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Abstract: Achieving an understanding of how qualities of experience arise in concert with the operation of neural 
networks could produce a revolutionary advance in neurotechnology. The work reported here explores a 
relationship between a visual quality and neural activity that has not previously been investigated: visual 
object unity may emerge from and constrain neural interactions. Simulations were employed to determine if 
a topological signature of a unified object develops as a recurrent neural network’s activity is modulated by 
retinal input. Results show that differences in recurrent excitatory conductance values produced by adjacent 
active neurons are negligibly small, and can be described by a tolerance relation. Tolerance open balls about 
the vectors of conductance values produced by active neurons emerge in response to the retinal image of an 
object and a connected open set consisting of intersecting open balls quickly develops. Such connected open 
sets are invariant over fluctuations in participating neurons, demonstrate several characteristics of perception, 
and are hypothesized to be objective signatures of perceived object unity. Dynamical network phenomena, 
such as hysteresis, lead to empirical predictions that can be tested with human participants. Means of 
identifying objective signatures in brain activity are considered. 

1 INTRODUCTION 

The domain of neurotechnology is limited by the 
absence of an explanation for how the qualities of 
experience arise in concert with the operation of 
neural networks in the brain, often referred to as the 
‘hard problem’ (Chalmers, 1996; Hut and Shepard, 
1996). As a result of this limitation, we are unable to 
construct a cortical prosthesis that when interfaced 
with damaged visual cortex would make it possible 
for a patient to regain aspects of visual experience that 
have been lost through cortical lesions. 

There is no doubt that significant progress has 
been made in identifying objective signatures of 
conscious access, the ability to report an experience 
following presentation of a stimulus (Dehaene, 2014). 
However, this achievement provides no information 
regarding the neural mechanisms involved in the 
appearance of a particular quality of experience 
(Block, 2001; 2007). Nor does it provide any 
information on how the processes that underlie any 
specific quality of experience are involved in neural 
dynamics. Without such information, it is difficult to 
take seriously the claim that “there is now sufficient 
evidence to consider the design and construction of a 

conscious artifact (Edelman et al., 2011).” 
It seems unlikely that a general solution to the 

hard problem will be found in the absence of work 
that relates specific aspects of experience to specific 
aspects of neural activity.  In order for experimental 
and theoretical progress to be made, it is essential that 
an aspect of experience can be described so that its 
relation to neural activity is evident. This report puts 
forward the appearance of visual object unity (Chen, 
2005), modelled as a connected open set in a 
tolerance space (Peters and Wasilewski, 2012), as 
such an aspect of experience. 

From a naïve viewpoint, it is easy to overlook the 
fact that the experience of a unified entity, one aspect 
of the full experience of a visual object, is an 
achievement of the visual system. Of course, this is 
obvious to those who believe that vision proceeds 
from part to whole and from geometrically simple to 
geometrically complex. From this perspective, it is 
assumed that receptive field data show that an object 
image is initially decomposed into patches of 
contrast, and that processes in successively higher 
cortical areas in some way bind successively more 
complex geometric features into the visual object that 
is experienced (e.g., Roelfsema and Houtkamp, 
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2011). The topological approach to perceptual 
organization that is advanced by Chen (2005; see also 
Zhang, 2005) is in agreement with the conclusion that 
visual object unity is an achievement of the visual 
system. According to this approach, however, visual 
unity is a topological visual primitive and is extracted 
from the object image very early in visual processing. 

Despite the volume of excellent experimental 
work carried out by Chen and his colleagues in 
support of the topological approach, the means by 
which visual neural networks deal with topological 
properties has remained a mystery (Minsky and 
Papert, 1988; Pomerantz, 2003). As indicated by 
Chen (2005), the topological approach can be made 
compatible with the fundamentally discrete nature of 
the visual system if it is assumed that vision is tolerant 
to differences in the retinal image at various scales. 
For example, visual unity can readily be perceived in 
a collection of image elements that are spatially 
separated by sufficiently small distances. This is 
expressed formally by stating that a pair of image 
elements belongs to a tolerance relation τ if the 
distance between them is less than some criterion. 
Like equality, tolerance τ is a relation that is reflexive 
(for an element a, the pair (a,a) belongs to τ) and 
symmetric (if (a,b) belongs to τ, then  (b,a) belongs to 
τ). Unlike equality, however, tolerance is not 
transitive: (a,b) belongs to τ and (b,c) belongs to τ do 
not imply that (a,c) belongs to τ. Work in 
computational vision shows that it is possible to apply 
a tolerance relation to the elements of an image and 
thereby to identify topological properties of the image 
(Huang et al., 2010). How the brain might accomplish 
this task is not known. More importantly, even having 
a neural network that computes topological properties 
might not tell us how the experience of visual unity 
arises within that network, how we see visual unity. 

An alternative approach is to study the sources 
and consequences of a tolerance relation within the 
recurrent neural interactions of richly interconnected 
networks of the visual system. Introducing a bit of 
tolerance space terminology is very helpful in seeing 
how this might be done (Peters and Wasilewski, 
2012). If we use accepted terminology, then the set of 
elements x such that (a,x) belongs to τ is called an 
open ball about a, or OB(a). For example, we might 
have OB(a) = {a,b}, OB (b) = {a,b,c}, and OB(c) = 
{b,c}. A set that contains the open balls about each of 
its elements is called an open set, so {a,b,c} is open. 
Finally, an open set is said to be connected if it cannot 
be separated into two disjoint open sets, both not 
empty. Using this definition, we can readily see that 
{a,b, c} is a connected open set (COS). The definition 
of a COS indicates that it is a reasonable model of 

visual object unity, given that the elements with 
which we are working must be discrete. 

 

 

Figure 1: A schematic of the central idea motivating the 
present work is shown. See text for details. 

The work reported here is based on the idea that 
recurrent neural network inputs are structured by 
retinal image input, the network’s synaptic 
architecture, the dynamics of synaptic events, and a 
tolerance relation τ into a COS, and thereby “make 
sense” as visual object unity. It is assumed that 
recurrent inputs from two network neurons belong to 
τ if they are sufficiently similar as to have 
indistinguishable effects on network neurons. 

Figure 1 is a schematic illustration of recurrent 
inputs arising from the N neurons in a network. In a 
fully-connected network, each neuron contributes N 
such inputs that are modelled as an N-dimensional 
vector. These vectors can be projected on basis 
vectors for the 3D space in which the neurons are 
located. The top left graphic in Figure 1 demonstrates 
the result for a network with N = 1089 in which the 
neurons receive inputs from the image of a square. 
Neurons that receive little input from the image 
produce very small vectors of recurrent inputs that 
project to the origin of the coordinate system being 
used. More active neurons have larger projections, 
but these provide no information regarding the 
presence of a unified object. 

The bottom right graphic shows projections of the 
same vectors of recurrent input on a dimension that 
reflects the rapid decay of recurrent input synaptic 
conductance with time, and on two dimensions that 
reflect the decay of recurrent input synaptic 
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conductance with distance between source and target 
neurons. Large projections on the temporal decay 
dimension are produced by neurons that receive 
retinotopic input from the square image and have 
recently fired action potentials (APs), and pairs of 
projections that are joined by line segments form a 
COS that models visual object unity. It is proposed 
that, rather than computing topological properties, 
such a network creates the perceived unity of a visual 
object. 

The remainder of this paper shows how this idea 
can be realized in a simple recurrent neural network 
(RNN). Section 2 provides a description of the 
network model. Previous work employing singular 
value decomposition (SVD) of a matrix of recurrent 
excitatory conductance values G(t) showed that a 
small number of basis vectors span the row space of 
G(t) and allow a portrayal of stable structures that 
form in response to an input image (Pavloski, 2011). 
Section 2.1 shows that the row space basis vectors 
arise from the distribution of synaptic weights and the 
decay of conductance values over time. In Section 
2.2, evidence for a tolerance relation containing pairs 
of similar vectors of recurrent conductance values is 
presented. Simulations show that this tolerance 
relation permits a COS of the vectors of sodium 
conductance values produced by active RNN neurons 
to emerge from the retinal image of an object. Results 
showing that COSs demonstrate several 
characteristics of vision are described in Section 2.3. 
These include just noticeable differences, the Gestalt 
phenomenon of grouping by proximity, similarities to 
V1 fMRI data for real motion and apparent motion, 
and object constancy over rotation and changes of 
size and orientation of an image. The issue of 
determining whether a COS is an emergent entity is 
considered briefly in Section 3. Two approaches to 
testing the hypothesis that a COS is an objective 
signature of a unified visual object are described in 
Section 4, and conclusions are stated in Section 5. 

2 A RNN THAT PRODUCES 
CONNECTED OPEN SETS OF 
CONDUCTANCE VECTORS 

Simulated grayscale images were presented to a 
simulated retina consisting of a 33 x 33 lattice of 
model neurons. The inputs from the simulated image 
to these model neurons were arranged so that each 
receptive field was concentric, with a small diameter 
ON center within which illumination excites the cell, 
and a larger diameter OFF surround within which 

illumination inhibits the cell. This was done in the 
following way for each retinal neuron. The membrane 
potential (Em) was set to 2.5 times the sum of the 
illumination at each point in the image multiplied by 
the value of a normal pdf (mean μ = 0 and standard 
deviation σ = 1) at the Euclidean distance between the 
image point and the location of the neuron, minus .6 
times the sum of the illumination at each point in the 
image multiplied by the value of a normal pdf (μ = 0 
and σ = 4) at the Euclidean distance between the 
image point and the location of the neuron. Using this 
method, Em is affected by light in the simulated 
images as shown in the top left panel of Figure 2. The 
probability of an AP increased monotonically with Em 
above a threshold. 
 

 

Figure 2: ON-center, OFF-surround neurons and RNN 
neurons are depicted in the top and middle panels. A retinal 
response to a 15 x 15 pixel image and a snapshot of RNN 
excitatory neuron action potentials (APs) are shown in the 
bottom panel. 

Retinal neuron APs map retinotopically to 
excitatory synapses on excitatory single compartment 
model RNN neurons, which are also arranged in a 33 
x 33 lattice and shown in Figure 2 as dots. An AP 
produced by any retinal neuron is assigned the value 
1 (present) or 0 (absent), and the effect on any 
excitatory RNN neuron is given by this value 
multiplied by a synaptic weight, which is .01 times 
the value of a normal pdf (μ = 0 and σ = .03) at the 
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Euclidean distance between the 2-dimensional 
location of the retinal neuron and the 2-dimensional 
location of the excitatory RNN neuron. The summed 
effects of all retinal inputs on each neuron affected 
excitatory sodium conductance according to an alpha 
function (Sterratt et al., 2011); specifically, the value 
of the conductance on each iteration of the network 
was set to 0.7 times the summed weighted inputs plus 
0.3 times the current value of the conductance.  

Each excitatory RNN neuron sends output to all 
excitatory neurons and also to inhibitory neurons 
(shown in Figure 2 as circles) that are interspersed 
among the excitatory neurons in an 11 x 11 lattice. 
The inhibitory neurons, in turn, send outputs to all 
excitatory neurons. All synaptic weights decrease 
exponentially with distance (plus a random 
component) between the source and target neurons, 
with inhibition following off less rapidly than 
excitation. The exponential functions were chosen to 
promote very stable network dynamics. Excitatory 
weights vary from a minimum of 0.15 to a maximum 
of 0.23, and inhibitory weights vary from a minimum 
of 0.34 to a maximum of 0.37 over the range of 
distances in the lattice of neurons (distances range 
from 0. to (2x322)1/2). 

Conductance based equations for the point 
neurons follow standard sources (Sterratt et al., 
2011), and parameter values are taken from O’Reilly 
and Munakata (2000). Both excitatory (sodium) and 
inhibitory (chloride) conductance values produced by 
RNN neuron APs were calculated in the same fashion 
as the excitatory conductance values produced by 
retinal neurons. The value of Em of each neuron was 
determined by treating the membrane as an RC circuit 
with time constant .2 and each synapse as a variable 
conductance in series with the appropriate 
equilibrium potential. All synapses were in parallel 
with each other and with the resting Em and leak 
conductance. Values were scaled so that Em varied 
between 0 and 1. An AP was produced with a low 
probability (.01) if Em is less than a threshold value = 
.25, and the probability of an AP increased 
monotonically for Em > .25. Updating was 
synchronous, with every value in the RNN updated 
on each iteration of the simulation using values of 
current inputs and values of network variables from 
the previous iteration. Retinal neuron membrane 
potentials and APs produced by RNN excitatory 
neurons on one iteration in response to a 15x15 pixel 
image are shown in the bottom panel of Figure 2. 

2.1 Singular Value Decomposition of 
the Recurrent Excitatory 
Conductance Matrix 

After approximately 11 iterations, the RNN achieves 
a stable response to an image. As indicated in Section 
1, previous work demonstrated that a small number of 
dimensions describe the row space of G(t). The entry 
in the ith row and jth column of this matrix is the 
conductance value gij produced in excitatory neuron j 
by excitatory neuron i. Thus, row i is vector gi of 
conductance values in all RNN excitatory neurons 
produced by neuron i. SVD of G(t) reveals that the 
first three singular vectors serve as basis vectors for 
the row space of G(t), accounting for over 99% of the 
variance in the entries of the matrix. The top panel of 
Figure 3 shows row projections on the basis vectors 
for a COS that results from an 11 x 11 pixel input 
image on one iteration of the simulation. 

The log of the projections of conductance vectors 
on the first basis vector are linearly dependent on the 
time of the most recent AP (r2 > 0.99). This is 
expected because each conductance falls off 
exponentially over time following the most recent 
AP. The projections of each conductance vector on 
the second and third singular vectors are linearly 
related to the relative row and column position of the 
neuron giving rise to that conductance vector. It is not 
possible to quantify the goodness of fit with a single 
correlation coefficient because the slope of the best-
fit line is much smaller for smaller conductance 
values that are produced by APs occurring in the past. 
This is illustrated by the middle and bottom panels of 
Figure 3, which show projections of conductance 
vectors plotted as functions of each neuron’s row 
position in the lattice shown in Figure 2. For 
simplicity, axes of all subsequent plots of COSs will 
continue to be labelled as Row Basis Vectors. 

2.2 Connected Open Sets of Vectors of 
Conductances Result from 
Tolerance to Small Differences in 
Recurrent Inputs 

It is easy to recognize a natural source of tolerance in 
the RNN. Adjacent excitatory neurons are very likely 
to receive virtually identical inputs from retinal 
neurons and from other RNN neurons. They are 
therefore likely to fire very similar trains of APs and 
thus to produce very similar vectors of conductance 
values. This is confirmed by simulations. For 
example, closely positioned neurons that recently 
fired an AP in response to a 7 x 7 image yield a mean 
difference between conductance vector magnitudes 
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equal to 5.05 x 10-6 (se = 2.23 x 10-7) and a mean 
difference in angular orientations of .03 rad (se = 4.46 
x 10-4). Such small differences in conductance vector 
magnitudes and orientations are of no consequence 
with respect to their impact on the temporal evolution 
of conductance vectors.  
 

 
 

 
 

 

Figure 3: Plot of COS conductance vector projections on 
three dominant singular vectors (top). Vectors within a 
tolerance are joined by lines. The projection of each 
conductance vector on the second singular vector is linearly 
related to the rotated row position of the neuron giving rise 
to that conductance vector with a slope determined by the 
time of the most recent AP (middle, bottom). See Sections 
2.1 and 2.2 for details. 

Frequency histograms of vector magnitude 
differences and orientation differences imply that a 
magnitude difference less than 10-4 and an orientation 
difference less than .03 rad are appropriate criteria for 
a pair of vectors to belong to the tolerance relation. 

 

 
 

 

Figure 4: A COS occurs on iterations 11-20 in response to 
an 11 x 11 input image presented on iterations 6-15 (top). 
Projections of conductance vectors on the second and third 
basis vectors for the rows of conductance matrix G(t) are 
shown as a function of iteration number. Conductance 
vectors on successive iterations that are within a tolerance 
are joined by light gray line segments. No lines are drawn 
between vectors within a tolerance on a given iteration for 
this and subsequent figures. The solid curve in the bottom 
graph plots the function rij for iteration i= 11 of the 
simulation, the dashed curve plots results for i=12, and the 
dotted curve plots results for i=13. Lag = tj – ti. 

The top panel of Figure 4 plots the COSs that arise 
from an 11 x 11 pixel input image. The image was 
shown on iterations 6-15, and COSs appear on 
iterations 11-20. In this figure, the iteration number is 
used as the x-axis, and the second and third singular 
vectors are used for y and z as they were in Figure 3. 
Conductance vectors on successive iterations that 
meet tolerance criteria are joined by gray line 
segments. The spatiotemporal consistency in COS 
composition occurs jointly with large fluctuations in 
neurons giving rise to vectors in the COS. This is 
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demonstrated by the bottom panel, which plots the 
simple correlation function 

 

rij = (Nij - Ni. - N.j) / Dij (1)
 

where Nij is the number of distinct pairs of neurons 
giving rise to conductance vectors within a tolerance 
(tolerance pairs) at times ti and tj, Ni. is the number of 
tolerance pairs that are present at time ti but not at 
time tj, N.j is the number of tolerance pairs that are 
present at time tj but not at time ti, and Dij is the total 
number of distinct tolerance pairs present at time ti or 
at time tj. The majority of tolerance pairs occurred 
only once or twice over the 10 iterations of the 
network for which the correlation function is plotted 
in Figure 4. Thus, similar conductance vectors are 
produced on sequential iterations by different pairs of 
neurons. 

2.3 COS Phenomena Mimic Visual 
Phenomena 

COSs demonstrate just noticeable differences (jnd’s) 
and grouping by proximity. These phenomena are 
demonstrated by simulation results depicted in Figure 
5. The COSs are shown after the RNN has stabilized 
(i.e., beginning on iteration 12). 

It has been shown that fMRI data from human 
primary visual cortex (V1) show a moving pattern of 
activation during perception of real motion and 
apparent motion (Larsen et al., 2006). It is of interest 
that the COSs that emerge from the smooth motion of 
an image and from simulation of the conditions for 
apparent motion behave very similarly to V1 fMRI 
data. The COSs that result from these two conditions 
over 20 iterations are shown in the top and bottom 
panels of Figure 6. 

In a similar fashion, COSs track the change of 
orientation of the image of a rectangle, a change of 
size of a square, and rotation of a rectangle, as shown 
in Figure 7. The behaviour of the COSs mimics object 
constancy over similar changes in object images. 

3 IS A COS IN RECURRENT 
NETWORK INPUTS A MODEL 
OF LARGE-SCALE ORDER? 

Results presented in Section 2.2 demonstrate that 
similar pairs of conductance vectors that are elements 
of a COS are produced by different pairs of neurons 
on sequential iterations of the simulated RNN. 

 
 
 
 

 

 
 

 

 

Figure 5: Two COSs emerge in response to two, 3x3 pixel 
images that are separated by three pixels diagonally (top). 
One COS emerges when the diagonal separation is reduced 
to one pixel (middle). Grouping by proximity results in one 
COS to an image of 16 one-pixel elements with one-pixel 
spacings (bottom). 

This finding suggests the possibility that a COS 
models emergent large-scale order that is invariant 
over participating neurons. COS phenomena that 
mimic visual phenomena (Section 2.3) are consistent 
with this possibility. For example, a single COS 
persists over time even as size and orientation of an 
image change, and a COS persists under the 
conditions of apparent motion, which involve brief 
elimination of the image of an object. 
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Figure 6: The COSs in the top panel on iterations 11-30 
result from an 11 x 11 image shown in one corner for 10 
iterations, then shown displaced by 5 pixels horizontally 
and vertically for 5 iterations repeatedly until finishing at 
the diagonally opposite corner for 5 iterations. The COSs in 
the bottom panel shown on iterations 11-30 result from a 5 
x 7 image shown in one position for 20 iterations, then not 
shown for 2 iterations. Each point is then displaced 
vertically by 9 pixels and shown for 10 iterations. 

These results should be replicated using a much 
larger scale simulation that would include 
arrangements of a retina and RNN with receptive 
fields that overlap like those in mammalian visual 
systems. This would permit the use of more realistic 
images of multiple objects and should also enhance 
the similarities in recurrent inputs between adjacent 
neurons. In addition, asynchronous updating using 
very small time steps would more closely 

approximate biological vision and should enhance the 
temporal persistence of COSs. 

 

 

Figure 7: COSs smoothly track step changes in orientation 
(top) and in size (middle), and a step rotation (bottom). The 
top image of each pair was shown for 15 iterations and 
replaced by the bottom image for 15 iterations, and the 
COSs are plotted from iterations 16-30. 
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A network with these characteristics should make 
it possible to analyse the projections of G(t) on row 
basis vectors for the presence of topological 
properties such as the number of connected objects 
and the number of holes. Such work would provide 
an approach that would complement the direct 
introduction of a tolerance relation, as done here. 

Two strategies might be then be followed in 
testing the hypothesis that large-scale topological 
objects emerge within recurrent interactions. The first 
is to use simulations in order to determine if a COS 
possesses typically-observed properties of such large-
scale order. We expect to find a control parameter that 
can be varied to modulate the shape of a potential that 
is a function of an order parameter, such as the density 
of a COS (e.g., number of conductance vectors per 
unit volume). Using data gathered from human 
participants (see Section 4), we will attempt to find a 
potential function empirically, and to incorporate this 
in simulations in order to make predictions that can 
then be tested with human participants. 

A second strategy involves implementing a RNN 
in an electronic circuit. In principle, it should be 
possible to interface an analog electronic RNN with a 
biological visual system so that they cooperate to 
produce one or more COSs. Such an arrangement 
could serve both as a critical test of ideas that underlie 
the approach to the hard problem that is advocated, 
and as a prototype for a prosthetic device. There is no 
question that many difficult obstacles must be 
overcome for this strategy to become feasible. Poon 
and Zhou (2011) provide a fairly recent overview of 
the challenges and opportunites presented by 
neuromorphic silicon neurons and large scale neural 
networks, and a wide-ranging and thorough review of 
such circuits is provided by Indiveri et al., (2011). 

4 IS A COS IN RECURRENT 
NETWORK INPUTS AN 
OBJECTIVE SIGNATURE OF 
PERCEIVED OBJECT UNITY? 

The results presented above are consistent with the 
hypothesis that a COS of recurrent vectors of sodium 
ion conductance is an objective signature of perceived 
object unity. Empirical tests using data collected from 
human participants and from non-human species are 
required to test this hypothesis. 

Two approaches to devising such tests are 
considered in this section. The first approach is based 
on comparisons of dynamical phenomena exhibited 
by COSs in neural network simulations with 

dynamical phenomena in human visual perception. 
This approach has a strong existing basis in the 
perception literature, particularly in work based on 
Haken’s (1996) Synergetics. The second approach is 
much more direct, as it is based on a search for 
evidence of a COS in recordings of brain activity. 

4.1 Do Perceived Object Unity and 
COSs Exhibit the Same Dynamical 
Phenomena? 

In addition to the visual phenomena that are 
mimicked by COSs as presented above, dynamical 
effects of sequential presentations of stimuli are well 
documented in perception. For example, categorical 
perception of speech sounds has been shown to 
exhibit both enhanced contrast and hysteresis (Tuller 
et al., 1994). Enhanced contrast occurs when a 
perception changes from one category to another at 
one parameter value as values are initially increased 
and at a higher parameter value as values are 
subsequently decreased. In hysteresis, the change 
occurs at a higher parameter value for initial increases 
than for subsequent decreases. Tuller et al., (1994) 
showed that the data collected from human 
participants fit an underlying model for which 
hysteresis dominates during early trials, and enhanced 
contrast dominates as experience with the task brings 
certain cognitive factors into play. The simple RNN 
has no capacity for such cognitive functions, and is 
therefore expected to display hysteresis. 

The phenomenon of grouping by proximity was 
used to test this hypothesis. The images used consist 
of 140 one-pixel spots. One hundred of the spots are 
repositioned randomly within the 33 x 33 pixel image 
area on each iteration. The remaining 40 spots are 
positioned randomly within a square window the 
sides of which are reduced from a length of 33 pixels 
to a length of seven over the first 31 iterations; the 
sides increase over the remaining 30 iterations to the 
original length of 33. The inset in the top panel of 
Figure 8 shows images from iterations 1, 10, 20 (top 
row), 30, 31, 32 (middle row), and 42, 52, and 61 
(bottom row). The portion of the graph with forward 
arrows (→) plots the size of the emergent COS as the 
sides of the window containing the critical 40 dots is 
initially decreased, and the portion of the graph with 
backward arrows (←) plots COS size as window size 
is subsequently decreased. It is clear that hysteresis is 
present. We are currently testing human participants 
with a version of the grouping by proximity task that 
has been modified to make it appropriate for the 
human visual system. The procedure used by Tuller 
et al., (1994) for categorical perception of speech 
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sounds was changed slightly in order to apply it to 
perception of object unity. In this task, 1600 dots are 
displayed on each trial. Of these, 1500 are randomly 
positioned within a 10 x 10 square on each trial. An 
additional 100 dots are randomly positioned within a 
square window that grows or shrinks over trials. Dot 
diameter is 0.2 percent of the width of the 10 x 10 
square. The bottom panel of Figure 8 illustrates 
results from five pilot subjects. On each of two blocks 
of trials, the length of the sides of the square 
containing the additional 100 dots was reduced from 
10 to 1.5 over the first 100 trials and then increased 
over the remaining 100 trials to the original length of 
10. Hysteresis is present in the total number of reports 
of a unified object (out of 10 maximum). 

 

 

Figure 8: The top panel shows hysteresis in the number of 
conductance vectors that are elements of a COS. The inset 
shows simulated retinal images for nine iterations of one 
simulation, as described in the text. The graph with forward 
arrows (→) plots the number of conductance vectors in the 
resulting COS on iterations 1-31, and the graph with 
backward arrows (←) plots the size of the COS on iterations 
32-61. This graph clearly demonstrates hysteresis. The 
bottom panel shows hysteresis in perception of a unified 
object for five participants. 

4.2 Can the Presence of a COS Be 
Inferred from Recordings of Brain 
Activity? 

A direct test of the hypothesis that a COS of 
excitatory recurrent conductance vectors is indicative 
of the experience of visual object unity would be 
possible if extracranial or intracranial recordings 
could be used to detect a COS. It is possible that large-
scale brain simulations and visualizations (e.g., Jones 
et al., 2013) could answer this question. 

Such large-scale simulations have been shown to 
model successfully network dynamics of primary 
visual cortex at multiple scales (e.g., Rangan et al., 
2009), and the network model appears to account for 
V1 activity associated with the line-motion illusion 
(Rangan et al., 2005). It is important to replicate the 
strategy used by previous researchers in order to 
determine if the presence of a COS produces a 
signature in simulations of recorded activity that 
include single unit, population, and 
electroencephalogram recordings and optical imaging 
with voltage-sensitive dyes. Some of these studies 
would employ non-invasive methods and can be 
performed with human participants. Others are 
clearly invasive and would have to be performed with 
non-human species. 

5 CONCLUSIONS 

Progress in the development of neurotechnologies is 
necessarily limited by our current understanding of 
the specific ways in which neural network activities 
are involved with particular aspects or qualities of 
conscious experience. The central problem that we 
face is theoretical. It is precisely the famous ‘hard 
problem’ (Chalmers, 1996; Hut and Shepard, 1996). 

The introduction of a formal model of an aspect 
of experience makes it possible to state a testable 
hypothesis that bears directly on the hard problem: 
the unified aspect of a visual object arises as a COS 
of vectors of recurrent excitatory conductance values 
emerges from cooperative network activity. Results 
using a small RNN driven by simulated activity of 
retinal neurons with a concentric receptive field 
organization are very promising. These results 
demonstrate a natural source of tolerance that 
underlies the formation of a COS, and visual 
phenomena that include just noticeable differences, 
grouping by proximity, similarities to V1 fMRI 
activity patterns in response to real and apparent 
motion, and visual object constancy with changes in 
size, shape and rotation are all reproduced by COSs. 
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The COS is also subject to the nonlinear phenomenon 
of hysteresis that characterizes multistability in 
perception. 

It is important to use a variety of strategies to test 
two hypotheses that arise from the work reported 
here: (1) a COS of excitatory recurrent conductance 
vectors is a model of large-scale order within 
recurrent network interactions; and (2) such a COS is 
an objective signature of the unity or oneness aspect 
of a visual object.  

ACKNOWLEDGEMENTS 

The author wishes to thank Dr. Charles Lamb of the 
IUP Department of Mathematics for the many 
positive contributions that he has made to the work 
reported here in our numerous discussions. The 
author also thanks Mr. Ian Bright who collected the 
pilot data reported in Section 4.1 and who contributed 
in all aspects of that work. Two anonymous reviewers 
are also thanked for their thoughtful and useful 
comments. 

REFERENCES 

Block, N. (2001). Paradox and cross purposes in recent 
work on consciousness. Cognition, 79, 347-357. 

Block, N. (2007). Consciousness, accessibility, and the 
mesh between psychology and neuroscience. 
Behavioral and Brain Sciences, 30, 481-499. 

Chalmers, D. J. (1996). The conscious mind: In search of a 
fundamental theory. New York, NY: Oxford University 
Press. 

Chen, L. (2005).  The topological approach to perceptual 
organization. Visual Cognition, 12(4), 553-637. 

Dehaene, S. (2014). Consciousness and the brain: 
Deciphering how the brain codes our thoughts. New 
York, NY: Penguin Books. 

Edelman, G. M., Gally, J. A., Baars, B. J. (2011). Biology 
of consciousness. Frontiers in Psychology, doi: 
10.3389/fpsyg.2011.00004. 

Haken, H. (1996). Principles of brain functioning: A 
synergetic approach to brain activity, behavior and 
cognition. New York, NY: Springer. 

Huang, Y., Huang, K., Tan, T., Tao, D. (2010). A novel 
visual organization based on topological perception. 
Computer vision – ACCV 2009. Lecture notes in 
computer science, Volume 5994, 180-189. 

Hut, P., Shepard, R. N. (1996). Turning ‘the hard problem’ 
upside down & sideways. Journal of Consciousness 
Studies, 3, 313-329. 

Indiveri G., Linares-Barranco B., Hamilton T.J., van Schaik 
A., Etienne- Cummings R., Delbruck T., Liu S-C., 
Dudek P., Häfliger P., Renaud S., Schemmel J., 

Cauwenberghs G., Arthur J., Hynna K., Folowosele F., 
Saïghi S., Serrano- Gotarredona T., Wijekoon J., Wang 
Y. Boahen K. (2011). Neuromorphic silicon neuron 
circuits. Frontiers in Neuroscience, 5:73. doi: 
10.3389/fnins.2011.00073. 

Jones, A., Cardoza, J., Liu, D. J., Jayet Bray, L. C., Dascalu, 
S. M., Louis, S. J., Harris Jr., F. C. (2013). A novel 3D 
visualization tool for large-scale neural networks. BMC 
Neuroscience 2013, 14 (Suppl 1):P158 

Larsen, A., Madsen, K. H., Lund, T.E., Bundesen, C. 
(2006). Images of illusory motion in primary visual 
cortex. Journal of Cognitive Neuroscience, 18(7), 
1174-1180. 

Minsky, M. L., Papert, S. A. (1998). Perceptrons: An 
introduction to computational geometry (Expanded 
edition).Cambridge, MA: MIT Press. 

O’Reilly, R. C., Munakata, Y. (2000). Computational 
explorations in cognitive neuroscience: Understanding 
the mind by simulating the brain. Cambridge, MA: MIT 
Press. 

Pavloski, R. (2011). Learning how to get from properties of 
perception to those of the neural substrate and back: An 
ongoing task of Gestalt Psychology. Humana.Mente 
Journal of Philosophical Studies, 17, 69-94. 

Peters, J. F., Wasilewski, P. (2012). Tolerance spaces: 
Origins, theoretical aspects and applications. 
Information Sciences, 195, 211-225. 

Pomerantz, J. R. (2003). Wholes, holes, and basic features 
in vision. Trends in Cognitive Sciences, 7(11), 471-473. 

Poon, C.-S., Zhou, K. (2011). Neuromorphic silicon 
neurons and large-scale neural networks: Challenges 
and opportunities. Frontiers in Neuroscience, 5:108. 
doi: 10.3389/ fnins.2011.00108. 

Rangan, A. V., Cai, D., McLaughlin, D. W. (2005). 
Modeling the spatiotemporal cortical activity 
associated with the line-motion illusion in primary 
visual cortex. Proceedings of the National Academy of 
Sciences, 102(52), 18793-18800. 

Rangan, A. V., Tao, L., Kovacic, G., Cai, D. (2009). 
Multiscale modeling of the primary visual cortex. IEEE 
Engineering in Medicine and Biology Magazine, May 
2009, 19-24. 

Roelfsema, P. R. Houtkamp, R. (2011). Incremental 
grouping of image elements in vision. Attention 
Perception & Psychophysics, 73, 2542-2572. 

Sterratt, D., Graham, B., Gillies, A., Willshaw, D. (2011). 
Principles of computational modelling in neuroscience. 
New York, NY: Oxford University Press. 

Tuller, B., Case, P., Ding, M., Kelso, J.A.S. (1994). The 
nonlinear dynamics of speech categorization. Journal 
of Experimental Psychology: Human Perception and 
Performance, 20(1), 3-16. 

Zhang, J. (2005). Object oneness: The essence of the 
topological approach to perception. Visual Cognition, 
12(4), 683-690. 

NEUROTECHNIX 2015 - International Congress on Neurotechnology, Electronics and Informatics

90


