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Abstract: Consistency of knowledge repositories is of prime importance in organization management. Integrity con-
straints are a well-known vehicle for specifying data consistency requirements in knowledge bases; in partic-
ular, active integrity constraints go one step further, allowing the specification of preferred ways to overcome
inconsistent situations in the context of database management.
This paper describes a tool to validate an SQL database with respect to a given set of active integrity con-
straints, proposing possible repairs in case the database is inconsistent. The tool is able to work with the
different kinds of repairs proposed in the literature, namely simple, founded, well-founded and justified re-
pairs. It also implements strategies for parallelizing the search for them, allowing the user both to compute
partitions of independent or stratified active integrity constraints, and to apply these partitions to find repairs
of inconsistent databases efficiently in parallel.

1 INTRODUCTION

There is a generalized consensus that knowledge
repositories are a key ingredient in the whole pro-
cess of Knowledge Management, cf. (Duhon, 1998;
König, 2012). Furthermore, being able to rely upon
the consistency of the information they provide is
paramount to any business whatsoever. Databases
and database management systems, by far the most
common framework for knowledge storage and re-
trieval, have been around for many years now, and
have evolved substantially, at pace with information
technology. In this paper, we are focusing on the im-
portant aspect of database consistency.

Typical database management systems allow the
user to specify integrity constraints on the data as
logical statements that are required to be satisfied at
any given point in time. The classical problem is
how to guarantee that such constraints still hold af-
ter updating databases (Abiteboul, 1988), and what
repairs have to be made when the constraints are vio-
lated (Katsuno and Mendelzon, 1991), without mak-
ing any assumptions about how the inconsistencies
came about. Repairing an inconsistent database (Eiter
and Gottlob, 1992) is a highly complex process; also,
it is widely accepted that human intervention is of-

ten necessary to choose an adequate repair. That said,
every progress towards automation in this field is nev-
ertheless important.

In particular, the framework of active integrity
constraints (Flesca et al., 2004; Caroprese and
Truszczyński, 2011) was introduced more recently
with the goal of giving operational mechanisms to
compute repairs of inconsistent databases. This
framework has subsequently been extended to con-
sider preferences (Caroprese et al., 2007) and to find
“best” repairs automatically (Cruz-Filipe et al., 2013)
and efficiently (Cruz-Filipe, 2014).

Active integrity constraints (AICs) seem to be a
promising framework for the purpose of achieving re-
liability in information retrieval:

• AICs are expressive enough to encompass the ma-
jority of integrity constraints that are typically
found in practice;

• AICs allow the definition of preferred ways to cal-
culate repairs, through specific actions to be taken
in specific inconsistent situations;

• AICs provide mechanisms to resolve inconsisten-
cies while the database is in use;

• AICs can enhance databases to provide a basis for
self-healing autonomic systems.
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To the best of our knowledge, no real-world imple-
mentation of an AIC–enhanced database system ex-
ists today. This paper presents a prototype tool that
implements the tree–based algorithms for comput-
ing repairs presented in (Caroprese and Truszczyński,
2011; Cruz-Filipe et al., 2013). While not yet ready
for productive deployment, this implementation can
work successfully with database management sys-
tems working in the SQL framework, and is readily
extendible to other (nearly arbitrary) database man-
agement systems thanks to its modular design.

This paper is structured as follows. Section 2
recapitulates previous work on active integrity con-
straints and repair trees. Section 3 introduces our
tool, repAIrC, and describes its implementation, fo-
cusing on the new theoretical results that were nec-
essary to bridge the gap between theory and practice.
Section 4 then discusses how parallel computation ca-
pabilities are incorporated in repAIrC to make the
search for repairs more efficient. Section 5 summa-
rizes our achievements and gives a brief outlook into
future developments.

2 ACTIVE INTEGRITY
CONSTRAINTS

Active integrity constraints (AICs) were introduced
in (Flesca et al., 2004) and further explored in (Carop-
rese et al., 2009; Caroprese and Truszczyński, 2011),
which define the basic concepts and prove complex-
ity bounds for the problem of repairing inconsistent
databases. These authors introduce declarative se-
mantics for different types of repairs, obtaining their
complexity results by means of a translation into re-
vision programming. In practice, however, this does
not yield algorithms that are applicable to real-life
databases; for this reason, a direct operational se-
mantics for AICs was proposed in (Cruz-Filipe et al.,
2013), presenting database-oriented algorithms for
finding repairs. The present paper describes a tool that
can actually execute these algorithms in collaboration
with an SQL database management system.

2.1 Syntax and Declarative Semantics

For the purpose of this work, we can view a database
simply as a set of atomic formulas over a typed
function-free first-order signature Σ, which we will
assume throughout to be fixed. Let At be the set of
closed atomic formulas over Σ. A database I entails
literal L, I |= L, if L ∈ At and L ∈ I , or if L is not a
with a ∈ At and a /∈ I .

An integrity constraint is a clause

L1, . . . ,Lm ⊃⊥
where each Li is a literal over Σ, with intended se-
mantics that ∀(L1 ∧ . . . ∧ Lm) should not hold. As
is usual in logic programming, we require that if Li
contains a negated variable x, then x already occurs
in L1, . . . ,Li−1. We say that I satisfies integrity con-
straint r, I |= r, if, for every instantiation θ of the vari-
ables in r, it is the case that I 6|= Lθ for some L in r;
and I satisfies a set η of integrity constraints, I |= η,
if it satisfies each integrity constraint in η.

If I 6|= η, then I may be updated through update
actions of the form +a and −a, where a ∈ At, stating
that a is to be inserted in or deleted from I , respec-
tively. A set of update actions U is consistent if it
does not contain both +a and −a, for any a ∈ At;
in this case, I can be updated by U, yielding the
database

I ◦U = (I ∪{a |+a ∈U})\{a | −a ∈U} .
The problem of database repair is to find U such that
I ◦U |= η.
Definition 1. Let I be a database and η a set of in-
tegrity constraints. A weak repair for 〈I ,η〉 is a con-
sistent set U of update actions such that: (i) every
action in U changes I ; and (ii) I ◦U |= η. A repair
for 〈I ,η〉 is a weak repair U for 〈I ,η〉 that is minimal
w.r.t. set inclusion.

The distinction between weak repairs and re-
pairs embodies the standard principle of minimality
of change (Winslett, 1990).

The problem of deciding whether there exists a
(weak) repair for an inconsistent database is NP-
complete (Caroprese and Truszczyński, 2011). Fur-
thermore, simply detecting that a database is incon-
sistent does not give any information on how it can be
repaired. In order to address this issue, those authors
proposed active integrity constraints (AICs), which
guide the process of selection of a repair by pairing
literals with the corresponding update actions.

In the syntax of AICs, we extend the notion of
update action by allowing variables. Given an action
α, the literal corresponding to it is lit(α), defined as a
if α =+a and not a if α =−a; conversely, the update
action corresponding to a literal L, ua(L), is +a if
L = a and −a if L = not a. The dual of a is not a,
and conversely; the dual of L is denoted LD. An active
integrity constraint is thus an expression r of the form

L1, . . . ,Lm ⊃ α1 | . . . | αk

where the Li (in the body of r, body (r)) are literals
and the α j (in the head of r, head(r)) are update ac-
tions, such that{

lit(α1)
D, . . . , lit(αk)

D}⊆ {L1, . . . ,Lm} .
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The set lit(head(r))D contains the updatable literals
of r. The non-updatable literals of r form the set
nup(r) = body (r)\ lit(head(r))D.

The natural semantics for AICs restricts the notion
of weak repair.

Definition 2. Let I be a database, η a set of AICs
and U be a (weak) repair for 〈I ,η〉. Then U is a
founded (weak) repair for 〈I ,η〉 if, for every action
α ∈U, there is a closed instance r′ of r ∈ η such that
α ∈ head(r′) and I ◦U |= L for every L ∈ body (r′)\{
lit(α)D

}
.

The problem of deciding whether there exists a
weak founded repair for an inconsistent database is
again NP-complete, while the similar problem for
founded repairs is ΣP

2 -complete. Despite their natural
definition, founded repairs can include circular sup-
port for actions, which can be undesirable; this led
to the introduction of justified repairs (Caroprese and
Truszczyński, 2011).

We say that a set U of update actions is closed un-
der r if nup(r)⊆ lit(U) implies head(r)∩U 6= /0, and
it is closed under a set η of AICs if it is closed under
every closed instance of every rule in η. In particular,
every founded weak repair for 〈I ,η〉 is by definition
closed under η.

A closed update action +a (resp.−a) is a no-effect
action w.r.t. (I ,I ◦U) if a ∈ I ∩ (I ◦U) (resp. a /∈
I ∪ (I ◦U)). The set of all no-effect actions w.r.t.
(I ,I ◦U) is denoted by ne(I ,I ◦U). A set of update
actions U is a justified action set if it coincides with
the set of update actions forced by the set of AICs and
the database before and after applying U (Caroprese
and Truszczyński, 2011).

Definition 3. Let I be a database and η a set of
AICs. A consistent set U of update actions is a jus-
tified action set for 〈I ,η〉 if it is a minimal set of up-
date actions containing ne(I ,I ◦U) and closed un-
der η. If U is a justified action set for 〈I ,η〉, then
U \ne(I ,I ◦U) is a justified weak repair for 〈I ,η〉.

In particular, it has been shown that justi-
fied repairs are always founded (Caroprese and
Truszczyński, 2011). The problem of deciding
whether there exist justified weak repairs or justified
repairs for 〈I ,η〉 is again a ΣP

2 -complete problem, be-
coming NP-complete if one restricts the AICs to con-
tain only one action in their head (normal AICs).

2.2 Operational Semantics

The declarative semantics of AICs is not very sat-
isfactory, as it does not capture the operational na-
ture of rules. In particular, the quantification over all
no-effect actions in the definition of justified action

set poses a practical problem. Therefore, an oper-
ational semantics for AICs was proposed in (Cruz-
Filipe et al., 2013), which we now summarize.

Definition 4. Let I be a database and η be a set of
AICs.

• The repair tree for 〈I ,η〉, T〈I ,η〉, is a labeled
tree where: nodes are sets of update actions;
each edge is labeled with a closed instance of
a rule in η; the root is /0; and for each consis-
tent node n and closed instance r of a rule in η,
if I ◦ n 6|= r then for each L ∈ body (r) the set
n′ = n∪

{
ua(L)D

}
is a child of n, with the edge

from n to n′ labeled by r.

• The founded repair tree for 〈I ,η〉, T f
〈I ,η〉, is con-

structed as T〈I ,η〉 but requiring that ua(L) occur
in the head of some closed instance of a rule in η.

• The well-founded repair tree for 〈I ,η〉, T w f
〈I ,η〉, is

also constructed as T〈I ,η〉 but requiring that ua(L)
occur in the head of the rule being applied.
• The justified repair tree for 〈I ,η〉, T j

〈I ,η〉, has
nodes that are pairs of sets of update actions
〈U,J 〉, with root 〈 /0, /0〉. For each node n and
closed instance r of a rule in η, if I ◦Un 6|= r, then
for each α ∈ head(r) there is a descendant n′ of
n, with the edge from n to n′ labeled by r, where:
Un′ = Un∪{α}; and Jn′ = (Jn∪{ua(nup(r))})\
Un.

The properties of repair trees are summarized in
the following results, proved in (Cruz-Filipe et al.,
2013).

Theorem 1. Let I be a database and η be a set of
AICs. Then:

1. T〈I ,η〉 is finite.
2. Every consistent leaf of T〈I ,η〉 is labeled by a weak

repair for 〈I ,η〉.
3. If U is a repair for 〈I ,η〉, then there is a branch

of T〈I ,η〉 ending with a leaf labeled by U.
4. If U is a founded repair for 〈I ,η〉, then there is a

branch of T f
〈I ,η〉 ending with a leaf labeled by U.

5. If U is a justified repair for 〈I ,η〉, then there is a
branch of T j

〈I ,η〉 ending with a leaf labeled by U.

6. If η is a set of normal AICs and 〈U,J 〉 is a leaf of
T j
〈I ,η〉 with U consistent and U∩J = /0, then U is

a justified repair for 〈I ,η〉.
Not all leaves will correspond to repairs of the

desired kind; in particular, there may be weak re-
pairs in repair trees. Also, both T f

〈I ,η〉 and T j
〈I ,η〉 typi-

cally contain leaves that do not correspond to founded
or justified (weak) repairs – otherwise the problem
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of deciding whether there exists a founded or justi-
fied weak repair for 〈I ,η〉 would be solvable in non-
deterministic polynomial time. The leaves of the
well-founded repair tree for 〈I ,η〉 correspond to a
new type of weak repairs, called well-founded weak
repairs, not considered in the original works on AICs.

2.3 Parallel Computation of Repairs

The computation of founded or justified repairs can
be improved by dividing the set of AICs into indepen-
dent sets that can be processed independently, simply
merging the computed repairs at the end (Cruz-Filipe,
2014). Here, we adapt the definitions given therein
to the first-order scenario. Two sets of AICs η1 and
η2 are independent if the same atom does not occur
in a literal in the body of a closed instance of two
distinct rules r1 ∈ η1 and r2 ∈ η2. If η1 and η2 are
independent, then repairs for 〈I,η1 ∪η2〉 are exactly
the unions of a repair for 〈I ,η1〉 and 〈I ,η2〉; further-
more, the result still holds if one considers founded,
well-founded or justified repairs.

If an atom occurs in a literal in the body of a closed
instance of a rule in η2 and in an action in the head of
a closed instance of a rule in η1, but not conversely,
then we say that η1 precedes η2. Founded/justified
(but not well-founded) repairs for η1∪η2 can be com-
puted in a stratified way, by first repairing I w.r.t. η1,
and then repairing the result w.r.t. η2.

Splitting a set of AICs into independent sets or
stratifying it can be solved using standard algorithms
on graphs, as we describe in Section 4.

3 THE TOOL

The tool repAIrC is implemented in Java, and its sim-
plified UML class diagram can be seen in Figure 1.
Structurally, this tool can be split into four main sepa-
rate components, centered on the four classes marked
in bold in that figure.

• Objects of type AIC implement active integrity
constraints.

• Implementations of interface DB provide the nec-
essary tools to interact with a particular database
management system; currently, we provide func-
tionality for SQL databases supported by JDBC.

• Objects of type RepairTree correspond to con-
crete repair trees; their exact type will be the sub-
class corresponding to a particular kind of repairs.

• Class RunRepairGUI provides the graphical inter-
face to interact with the user.

An important design aspect has to do with ex-
tensibility and modularity. A first prototype focused
on the construction of repair trees, and used simple
text files to mimick databases as lists of propositional
atoms, in the style of (Caroprese and Truszczyński,
2011; Cruz-Filipe et al., 2013). Later, parallelization
capabilities were added (as explained in Section 4),
requiring changes only to RepairController – the
class that controls the execution of the whole process.
Likewise, the extension of repAIrC to SQL databases
and the addition of the stratification mechanism only
required localized changes in the classes directly con-
cerned with those processes.

The next subsections detail the implementa-
tion of the classes AIC, DB, RepairTree and
RunRepairTreeGUI.

3.1 Representing Active Integrity
Constraints

In the practical setting, it makes sense to diverge a
little from the theoretical definition of AICs.

• Real-world tables found in DBs contain many
columns, most of which are typically irrelevant
for a given integrity constraint.

• The columns of a table are not static, i.e., columns
are usually added or removed during a database’s
lifecycle.

• The order of columns in a table should not matter,
as they are identified by a unique column name.

To deal pragmatically with these three aspects, we
will write atoms using a more database-oriented
notation, allowing the arguments to be provided
in any order, but requiring that the column names
be provided. The special token $ is used as first
character of a variable. So, for example, the literal
hasInsurance(firstName=$X, type=’basic’)
will match any entry in table hasInsurance having
value basic in column type and any value in column
firstName; this table may additionally have other
columns. Negative literals are preceded by the
keyword NOT, while actions must begin with + or -.
Literals and actions are separated by commas, and the
body and head of an AIC are separated by ->. The
AIC is finished when ; is encountered, thus allowing
constraints to span several lines.

AICs are provided in a text file, which is parsed
by a parser generated automatically using JavaCC
and transformed into objects of type AIC. These
contain a body and a head, which are respectively
List<Literal> and List<Action>; for consistency
with the underlying theory, Literal and Action are
implemented separately, although their objects are

KMIS 2015 - 7th International Conference on Knowledge Management and Information Sharing

20



RepairController

RunRepairGUI

SimpleNode

JustifiedNode

SimpleRepairTree

FoundedRepairTree WellFoundedRepairTree

JustifiedRepairTree

AIC

Literal Action

DBMySQL

�abstract�
RepairTree

�abstract�
Node

�interface�
DB

RepairGUI

�create�
�create�

�call� *{List}

*{List} *{List}

*{List}

*{List}

*{Set}
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Figure 1: Class diagram for repAIrC.

isomorphic: they contain an object of type Clause
(which consists of the name of a table in the database
and a list of pairs column name/value) and a flag indi-
cating whether they are positive/negated (literals) or
additions/removals (actions).
Example 1. Consider the following active integrity
constraints for an employee database. The first states
that the boss (as specified in the category table) can-
not be a junior employee (i.e., have an entry in the
junior table); the second states that every junior em-
ployee must have some basic insurance (as specified
in the insured table).

junior(X),category(boss,X)⊃−junior(X)

junior(X),not insured(X ,basic)

⊃+insured(X ,basic)

These are written in the concrete text-based syntax
of the repAIrC tool as
junior(id = $X),
category(type = boss, empId = $X)
-> - junior(id = $X);

junior(id = $X),
NOT insured(empId = $X, type = basic)
-> + insured(empId = $X, type = basic);

respectively, assuming the corresponding column
names for the atributes. Note that, thanks to our usage
of explicit column naming, the column names for the
same variable need not have identical designations.

3.2 Interfacing with the Database

Database operations (queries and updates) are de-
fined in the DB interface, which contains the following

methods.

• getUpdateActions(AIC aic): queries the
database for all the instances of aic that are
not satisfied in its current state, returning a
Collection<Collection<Action>> that con-
tains the corresponding instantiations of the head
of aic.

• update(Collection<Action> actions): ap-
plies all update actions in actions to the database
(void).

• undo(Collection<Action> actions): undoes
the effect of all update actions in actions (void).

• aicsCompatible(Collection<AIC> aics):
checks that all the elements of aics are compati-
ble with the structure of the database.

• disconnect(): disconnects from the database
(void). The connection is established when the
object is originally constructed.

Some of these methods require more detailed
comments. The construction of the repair tree also re-
quires that the database be changed interactively, but
upon conclusion the database should be returned to its
original state. In theory, this would be achievable by
applying the update method with the duals of the ac-
tions that were used to change the database; but this
turns out not to be the case for deletion actions. Since
the AICs may underspecify the entries in the database
(because some fields are left implicit), the implemen-
tation of update must take care to store the values
of all rows that are deleted from the database. In turn,
the undo method will read this information every time
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it has to undo a deletion action, in order to find out ex-
actly what entries to re-add.

The method aicsCompatible is necessary be-
cause the AICs are given independently of the
database, but they must be compatible with its struc-
ture – otherwise, all queries will return errors. Includ-
ing this method in the interface allows the AICs to be
tested before any queries are made, thus significantly
reducing the number of exceptions that can occur dur-
ing program execution.

Currently, repAIrC includes an implementation
DBMySQL of DB, which works with SQL databases.
The interaction between repAIrC and the database
is achieved by means of JDBC, a Java database con-
nectivity technology able to interface with nearly
all existing SQL databases. In order to determine
whether an AIC is satisfied by a database, method
getUpdateActions first builds a single SQL query
corresponding to the body of the AIC. This method
builds two separate SELECT statements, one for the
positive and another for the negative literals in the
body of the AIC. Each time a new variable is found,
the table and column where it occurs are stored, so
that future references to the same variable in a positive
literal can be unified by using inner joins. The select
statement for the negative literals is then connected to
the other one using a WHERE NOT EXISTS condition.
Variables in the negative literals must necessarily ap-
pear first in a positive literal in the same AIC; there-
fore, they can then be connected by a WHERE clause
instead of an inner join.
Example 2. The bodies of the integrity constraints in
Example 1 generate the following SQL queries.
SELECT * FROM junior
INNER JOIN dept_emp
ON junior.id=category.empId
WHERE category.type=‘boss’

SELECT * FROM junior
WHERE NOT EXISTS
(SELECT * FROM insured

WHERE insured.empId=junior.id
AND insured.type=‘basic’)

3.3 Implementing Repair Trees

The implementation of the repair trees directly fol-
lows the algorithms described in Section 2. Differ-
ent types of repair trees are implemented using inher-
itance, so that most of the code can be reused in the
more complex trees. The trees are constructed in a
breadth-first manner, and all non-contradictory leaves
that are found are stored in a list. At the end, this list
is pruned so that only the minimal elements (w.r.t. set
inclusion) remain – as these are the ones that corre-
spond to repairs.

While constructing the tree, the database has to be
temporarily updated and restored. Indeed, to calculate
the descendants of a node, we first need to evaluate all
AICs at that node in order to determine which ones are
violated; this requires querying a modified version of
the database that takes into account the update actions
in the current node.

In order to avoid concurrency issues, these up-
dates are performed in a transaction-style way, where
we update the database, perform the necessary SQL
queries, and rollback to the original state, guarantee-
ing that other threads interacting with the database
during this process neither see the modifications nor
lead to inconsistent repair trees. This becomes of
particular interest when the parallel processing tools
described in Section 4 are put into place. Although
this adds some overhead to the execution time, at the
end of that section we discuss why scalability is not a
practically relevant concern.

After finding all the leaves of the repair tree, a
further step is needed in the case one is looking for
founded or justified repairs, as the corresponding trees
may contain leaves that do not correspond to repairs
with the desired property. This step is skipped if all
AICs are normal, in view of the results from (Cruz-
Filipe et al., 2013). For founded repairs, we directly
apply the definition: for each action α, check that
there is an AIC with α in its head and such that all
other literals in its body are satisfied by the database.

For justified repairs, the validation step is less ob-
vious. Directly following the definition requires con-
structing the set of no-effect actions, which is essen-
tially as large as the database, and iterating over sub-
sets of this set. This is obviously not possible to do in
practical settings. Therefore, we use some criteria to
simplify this step.

Lemma 1. If a rule r was not applied in the branch
leading to U, then U is closed under r.

Proof. Suppose that r was never applied and assume
nup(r) ⊆ ne(I ,I ◦U). Then necessarily head(r)∩
ne(I ,I ◦U) 6= /0, otherwise r would be applicable and
U would not be a repair.

By construction, U is also closed for all rules ap-
plied in the branch leading to it.

Let U be a candidate justified weak repair. In or-
der to test it, we need to show that U ∪ ne(I ,I ◦U)
is a justified action set (see (Cruz-Filipe et al., 2013)),
which requires iterating over all subsets of U ∪
ne(I ,I ◦U) that contain ne(I ,I ◦U). Clearly this
can be achieved by iterating over subsets of U.

But if U∗ ⊆ U, then nup(r)∩U∗ = /0; this al-
lows us to simplify the closedness condition to: if
nup(r) ⊆ ne(I ,I ◦U), then U∗ ∩ head(r) = /0. The
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antecedent needs then only be done once (since it only
depends on U), whereas the consequent does not re-
quire consulting the database.

The following result summarizes these properties.

Lemma 2. A weak repair U in a leaf of the justi-
fied repair tree for 〈I ,η〉 is a justified weak repair
for 〈I ,η〉 iff, for every set U∗ ⊆ U, if nup(r) ⊆
ne(I ,I ◦U), then U∗∩head(r) = /0.

The different implementations of repair trees use
different subclasses of the abstract class Node; in par-
ticular, nodes of JustifiedRepairTrees must keep
track not only of the sets of update actions being con-
structed, but also of the sets of non-updatable ac-
tions that were assumed. These labels are stored as
Set<Action> using HashSet from the Java library
as implementation, as they are repeatedly tested for
membership everytime a new node is generated.

For efficiency, repair trees maintain internally a
set of the sets of update actions that label nodes con-
structed so far as a Set<Node>. This is used to avoid
generating duplicate nodes with the same label. Since
this set is used mainly for querying, it is again imple-
mented as a HashSet. Nodes with inconsistent labels
are also immediately eliminated, since they can only
produce inconsistent leaves.

3.4 Interfacing with the User

The user interface for repAIrC is implemented us-
ing the standard Java GUI widget toolkit Swing, and
is rather straightforward. On startup, the user is pre-
sented with the dialog box depicted in Figure 2.

The user can then provide credentials to connect
to a database, as well as enter a file containing a set
of AICs. If the connection to the database is success-
ful and the file is successfully parsed, repAIrC in-
vokes the aicsCompatible method required by the

Figure 2: The initial screen for repAIrC.

implementation of the DB interface (see Section 3.2)
and verifies that all tables and columns mentioned in
the set of AICs are valid tables and columns in the
database. If this is not the case, then an error mes-
sage is generated and the user is required to select
new files; otherwise, the buttons for configuration and
computation of repairs become active.

Once the initialization has succeeded, one can
check the database for consistency and obtain differ-
ent types of repairs, computed using the repair tree
described above. As it may be of interest to obtain
also weak repairs, the user is given the possibility of
selecting whether to see only the repairs computed,
or all valid leaves of the repair tree – which typically
include some weak repairs. In both cases the neces-
sary validations are performed, so that leaves that do
not correspond to repairs (in the case of founded or
justified repairs) are never presented.

An example output screen after successful compu-
tation of the repairs for an inconsistent database can
be seen in Figure 3.

4 PARALLELIZATION AND
STRATIFICATION

As described in Section 2.3, it is possible to paral-
lelize the search for repairs of different kinds by split-
ting the set of AICs into independent sets; in the case
of founded or justified repairs, this parallelization can
be taken one step further by also stratifying the set
of AICs. Even though finding partitions and/or strat-
ifications is asymptotically not very expensive (it can
be solved in linear time by the well-known graph al-
gorithms described below), it may still take noticeable
time if the set of AICs grows very large.

Since, by definition, partitions and stratifications

Figure 3: Possible repairs of an inconsistent database.
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are independent of the actual database, it makes sense
to avoid repeating their computation unless the set of
AICs changes. For this reason, parallelization capa-
bilities are implemented in repAIrC in a two-stage
process. Inside repAIrC, the user can switch to the
Preprocess tab, which provides options for comput-
ing partitions and stratifications of a set of AICs. This
results in an annotated file which still can be read by
the parser; in the main tab, parallel computation is
automatically enabled whenever the input file is an-
notated in a proper manner.

4.1 Implementation

Computing optimal partitions in the spirit of (Cruz-
Filipe, 2014) is not feasible in a setting where vari-
ables are present, as this would require considering
all closed instances of all AICs – but it is also not de-
sirable, as it would also result in a significant increase
of the number of queries to the database. Instead, we
work with the adapted definition of dependency given
in Section 2. Given a set of AICs, repAIrC constructs
the adjacency matrix for the undirected graph whose
nodes are AICs and such that there is an edge between
r1 to r2 iff r1 and r2 are not independent. A partition is
then computed simply by finding the connected com-
ponents in this graph by a standard graph algorithm.

The partitions computed are then written to a file,
where each partition begins with the line

#PARTITION_BEGIN_[NO]#

where [NO] is the number of the current partition, and
ends with

#PARTITION_END#

and the AICs in each partition are inserted in between,
in the standard format.

To compute the partitions for stratification, we
need to find the strongly connected components of a
similar graph. This is now a directed graph where
there is an edge from r1 to r2 if r1 precedes r2. The im-
plementation is a variant of Tarjan’s algorithm (Tar-
jan, 1972), adapted to give also the dependencies be-
tween the connected components.

The computed stratification is then written to a file
with a similar syntax to the previous one, to which
a dependency section is added, between the special
delimiters

#DEPENDENCIES_BEGIN#

and

#DEPENDENCIES_END#

The dependencies are included in this section as a se-
quence of strings X -> Y, one per line, where X and Y
are the numbers of two partitions and Y precedes X.

Example 3. The two AICs from Example 1 cannot
be parallelized, as they both use the junior table,
but they can be stratified, as only the first one makes
changes to this table. Preprocessing this example by
repAIrC would return the following output.

#PARTITION_BEGIN_1#
junior(id = $X),

category(type = boss, empId = $X)
-> - junior(id = $X);

#PARTITION_END#
#PARTITION_BEGIN_2#
junior(id = $X),

NOT insured(empId = $X, type = basic)
-> + insured(empId = $X, type = basic);

#PARTITION_END#
#DEPENDENCIES_BEGIN#
2 -> 1
#DEPENDENCIES_END#

Imagine a simple scenario where the junior ta-
ble contains a single entry. Then, computing repairs
for this set of AICs can be achieved by first repair-
ing partition 1 (which will generate a tree with only
one node) and then repairing the resulting database
w.r.t. partition 2 (which builds another tree, also with
only one node). By comparison, processing the two
AICs simultaneously would potentially give a tree
with 4 nodes, as both AICs would have to be consid-
ered at each stage.

In general, if there are n entries in the junior ta-
ble, the stratified approach will construct at most n+1
trees with a total of n2 + n nodes (one tree with n
nodes for the first AIC, at most n trees with at most
n nodes for the second AIC). By contrast, process-
ing both AICs together will construct a tree with po-
tentially (2n)! leaves, which by removing duplicate
nodes may still contain 22n nodes.

This example shows that, by stratifying AICs, we
can actually get an exponential decrease on the size of
the repair trees being built – and therefore also on the
total runtime.

In addition to alleviating the exponential blowup
of the repair trees, parallelization and stratifica-
tion also allow for a multi-threaded implementation,
where repair trees are built in parallel in multiple con-
current threads. To ensure that the dependencies be-
tween the partitions are respected, the threads are in-
structed to wait for other threads that compute pre-
ceding partitions. In Example 3, the thread process-
ing partition 2 would be instructed to first wait for the
thread processing partition 1 to finish.

Our empirical evaluation of repAIrC showed that
speedups of a factor of 4 to 7 were observable even
when processing small parallelizable sets of only two
or three AICs. For larger sets of AICs, paralleliza-
tion and stratification are necessary to obtain feasi-
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ble runtimes. In one application, which allowed for
15 partitions to be processed independently, the strat-
ified version computed the founded repairs in approx-
imately 1 second, whereas the sequential version did
not terminate within a time limit of 15000 seconds.
This corresponds to a speedup of at least four orders
of magnitude, demonstrating the practical impact of
the contributions of this section.

4.2 Practical Assessment

In the worst case, parallelization and stratification will
have no impact on the construction of the repair tree,
as it is possible to construct a set of AICs with no
independent subsets. However, the worst case is not
the general case, and it is reasonable to believe that
real-life sets of AICs will actually have a high paral-
lelization potential.

Indeed, integrity constraints typically reflect high-
level consistency requirements of the database, which
in turn capture the hierarchical nature of relational
databases, where more complex relations are built
from simpler ones. Thus, when specifying active in-
tegrity constraints there will naturally be a preference
to correct inconsistencies by updating the more com-
plex tables rather than the most primitive ones.

Furthermore, in a real setting we are not so much
interested in repairing a database once, but rather in
ensuring that it remains consistent as its information
changes. Therefore, it is likely that inconsistencies
that arise will be localized to a particular table. The
ability to process independent sets of AICs separately
guarantees that we will not be repeatedly evaluat-
ing those constraints that were not broken by recent
changes, focusing only on the constraints that can ac-
tually become unsatisfied as we attempt to fix the in-
consistency.

For the same reason, scalability of the techniques
we implemented is not a relevant issue: there is no
practical need to develop a tool that is able to fix hun-
dreds of inconsistencies efficiently simultaneously,
since each change to the database will likely only im-
pact a few AICs.

5 CONCLUSIONS AND FUTURE
WORK

We presented a working prototype of a tool, called
repAIrC, to check integrity of real-world SQL
databases with respect to a given set of active in-
tegrity constraints, and to compute different types
of repairs automatically in case inconsistency is de-
tected, following the ideas and algorithms in (Flesca

et al., 2004; Caroprese et al., 2007; Caroprese and
Truszczyński, 2011; Cruz-Filipe et al., 2013; Cruz-
Filipe, 2014). This tool is the first implementation of
a concept we believe to have the potential to be inte-
grated in current database management systems.

Our tool currently does not automatically apply
repairs to the database, rather presenting them to the
user. As discussed in (Eiter and Gottlob, 1992), such
a functionality is not likely to be obtainable, as human
intervention in the process of database repair is gener-
ally accepted to be necessary. That said, automating
the generation of a small and relevant set of repairs
is a first important step in ensuring a consistent data
basis in Knowledge Management.

In order to deal with real-world heterogenous
knowledge management systems, we are currently
working on extending and generalizing the notion of
(active) integrity constraints to encompass more com-
plex knowledge repositories such as ontologies, ex-
pert reasoning systems, and distributed knowledge
bases. The design of repAIrC has been with this ex-
tension in mind, and we believe that its modularity
will allow us to generalize it to work with such knowl-
edge management systems once the right theoretical
framework is developed.

On the technical side, we are planning to speed up
the system by integrating a local database cache for
peforming the many update and undo actions during
exploration of the repair trees without the overhead of
an external database connection.
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