO iteration. 
Comparing with first implementation, the main 
advantages are: the possibility to execute all threads 
in parallel at the same time (for configurations with 
one warp, maximum 32 threads in one block), and 
the maximum particles number is not limited to 
1024. 

The parallel SPSO algorithm was implemented 
using the strategy with multiple kernels (Duca et al., 
2014), and has the following main loop: 
for(int i=0; i<SPSO_ITERATIONS; i++) { 

moveParticles<<B,TpB>> (particles, 
  particleGB,varsMin,varsMax); 
evaluate<<B,TpB>>(particles); 
findGlobalBest<<B,TpB>>(particles, 
  particleGB, improvedGB); 
generateTopology<<B,TpB>>(particles, 
  improvedGB); 
findLocalBest<<B,TpB>>(particles); 

} 
where B is the bocks number and TpB is the threads 
number per block. The initialization, evaluation, , 
topology generation, personal / local and global best 
calculation are performed before the main loop. 

The kernels variables are global variables and 

they are stored on the device (GPU). The varMin, 
varMax arrays contain the domain limits (minimum 
and maximum values) for each search space 
coordinate. The variable improvedGB has a boolean 
type and is used to decide if the swarm topology will 
be changed (if the global best value is not improved 
at a certain iteration the generateTopology kernel 
is called). The swarm particles are stored in the 
particles variable, which is an array of type 
Particle: 
typedef struct { 

double coords[PROBLEM_SIZE]; 

double fitnessValue; 

double velocity[PROBLEM_SIZE]; 

double gravityCenter[PROBLEM_SIZE]; 

int indexLB; 

int neighbours[PARTICLES_NUMBER];  

} Particle; 
The moveParticles function computes the 

new particles positions, while the evaluate 
function computes the fitness value, updates the 
personal best (position and fitness value) for each 
particle. The functions called inside evaluate 
(paramsCorrection, objectiveFunction, 
findPersonalBest) are device functions which 
have the __device specifier. Each of these device 
functions is executed in parallel (just like 
evaluate) for all the swarm particles. The first 
function checks the coordinates restrictions 
(imposed by the problem) and, if is needed, changes 
the particle’s coordinates to meet the constraints. 
The second function, the optimization  problem 
(TEAM22 or Loney’s solenoid), has a sequential 
implementation and computes the fitness value for a 
particle. 
__global__ void evaluate(Particle  

  *particles) { 

 int tid = blockIdx.x * blockDim.x + 

  + threadIdx.x; 

 

 paramsCorrection(&particles[tid]); 

particles[tid].fitnessValue =  

 objectiveFunction(particles[tid]); 

 findPersonalBest(particles); 

} 
The findGlobalBest updates the best particle 

of the swarm, and the improvedGB variable (to true 
or false if the fitness value for the best particle was 
or was not improved at the current step). The 
generateTopology creates a new topology (new 
connections between the swarm particles) if the 
global best value was not improved at the current 
step. Based on the new topology, the 
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findLocalBest calculates the index of the local 
best for the neighborhood of each particle. The 
indexLB data field is then used to establish whether 
the particle is the best particle in its neighborhood, 
in order to choose the formula for determining the 
new particle’s coordinates. 
__global__ void findLocalBest( 
  Particle *particles){ 
 int tid = blockIdx.x * blockDim.x + 
  + threadIdx.x; 
 
 particles[tid].indexLB = tid; 
 for(int i=0;i<PARTICLES_NUMBER;i++) { 
  if( 
   particles[tid].neighbours[i] == 1 
  ) { 
   if( 
    particles[i].fitnessValuePB 
    <  
    particles[ 
     particles[tid].indexLB 
    ].fitnessValuePB 
   ) { 
    particles[tid].indexLB = i; 
   } 
  } 
 } 
} 

The implementation of the SPSO parallel version 
using the single kernel strategy is similar; the kernel 
functions have to be changed to device functions (by 
simply replacing the __global with the __device 
specifier), while the main program loop has to be 
coded as a kernel function, kernel\ which will be run 
from the main program. The working threads have to 
be explicitly synchronized after some calls of the 
device functions using the __syncthreads library 
function. 

4 SPSO PARALLELIZATION – 
PTHREADS APPROACH 

In shared memory multiprocessor architectures, 
threads can be used to implement parallelism. 
POSIX Threads (POSIX Threads, 2015), usually 
referred as Pthreads, is a POSIX (Portable Operating 
System Interface) standard for threads (POSIX 
Threads standard, 2008) which defines an API 
implemented on many Unix like operating systems 
as Linux, Solaris, FreeBSD and  MacOS. 

In such operating systems, a process requires a 
significant amount of overhead, containing 
information about program resources and program 

execution state: process ID, user ID, environment, 
program instructions, registers, stack, heap, file 
descriptors, signal actions, shared libraries, inter-
process communication tools (message queues, 
pipes, semaphores and shared memory), etc. 

Unlike a process, a thread is an independent 
stream of instructions that can be scheduled to run 
by the operating system. In a Unix environment, a 
thread exists within a process, uses the process 
resources, and has its own independent flow of 
control. A thread duplicates only the essential 
resources needed to be independently schedulable: 
stack pointer, registers, scheduling properties (policy 
and priority), and set of pending and blocked 
signals. Because most of the overhead has already 
been accomplished through the creation of its 
process, a thread is lightweight when compared to 
the cost of creating and managing a process, and can 
be created with much less operating system 
overhead. Therefore managing threads requires 
fewer system resources than managing processes. 

When running in shared-memory model, each 
thread has access to its on private data but also has 
access to the global (shared) memory. Because the 
threads belonging to a process share their resources, 
changes of global resources made by one thread will 
be seen by all threads. This is why the read / write 
operations to the same memory location require 
explicit synchronization, synchronization which can 
be implemented using mechanisms as barriers and 
mutexes. 

Comparing to other parallelization options for 
multi-processor architecture with shared memory, 
like MPI or OpenMP, Pthreads was created to 
achieve optimum performance (POSIX Threads 
tutorial, 2015). While MPI (MPI, 2015) and 
OpenMP (OpenMP, 2015) are simpler parallelize-
tion options (easier to use) requiring a smaller 
amount of work, Pthreads provides more flexibility 
and it offers more control over the parallelization. 

4.1 Existing Approaches 

Just as in the CUDA case, there is a significant 
number of PSO parallel implementations based on 
the shared memory multiprocessor architectures. 
While the optimization algorithms are used to solve 
a variety of applications most of the programs are 
based on MPI and OpenMP because of the 
implementation simplicity (Wang et al., 2008) 
(Zhao-Hua et al., 2014) (Han et al., 2013). 

In (Tanji et al., 2011) the authors use a PSO 
OpenMP implementation to design a class E 
amplifier. The speed up obtained by parallelization 
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is up to 5 times. In (Thomas et al., 2013)  a MPI 
implementation is used for solving the optimum 
capacity allocation of distributed generation units 
and an 3 times acceleration is obtained comparing to 
the serial implementation. 

In (Roberge et al., 2013) the authors make a 
comparison between a PSO CUDA implementation 
and a PSO MPI implementation used to solve an 
optimization problem from the area of power 
electronics. Both implementations are faster than the 
sequential PSO, the GPGPU CUDA implementation 
being 32 times faster than the multiprocessor MPI 
implementation. 

In our opinion there is no single best parallel 
implementation strategy for the PSO based 
algorithms. As we will see from our simulations 
results, the performances depend on many factors as 
PSO parameters and especially the objective 
function to be optimized and its implementation 
features (like the code complexity and the level of 
branching). 

4.2 Proposed Pthreads Implementation 

Just as in the CUDA implementation, in the Pthreads 
case we implemented the behavior of each particle 
in the swarm using a dedicated thread. The threads 
management is done explicitly. The threads are 
created and launched using pthread_create 
library function. The function receives as parameters 
a reference to the thread,  thread attributes (NULL 
means defaults are applied), the function to be 
executed by the thread, and the thread ID: 
pthread_t threads[PARTICLES_NUMBER]; 

int tid[PARTICLES_NUMBER]; 

... 

for(int i = 0;i<PARTICLES_NUMBER;i++) { 

tid[i] = i; 

pthread_create(&threads[i], NULL, 

 &jobForOneThread, &tid[i])); 

} 
After creation, each thread executes the code 

corresponding to the function jobForOneThread. 
The function contains the SPSO main loop  and 
performs the basic operations: particle movement 
and evaluation, personal/global best calculation, 
reset/generate new topology, and local best 
calculation: 
void* job_for_one_thread(void *params){ 
 int tid = *((int*)params); 
 ... 
 for(i=0;i<SPSO_ITERATIONS;i++) { 
  moveParticle(tid); 
  evaluateParticle(tid); barrier(); 
  findGlobalBest(tid); barrier(); 

  generateTopology(tid); barrier(); 
  findLocalBest(tid); barrier(); 
 } 
 ... 
} 

The variable passed to the SPSO basic functions 
is only the thread ID. The code of these functions is 
the same as in the CUDA implementation. The 
variables varMin, varMax, improvedGB, particles 
(which were passed as function parameters in the 
CUDA implementation and were stored in the GPU 
device memory) are now global variables stored in 
the host computer memory, all threads having access 
to them. 

The particles synchronization (necessary after 
each operation) is achieved using a barrier 
mechanism based on the pthread_barrier_wait 
library function: 
pthread_t void barrier() { 

 int rc = pthread_barrier_wait(&barr); 

 if(rc != 0 &&  

  rc != PTHREAD_BARRIER_SERIAL_THREAD 

 ) { 

  printf("Can not wait on barrier!"); 

  exit(-1); 

 } 

} 
The barr parameter is a variable of type 

pthread_barrier_t which contains several data 
members as the current number of threads reaching 
the barrier, the size of the barrier (the necessary 
number of threads to unlock the barrier), a mutex 
(for exclusive access to data members), etc.  The 
variable is defined and initialized before the thread 
creation and execution using the 
pthread_barrier_init function: 
// Barrier initialization -- before the 

// thread creation loop 
pthread_barrier_t barr; 
if( 
 pthread_barrier_init( 
  &barr, NULL, PARTICLES_NUMBER) 
) { 

printf("Can not init barrier!");  
exit(1); 

} 

5 ELECTROMAGNETIC 
PROBLEMS 

The parallel implementations were tested on two 
benchmark problems defined by the computational 
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electromagnetics community. 

5.1 The TEAM22 Benchmark Problem 

Two coaxial coils carry current with opposite 
directions (Figure 1), operate under superconducting 
conditions and offer the opportunity to store a 
significant amount of energy in their magnetic 
fields, while keeping within certain limits the stray 
field (Ioan et al., 1999).  

 
Figure 1: TEAM22 problem configuration. 

An optimal design of the device should therefore 
couple the value of the energy E to be stored by the 
system with a minimum stray field Bstray. The two 
objectives are combined into one objective function: 
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where Eref = 180 MJ, and Bnorm = 3 μT. 
The objective function has as parameters, the 

radii (R1, R2) , the heights (h1, h2) , the thicknesses 
(d1, d2) and the current densities (J1, J2). Besides 
domain restrictions, the problem must take into 
account the following conditions: the solenoids do 

not overlap each other ( 22 2211 dRdR  ), and 
the superconducting material should not violate the 
quench condition that links together the value of the 
current density and the maximum value of magnetic 

flux density (
2mmA)0.54||4.6(||  BJ ). It 

is a constrain imposed to the current densities. 

The evaluation method of the objective function 
is based on the Biot-Savart-Laplace formula in 
which the elliptic integrals are computed by using 
the King algorithm and numerical integration. 
Moreover, the optimization problem is reformulated 
as a one with six parameters, since for a given 
geometry and a stored energy, the values of the 
current densities can be computed by deterministic 
quadratic optimization as in (TEAM22, 2015). 

5.2 Loney’s Solenoid Problem 

The Loney's solenoid benchmark problem, 
formulated in (Di Barba et al., 1995) consists of a 
main coil (Figure 2), with given dimensions (r1 = 11 
mm, r2 = 29 mm, h = 120 mm ) and two identical 
correction coils, having fixed radii (r3 = 30 mm, r4 = 
36 mm). A constant current flows through the coils 
such that they current density is the same. The aim is 
to produce a constant magnetic flux density in the 
middle of the main coil. The parameters to be 
optimized are the length of the correction coils (s) 
and the axial distance between them (l).  

 
Figure 2: Loney’s solenoid problem configuration. 

The objective function is of minmax type, i.e. 
minimize the maximum difference between the 
values of the magnetic flux density along a straight 
segment in the middle of the main solenoid, i.e. 
minimize (Bmax - Bmin)/B0, where B0 is the magnetic 
field density in the middle of the main coil (r=0, 
z=0). The maximum and minimum values are sought 
along the segment [-z0,z0], where z0 = 2.5 mm. Tests 
done by the authors of this benchmark revealed that 
the problem is non convex and ill conditioned (Di 
Barba and Savini, 1995). The electromagnetic field 
problem is easily solved, in a magnetostatic regime, 
by discretizing the coils in elementary coils without 
thickness and by applying well known analytical 

main coil correcting coils 

-z0 z0 

r1 r2 r3 r4 

s l s 

h 
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formulas for the field along the solenoid axis.  

6 RESULTS 

To solve the electromagnetic optimization problems 
two parallel SPSO implementations have been used, 
a multiple kernel CUDA implementation and a 
Pthreads implementation. In both implementations 
one thread is mapped to one particle of the swarm.  

The objective functions for the TEAM 22 and 
Loney’s solenoid have sequential implementations 
and they were written in C. For a given set of 
parameters, the evaluation of one objective function 
in case of TEAM22 problem consists in executing 
tens of thousands of lines of code with a very high 
level of branching, while in the case of Loney’s 
solenoid one evaluation consists of hundreds lines of 
code with a lower level of branching. 

The CUDA SPSO code was tested on a NVIDIA 
M2070 GPU with 448 cores, compute capability 2.0 
and 1.13 GHz core processors. The Pthreads SPSO 
code was tested on a multiprocessor hardware 
architecture with two Intel Xeon X5650 CPUs (2.67 
GHz),  each processor with 6 cores and each core 
being able to run in  parallel 2 independent threads. 
In total only 12 threads can run in parallel at a time 
on the multiprocessor architecture, significantly 
smaller than in the GPU case. 

Tables 1 and 2 present the average execution 
time for 30 independent runs (tests) for different 
swarm sizes of the SPSO algorithm. For each run 
(test) the stop criteria was the maximum iterations 
number corresponding to 2560 evaluations of the 
objective function. 

Table 1: Average execution times for TEAM 22 problem. 

Swarm 
size 

Algorithm 
GPGPU – SPSO Pthreads – SPSO 

32 327 s 19 s 
64 198 s 17 s 
128 144 s 15 s 

 

For the TEAM 22 optimization problem the Pthreads 
implementation is faster than the CUDA 
implementation for each swarm size. The speed up 
obtained for Pthreads with respect to GPGPU 
implementation is from 9 times, in the case of 128 
particles, to 17 times, in the case of  32 particles.  

Even if in the CUDA case the number of threads 
running in parallel in the same time is higher than in 
the Pthreads case, the Pthreads implementation is 
faster because of the complexity of the TEAM22 
objective function implementation (high level of 

branching and large number of instructions). The 
main explanation is that the GPU cores have lower 
clock rates, no branch prediction and no speculative 
execution comparing with the multiprocessor cores. 

Table 2: Average execution times for Loney’s solenoid 
problem. 

Swarm 
size 

Algorithm 
GPGPU – SPSO Pthreads – SPSO 

32 17 ms 71 ms 
64 11 ms 79 ms 
128 7.5 ms 82 ms 

 

For the Loney’s solenoid problem the situation is 
reversed, the CUDA implementation being the 
fastest. The speedup for GPGPU with respect to 
Pthreads implementation is from 4 times, when the 
swarm has 32 particles, to 10 times,  when the 
number of particles is 128. The explanation once 
again is related to the objective function 
implementation, which in this case has a much lower 
number of instructions and a lower branching level 
comparing with the TEAM22 case. The advantages 
of the multiprocessor architecture (the higher clock 
rates, the bigger cache level, the branch prediction, 
the speculative execution, etc) can not compensate 
the disadvantage of the larger number of threads 
running in parallel on the GPU architecture. 

In terms of solution fitness (tables 3 and 4) the 
results obtained with the parallel Pthreads 
implementation are slightly better than those 
obtained with the CUDA code, for both 
electromagnetic optimization problems. For both 
implementations the random numbers necessary for 
the SPSO algorithm are generated at each step,  on 
host in the case of Pthreads and on device/GPU in 
the case of CUDA.  

For the Loney’s solenoid problem the best 
performances are offered when the size of the swarm  

Table 3: Objective function and standard deviation values 
(× E–3) for TEAM 22. 

 
Algorithm 

GPGPU – SPSO Pthreads – SPSO 
Swarm 

size 
32 64 128 32 64 128 

Min - 
best  

3.15 3.53 3.37 3.06 3.34 3.75 

Max – 
best 

17.40 11.30 9.11 8.46 8.09 12.24

Mean - 
best 

6.49 5.83 6.37 5.21 5.22 6.89 

Standard 
deviation

3.89 2.16 1.74 1.47 1.23 1.93 
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is small (32 particles), for both implementations. For 
TEAM 22 benchmark problem the optimum swarm 
size is between 32 and 64 when Pthreads 
implementation is used, while for the CUDA 
implementation it does not seem to be an optimal 
size (32 offers best solution, 64 best mean, 128 best 
standard deviation). 

Table 4: Objective function and standard deviation values 
(× E–3) for Loney’s solenoid. 

 
Algorithm 

GPGPU – SPSO Pthreads – SPSO 
Swarm 

size 
32 64 128 32 64 128 

Min - 
best  

1.31 1.51 1.49 1.25 1.31 1.34

Max – 
best 

1.61 2.07 6.61 1.59 2.44 18.63

Mean - 
best 

1.52 1.66 3.32 1.51 1.67 3.84

Standard 
deviation 0.06 0.15 1.56 0.07 0.19 3.29

7 CONCLUSIONS 

The current paper studied two parallelization 
techniques, GPGPU and Pthreads, to speed up the 
SPSO algorithm when solving electromagnetic 
optimization problems. In order to find the best 
approach, the parallel SPSO implementations were 
tested on two electromagnetic problems the 
TEAM22 benchmark problem and Loney’s solenoid 
problem.  

In the case of TEAM 22 benchmark problem the 
fastest solution was the Pthreads implementation 
running on a multiprocessor architecture, which 
outperformed a CUDA implementation up to 17 
times. For the Loney’s solenoid problem the fastest 
approach was the CUDA implementation running on 
a GPU which proved to be up to 10 times faster.  

In terms of solution fitness the most efficient 
implementation was the one based on Pthreads, but 
the difference compared with CUDA is not 
significant. A priori generation of the random 
numbers on host, followed by a transfer to the GPU 
device, could further improve the solution quality 
for CUDA implementation. In most of the cases, the 
best solutions were achieved for a small SPSO 
swarm size. 

As we have seen, there is not a single most 
efficient parallelization approach and the results are 
highly dependent of the problem to be solved, the 
objective function and its implementation features. 

While in the case of complex problems like TEAM 
22, with a large number of instructions and very 
high level of branching, the best approach is based 
on Pthreads, for problems with a lower level of 
branching and small number of instructions, like 
Loney’s solenoid,  the most efficient approach is 
GPGPU. 
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