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Abstract: In 1998, Boneh, Durfee and Frankel introduced partial key exposure attacks, a novel application of Copper-
smith’s method, to retrieve an RSA private key given only a fraction of its bits. This type of attacks is of
particular interest in the context of side-channel attacks. By applying the exponent blinding technique as a
countermeasure for side-channel attacks, the private exponent becomes randomized at each execution. Thus
the attacker has to rely only on a single trace, significantly incrementing the noise, making the exponent bits
recovery less effective. This countermeasure has also the side-effect of modifying the RSA equation used
by partial key exposure attacks, in a way studied by Joye and Lepoint in 2012. We improve their results by
providing a simpler technique in the case of known least significant bits and a better bound for the known most
significant bits case. Additionally, we apply partial key exposure attacks to CRT-RSA when exponent blinding
is used, a case not yet analyzed in literature. Our findings, for which we provide theoretical and experimental
results, aim to reduce the number of bits to be recovered through side-channel attacks in order to factor an
RSA modulus when the implementation is protected by exponent blinding.

1 INTRODUCTION electromagnetic emission, acoustic emission, etc.) is
used to recover the secret used during the computa-

At Eurocrypt 1996 Don Coppersmith presented a tion. ) o
novel method to find small solutions of univariate ~ Most side channel attacks leverage on combining
modular polynomials, with some applications to the the_5|de-channel Ieakages_, i.e. traces, qf several exe-
RSA cryptosystem (Coppersmith, 1996b). He ex- cutions of the cryptographic algorithm with same se-
tended the method to bivariate equationsy which al- cret but different input. The first attack of this famlly
lowed to factor an RSA modulus given half of the bits IS Differential Power Analysis (DPA) (Kocher et al.,
of one of its prime factors (Coppersmith, 1996a). 1999). Its main feature is the ability to significantly

In 1998, Boneh, Durfee and Frankel introduced reduce the random noise_, by averagingalarge amount
partial key exposure, a family of attacks on RSA re- Of traces, compared to Simple Power Analysis (SPA),

quiring the knowledge of some consecutive most sig- "WNere only one trace is used.
nificant bits (MSB) or least significant bits (LSB) The reader may now wonder why an attacker
of the private exponent (Boneh et al., 1998). The might be able to obtain information on a part of the
main idea behind their methods, for the common secret exponent and not on the entire exponent. The
cases where the factorization of the public exponent reason is that some countermeasures can be adopted
is known, is to use the given partial information on by implementers to thwart side channel attacks.
the private exponent to obtain partial information on A common countermeasure used for RSA is expo-
a prime factor of the modulus, and then apply Cop- nent blinding, originally introduced in (Kocher, 1996)
persmith’s method to factor. but often attributed to (Coron, 1999). It consists of
This application is of high interest in the context adding a random multiple of(N) to the RSA pri-
of side-channel attacks. Side-Channel attacks, intro-vate exponent at each execution. This countermea-
duced in 1996 by Paul Kocher (Kocher, 1996), are sure has the feature to change the private exponent at
attacks on physical implementations of cryptographic each computation, thus not permitting the use of mul-
algorithms. In these attacks a side-channel informa- tiple traces, as required for DPA. This results in the
tion of the computation (such as power consumption, need of using a single trace to discover the secret key.
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A method for this was originally proposed in (Walter,
2001), for a particular exponentiation algorithm, and
generalized for regular exponentiation algorithms in
(Clavier et al., 2010) and named horizontal attack.

The practical issue that the adversary faces in the
horizontal setting is the high noise. Therefore, the ad-
versary is able to correctly guess only a partial num-
ber of the bits of the exponent and not the entire ex-
ponent.

The application of partial key exposure, when ex-
ponent blinding is used as side-channel countermea-
sure, would allow the imperfect attacker to still re-
cover the correct private exponent. However, the
equation exploited by Boneh, Durfee and Frankel is
modified by the introduction of exponent blinding and
their attacks don't apply anymore.

The question as to whether partial key exposure
could be applied in this setting was answered in (Joye
and Lepoint, 2012). The authors presented two tech-
nigues to recover the full exponent, knowing enough
MSB or LSB portions of it, leaving the open question
as up to which extent it is possible to apply partial
key exposure when exponent blinding is applied to
the CRT variant of RSA (Quisquater and Couvreur,
1982).

Our contribution consists of new methods for par-
tial key exposure when exponent blinding is used, im-
proving the results of (Joye and Lepoint, 2012) for
common RSA settings and providing novel attacks for
the CRT variant. Specifically, in this work, we:

e reduce the number of required bits for the MSB at-
tack and make it to not rely on a common heuristic
assumption;

provide a more efficient technique for the LSB at-
tack, requiring to reduce a lattice basis of lower
dimension;

present novel attacks against CRT-RSA imple-
mentations that make use of exponent blinding.
This particular case has never been analyzed be-
fore.

This work is organized as follows. In Section 2 we
recall some basic information about RSA. In Sec-
tion 3 we give a brief introduction about lattices and
Coppersmith’s method. In Section 4 we present two
partial key exposure attacks on RSA with exponent
blinding and in Section 5 on CRT-RSA with exponent
blinding. Experimental results are then provided in
Section 6.

2 RSA APPLICATIONS

In literature, Coppersmith’s method has been applied
with very different, and unusual, RSA parameters.

For example the case wheeds of the same bitsize
of N has been analyzed in (Ernst et al., 2005). In this
work we preferred to focus our analysis on more com-
mon RSA settings.

Let (N,e) be a RSA public key. The modulds=
pg has prime factorg and g of equal bit-size. We
assume wlog thap > g, that implies

g<VN<p<29<2VN

VN < p+q<3VN.
It is common practice to choose 1024 or 2048-bit
modulusN.

The most common value for the public exponent
is 216 1. This is also the default value for the pub-
lic exponent in the OpenSSL library. Other common
values are 3 and 17. NIST mandates tbagtisfies
216 < e < 2256 (Kerry et al., 2013). Therefore, to be as
generic as possible but still adhering to realistic sce-
narios, we will consider in our analysis3e < 22,
but we will provide experiments only for the most
common case =216 1.

The private exponerd satisfiesed— 1 = k@(N)
for some integek, where@(N) denotes the Euler to-
tient function. The exponemt is commonly chosen
to be full size, namely as large gN). In order to
speed-up the decryption process, someone suggests
to use smalled. However, this choice may lead to
security problems as Wiener’s attack (Wiener, 1990).
Therefore, it is usually avoided.

The side-channel countermeasure considered in
this work is the exponent blinding introduced by
Kocher (Kocher, 1996). It consists of adding a ran-
dom multiple of @N) to d, thus RSA exponentia-
tion is computed by using the new exponetit=
d + ¢g(N), for somef > 0. The dimension of is a
tradeoff between security and efficiency/lis 32-bit
long or smaller, it allows some combination of brute-
forcing and side-channel as in (Fouque et al., 2006),
where a brute-force ofis required. Thus, it is a safer
choice to use with bit-size 64. A larger dimension
would make the decryption process less efficient.

In our analysis, to maintain generality, we will
consider (< ¢ < 2128 and in our experiments we will
test bit-sizes of 0, 10, 32, 64 and 100. Our methods
never require the capability of brute-forcing the val-
ues ofk or ¢, sometimes needed in other works.

In order to speed up the exponentiation compu-
tation, some RSA implementations make use of a
technique based on the Chinese Remainder Theorem
(CRT). In particular, one can use exponents

dp=dmod(p—1) and dq=dmod(q—1)
to compute
x% modp and x% modq.

and
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Then, the two results can be combined using the CRT  The goal of lattice reduction is to find a basis with

to obtainxd modN (Quisquater and Couvreur, 1982). short and nearly orthogonal vectors. The LLL algo-
Also CRT-RSA can be protected with exponent rithm (Lenstra et al., 1982) produces in polynomial

blinding. Thus, exponentiation is computed by using time a set of reduced basis vectors. The following

dp=dp+41(p— 1) anddg = dgq+¢2(q—1), for some theorem bounds the norm of these vectors.

by, 62> 0 ) , Theorem 1 (Lenstra-Lenstra-Lovasz) et L be a lat-

In this work we will consider both RSA and CRT-  ice of dimension n. The LLL-algorithm outputs in
RSA implementations that make use of the exponent polynomial time reduced basis vectofs V< i < n,
blinding countermeasure. Our RSA settings will con- satisfying -
sider moduli of 1024 and 2048 bits, public exponent
such that X e < 22%6, private exponent of full size
and a randomization factor up to 128 bits.

To derive theoretical bounds in next sections, we
prefer to express the restrictions erand ¢ with re-
spect to the moduludl. In general, we translate

them to the less restrictive conditioné=< 2N& and
e < 2N4. When necessary, we will consider more re-
strictive bounds.

We will run experiments by considering the
widely used public exponegt= 216+ 1 and random
valuest of different bit-size from 0 to 100. The mod-
ulusN will be 2048-bit long, but note that our attacks
are effective also for other sizes.

n(n—1)
Vil < [Ivall < ... < ]| < 2707 et i
3.2 General Strategy

In (Coppersmith, 1996b), Don Coppersmith presents
a rigorous method to find small roots of univariate
modular polynomials. The method is based on LLL
and can be extended to polynomials in more variables,
but only heuristically.

In this work we use the following reformulation
of Coppersmith’s theorem due to Howgrave-Graham
(Howgrave-Graham, 1997).

Theorem 2 (Howgrave-Graham)Let f(xq,...,X) be

a polynomial in k variables with n monomials. Let m
be a positive integer. Suppose that

1. f(re,..-,rx) = 0 modb™ where|rj| < X; Vi

m

3 GENERAL STRATEGY

Partial key exposure attacks relies on Coppersmith's 2 | (xy Xy, ..., xXd)|| < —

method for finding roots of modular polynomials and vin

multivariate polynomials. This method makes signif- Then f(r1,...,rc) = 0 holds over the integers.

icant use of lattices and lattice reduction algorithms.
We give here a brief introduction to lattices and

to the general strategy used in partial key exposure

attacks and thus also in our attacks.

The general strategy is the following. Starting
from an RSA equation we construct a multivariate
polynomial fy(x1,...,X) modulo an integeb, such
that its root(ry,...,rg) contains secret values. Our
. goal is to find this root, even if no classic root find-
3.1 Lattices ing method is known for modular polynomials. So,

we constructk polynomialsfy, ..., fx satisfying the
Given a set of real linearly independent vectors two conditions of Theorem 2 so that such polynomi-
B={by,...,by} withb € R", a (full-rank) lattice als will have the same rodt;, . .., ry) overZ. Finally,
spanned byB is the set of all integer linear com- we compute the common roots of these polynomials

binations of vectors oB. Namely, the set.(B) = and recover the secret values.

{Tixbi : x €Z}. To generate such polynomials we apply the fol-
B is called thebasisof the lattice and thén x lowing strategy. Starting fronfi, we construct auxil-

n)-matrix consisting of the row vectots,... b, is iary polynomialsg;(xi,...,X) that all satisfy condi-

called basis matrix. tion 1 of Howgrave-Graham’s Theorem. Since every

Every lattice has an infinite number of lattice integer linear combination of these polynomials also
bases. A basis is obtained from another through a uni- satisfies condition 1, we look for linear combinations
modular transformation (i.e., by multiplying the basis that also satisfy condition 2. Such combinations are
matrix by a matrix with determinant1). The deter-  the polynomialsfy,.. ., fk.
minant of the lattice is defined as det = |detB;)| In order to constructy,..., f, we build a lattice
and is an invariant, namely it is independent of the L(B) where the basiB is composed by the coefficient
choice of the basis. The dimension of the lattice is vectors of the polynomialgi(xiXy,...,XXk) (with
dim(L) =n. Xi,..., Xk bounds on the root as in Theorem 2).
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By using the LLL-lattice reduction algorithm, we  x;) and find its roots such thatr| < %N%_ Among all
obtain a reduced basis for the lattices in Theorem  these roots of all these polynomials there is aigo
1. The firstkb\éectors of the reduced basis have norm gq  for eachfp(x — x) set X = %N%. Fix m =
smaller tha%, if: llogN/4] and set = m.

n(n-1) m Define the auxiliary polynomials

1 b
4(n+1-K) ISk « — o )
2HnT0 detlmri < n gi,j(x) =xIN'f™ ' fori=0,....m—1;j=0

We may let terms that do not dependMrcontribute hi(x) =X fM(x) fori =0,....t -1
to an error terne and consider the simplified condi- and construct the lattice spanned by the vectors
tion gi.j (xX) andh; (xX).

detl < b™"M 1K), (1) By applying the LLL-algorithm toL, a reduced ba-
If this condition holds, then we can use the fikst ~Sis is obtained. From the shortest vector construct the
reduced-basis vectors to construct the polynomials polynomialfi(x). Among its roots over the integers,
f1,..., f satisfying the second condition of Theorem there are also the roots dh(x—x). Compute the
2. Then, in order to comput@y,...,ry), we do the  roots of fi(x) by using a classic roots-finding algo-

following. rithm.

If k=1, then we consider the polynomiél = Construct the seR of all integer roots of the polyno-
f1(x1) and apply a classic roots finding algorithm for - mials fi(x). The seR will contain also the rooxo.
univariate polynomials over the integers. Thus, f(xo) = kp can be computed and, sinkés not

If k> 1, we use the resultant computation to con- & multiple ofg, the computation of goiN,kp) gives
structk univariate polynomial&i(x) from fy,..., fx p.

and apply a classic roots finding algorithm foreach of -~ ~Recall that the LLL-algorithm is polynomialin the
them. The effectiveness of this last method relies on dimension of the matrix basis and in the bit-size of its
the following heuristic assumption. entries. Since the dimension of the latticenis-t =
[logN/2] and the bit-size of its entries is bounded by
a polynomial in(mlogN), every step of the proof can
be done in polynomial time. O

Assumption 1. The resultant computation for the
polynomials i described above yields a non-zero
polynomial.

This assumption is fundamental and widely used
for many attacks in literature (Joye and Lepoint, 2012;
Lu et al., 2014, Blomer and May, 2003; Boneh et al., 4 ATTACKSON RSA
1998; Ernst et al., 2005). None of our experiments has
ever failed to yield a non-zero polynomial and hence In this section we present two attacks on RSA imple-
to mount the attack. mentations, one given the most significant bits of the
In this work we will make use of a seminal result private exponent and the other one given its last sig-
due to Coppersmith, based on the strategy describednificant bits. We assume that the private expomist
above. We present here a more general variant of it, full-size and that it is masked by a random multiple
due to May (May, 2003), together with a sketch of its Of (N). Thus, exponentiation is performed by using
proof to illustrate how we will construct lattices for the exponentl” = d + (@(N) for somel > 0. When
our experiments. ¢ = 0 clearlyd* = d, that means that no countermea-
. , sure is applied.
Theorem 3. Let N = pq with p> g. Let k be an Joye and Lepoint presented partial key exposure

unknown integer th‘.’ﬂ |s_n9Ea multlp.le of g. Suppose attacks on RSA with exponent blinding (Joye and Le-
Welknow an approximatiokip Of-kp-WIth|kp— kp) _S ~ point, 2012). Here we present two alternative ap-
2Na. Then we can factor N in time polynomial in  proaches that allow us to get better bounds on the
logN. number of leaked bits necessary to the attacker to

Sketch of proofDefine the univariate polynomial break the system.

fp(X) = X+ kp 4.1 Partial Information on L SB of d*

w!th rootx().: kp— kpmcidulolp. . ) In this section, we assume that the attacker is able to
Divide thel interval[—2N4,2N4] into 8 subintervals  recover the least significant bits of the seatet We
of size%NZ centered at somse. write d* = d; - M + do, wheredy represents the frac-

For each subinterval consider the polynoniglx — tion of d* known to the attacker whild; represents
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the unknown part. For instance, if the attacker knows
them LSB of d*, thenM = 2™,

We prove that if the attacker knows a sufficiently
large number of least significant bits, then she can fac-
tor N.

To prove our result, we generalize the method

used in (Blomer and May, 2003), by introducing the
new factor.
Theorem 4. Let(N,e) be an RSA public key with-e
NS < 2N7 and ¢ = d+ ¢@(N), for somel/ = N9 <
2N3. Suppose we are given end M satisfying =
d* modM with

M > N3V 1+6(a+0)+(1+60)+¢

3

for somee > 0. Then, under Assumption 1, we can
find the factorization of N in time polynomiallogN.

Proof. We start from the RSA equation
ed—1=kg(N).
Sinced* = d+ £@(N), we obtain the equation
ed' — 1= (k+e/)@p(N).

Letk* = k+ e/, so thated* — 1 = k*@(N).
By writing d* = diM + dp and considering that
@®N) =N-—(p+qg—1), we get

K'N-K'(p+q—1)—eth+1=eMd.
It follows that the bivariate polynomial
fem(X,y) =xN—xy—ed+1

has root(Xp, yo) = (k*, p+ g— 1) moduloeM.
In order to boundkg, notice that

_ed -1 e<d+€(p(N)
~eN) @(N)

In addition, recall thap+q < 3N,

We can set the boundé = 2N®+9 andY = 3N3 so
thatxo < X andyg < Y.

To construct the lattice, we consider the following
auxiliary polynomials

k*

> < e(1+£) <2N**O,

gij(xy) =X (eM) M ifori=0,....m j=0,...,i
hij(xy) =y (eM) f®  fori=0,....,m; j=1,....t

for some integers andt, wheret = tmhas to be op-
timized.

All integer linear combinations of these polynomials
have the rooiXo,yo) modulo (eM)™, since they all
have a tern{eM)' f{},". So the first condition of The-
orem 2 is satisfied. In order to satisfy the second con-
dition, we have to find a short vector in the lattice

140

spanned by ;(xX,yY) andh; j(xX,yY). In particu-
. )I’TI
lar, this vector shall have a norm smaller th%.

The second condition of Theorem 2 is satisfied when
inequality (1) holds, i.e. if

detl < (eM)™"-D. 2

An easy computation shows that= (T+ %) n? and
that

imi(1+0(1))
detL(M) _ ((eMY)3T+Zz3T2+3T+l) 6 ]

Considering the boundé= 2N%*% andY = 3N3, we
obtain the condition

mB(1+0(1))

((eM2N0+G)3T+2(3N%)3T2+3T+l) é < (eM)m(nfl)

that reduces to
N T ((a-+0) (31+2)+ 3 (32+31+1) ) (1+0(1)

< (eM)m(nfl)—%(3T+2)(1+o(1))_

We know thaeM > NO3V/1+6(0+0)+ §(1+60)+€ 54 the
above condition is satisfied if

91 +6(0+0+1) —2¢/1+6(a+0)(1+31) +2<0.

The left-hand side is minimized, for

~(Viteato-1).

73
Thus, for this choice of condition 2 is satisfied so
we can successfully apply the LLL-algorithm.

From the LLL-reduced basis, we construct two
polynomialsfy(x,y), f2(x,y) with the common root
(%0,Y0) over the integers. By the heuristic assump-
tion, the resultantes(f1, f2) is not zero and we can
find yo = p+ g— 1 using standard root finding algo-
rithms. This gives us the factorization of N.

To conclude the proof, we need to show that every
step of the method can be done in time polynomial in
log(N). The LLL-algorithm runs in polynomial time,
since the basis matrB® has constant dimension (fixed
by m) and its entries are bounded by a polynomial
in N. Additionally, res,(f1, f2) has constant degree
and coefficients bounded by a polynomiaNnThus,
every step can be done in polynomial time. O

We would like to make two considerations. The
first is that wheno = 0, we get the same result of
(Blomer and May, 2003). Indeed, our method is a
generalization of it. The second is that we obtain the
same bound of (Joye and Lepoint, 2012), but our ap-
proach is more effective in practice. As we will show
in Section 6.1, we are able to get closer to the theoret-
ical bound by using smaller lattices.
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4.2 Partial Information on MSB of d* It is worth to observe two facts: first, the bound
|d* — d*| < 2N requires the attacker to get the
In this section, we prove that if the attacker knows a (log,(N°"%) -+ 2) most significant bits ofi*, a result
sufficiently large number of most significant bits of which holds even foo = 0 (i.e. d* = d); second, the
the protected exponent, then she can factor N. assumptioN%+° < IN? of Lemma 1 always holds
To prove this result, we show how the partial for our choice of RSA parameters.
knowledge ord* can be used to construct an approx- We can now prove Theorem 5.
imation of p that allows to apply Theorem 3. . .
The advantage of this approach compared to (JoyeProof of theorem 5We begin by applying Lemma 1
and Lepoint, 2012) is that it does not rely on the to obtain the value ok*. The conditiond* —d*| <
heuristic assumption 1 and yields to a better bound. 3N~ of the lemmais always satisfied by our choices

Theorem 5. Let (N,e) be an RSA public key with. of RSA parameters becaU$el%+° <IN since
e=N% and d" = d + ¢@(N) for some/ = N° with NO < 2N3 andN® < 2N1.

o > 0and N0 < 2N3, Suppose thdp—q| > CNZ, We can define an approximatismf's= p+gas
for some c< % and suppose we are given an approx- o — 1
imationd* of d* such that §:=1+N- e
|d* — d¥| < cNE+O. Reminding thak*, with the assumption of > 0, is
lower bounded byN®*+°, we obtain

Then we can find the factorization of N in time poly- o

nomial inlogN. s—§ = E* (d* —d~*) < HocN%m < cNi
Notice that, like in Theorem 4, we haee — 1= K : N

k*@(N) with k* = k+ €. We usesto define
In order to prove Theorem 5 we need first to prove <~ L/a _

the following lemma. P=3 (s+ ¥ 4N)

Lemma 1. With N'© < 2N3, givend such that \a;\;tigl?tplgrsosxg?zt;ggiity following Appendix B of
«_ qx| < Inl-a oo L :
|d~ df < zN then the approximatiork" - (Boneh et al., 1998), we now assume that §, so

h"@,ﬁﬂ of k* is exact. thatp> p.

Observe that

Proof. This proof follows the same strategy used in 1 1
the proof of Theorem 6 of (Blomer and May, 2003). p—p==(5—9+= (\/§ —AN-— /22— 4N)
Note that 2 2

_ 1. (5+9)(5—9)
~ led—1 edr -1 =5(8-9)+
R e 2 2(VF=aN+V@-aN)
~ i -~ _ _ —(p=0)2
_|(ed =)(N+1)—(ed"~H(N+1-(p+0)) ;r:;esz|s'>v§\£a/fc<41'\lzsz W=
ON)(N+1) | b- = =2

Noting thats < s+ CN%, we have
. 1 2
B ) oo o PHASNENTEN= g g a5 ond < 2(pra)+ N < 6N+ NE < 7N,

It follows that

= _|ed —d) | |(p+a)(ed -1 514 9)(5
K — k| < Ll o (5+9(-9
N N)(N+1 P—pP= 5= +—F—=—
1
%N“Nl’“ BNz toa+1+o - 1CN%‘ N (7N%)(CN%)
3 T(N+1) =2 4oN?
1 1,3 1 12 1.1 7 1
z —2tg « 24 % < -N3 4 —-N3
<3 +12N <3 + N =72 2
1
With RSA parameters, we have 2N/, so we can < 2N
safely assumék* —k*| < 1. But the difference be- Since the approximatiop satisfies the hypothesis

tween two integers is an integer, thus we can concludeof Theorem 3 wittk = 1, we can find the factorization
thatitis zero, therefork: = k*. O of N in time polynomial in log\. O
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From Theorem 5 we can recover the minimum
number of known MSB bits required. In accordance
to previous sections we define this quantity as Mg
whereM is defined as

d* 2N1+o

jd —d*|  INi+o

3

ANZ.

®3)

It is important to underline that this bound is not af-
fected by the size ofi and o as long as the con-
dition of Lemma 1 holds. In fact, while it might
seem counter-intuitive, the presence of the counter-
measure (i.eo > 0) improves the theoretical bound

ld—d| < cNi—® of Theorem 3.3 of (Boneh et al.,
1998). However, this difference was not shown in the
experimental results, probably due to low valuexof
whene= 21641,

Also note that Theorem 5 provides a significant
improvement over the bound of (Joye and Lepoint,
2012). In fact, fora + 0 < % (which is always true in

our setting), their bound isl* — d*| < N9°, which
would require knowledge of lggN*~?) bits.

Attack usingbothMSB and LSB of d* We wantto

briefly analyze also the case where the attacker might

be able to detect bits in different positionsaf. In

this scenario, the attacker could obtain enough most

significant bits to satisfy Lemma 1 and obtéihl)g2 N
least significant bits to recover half of the bitspénd
factorN, as shown in (Boneh et al., 1998). Thus, the
knowledge of only(logz(N%“’*“) +2+¢) bits and
the resolution of an univariate equation are required.

5.1 Partial Information on LSB of d;

In this section, we assume that the attacker is able to
recover the least significant bits of the seapt We
can Writed; =d;-M +dg wheredp is known to the at-
tacker whiled; is unknown. The integev! is a power
of two and represents the bound on the known part.
We prove that if the attacker knows a sufficiently
large number of least significant bits, then she can fac-
tor N.
To prove our result we use a method presented by
Herrmann and May to find the solutions of a bivariate
linear equation modulp (Herrmann and May, 2008).

Theorem 6. Let(N,e) be an RSA public key with-e

N® Letd,=dmodp—1landletd,=d+/¢(p—1)

for some? = N° with 0 > 0. Suppose that N0 <
1 1

Nvz 2 and that we are givengdand M satisfying

do= dg modM with

i
M > Nl ﬁ+a+20+s’

for somee > 0. Then, under Assumption 1, we can
find the factorization of N (in time polynomial in
logN).

Proof. We start from the equation
ed,—1=ky(p—1).

Sinced; = dp +¢(p— 1), we obtain
ed,— 1= (kp+el)(p—1).

Letky denotekp + /. By writing dj

diM +dop, we

We don't describe the attack in details because, onceobtain the following equation

k* is recovered applying Lemma 1, it reduces to the
method of (Boneh et al., 1998). Thus, we remind the
reader to it. In Section 6, we will provide experimen-
tal results.

5 ATTACKSON CRT-RSA

In this section we present two attacks on CRT-RSA
implementations, where we target exponentiation by
dp. One is based on the knowledge of the most sig-
nificant bits of the CRT private exponent and one is
based on the knowledge of its least significant bits.
We assume that the private exponeptis full-size
(with respect top) and that it is masked by a random
multiple ¢ of (p—1), for somel > 0. When/ =0
clearlyd; = dp, that means that no countermeasure is
applied.
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eMd; + Ky +ed — 1= kyp.
It follows that the bivariate polynomial
fo(X,y) =eMx+y+edh—1

has root(xo, yo) = (di1,k};) modulop.
In order to bound, notice that

edy—1 e(dp+€(p—1)

Qe a+0
s top <P ) o<

Additionally, recall thath = 2 — do.
1 1
We can set bound$ = Nvz2~ 2 %7 andy = 2No+©

so thatxg < X andyp <.
To construct the lattice, we consider the following
auxiliary polynomials:

f = x+ Ry+ R(ech — 1) whereR = (eM)~* modN
Oki :yif"kNmax{tfk,O}’ k=0,....mi=0,....m-Kk

for some integersn andt, wheret = tm has to be
optimized.
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All integer linear combinations of these polyno-
mials share the rodko, yo) modulop'. Thus, the first
condition of Theorem 2 is satisfied. In order to satisfy
the second condition we have to find a short vector in
the latticeL, spanned bygi(xX,yY). In particular,

this vector shall have a norm smaller t

The second condition of Theorem 2 is satisfied
when equation (1) holds, i.e. when

detl. < NZ™™0-D), 4)

A straightforward computation shows that =
$(m? +3m+2) and that

detL(M) = (XY)%(”‘3+3W12+2m)N%mr(mrJrl)(4+3mfmr)_
Thus, condition (4) becomes

(XY) & (MP3mP+2m) -\ ZTM(MP-+3m) — g e (m-+1) (4-+3m-—n)

that reduces to
N 2 (3r+2r3-61%)

x
Nl |/\

Y

1
SinceXY =2NVz 2,
if

the above condition is satisfied

%—%—%(31’4—2'[3—6'[2) <0.

The left-hand side is minimized far=1— % For

this choice oft condition (4) is satisfied, so we can
successfully apply LLL-algorithm and then find the
root (dl,k’l;). From this values, we can obtap+ 1
and then the factorization &.

To conclude the proof, we need to show that ev-
ery step of the method can be done in time polyno-
mial in log(N). The LLL-algorithm is polynomial in
the dimension of the matrix, that &(m?), and in the
bit-size of its entries, that ar@(mlogN). Addition-
ally, res,(f1, f2) has constant degree and coefficients
bounded by a polynomial iNl. Thus, every step can
be done in polynomial time. O

5.2 Partial Information on M SB of d;‘,

In this section, we prove that if the attacker knows a
sufficiently large number of most significant bits of
the protected exponed}, then she can facty.

To prove this result, we show how the partial
knowledge ordj; can be used to construct an approx-
imation of a multiple ofp that allows to apply Theo-
rem 3.

Theorem 7. Let(N,e) be an RSA public key with-e
N® Letdy=dmodp—1landletd,=dy+4(p—1),
for somel = N° with ¢ > 0. Suppose that 0 <
%N% and that we are given an approximatidp of d;,
such that

* T+ 1
dy —dy| <Na°€.

Then, we can find the factorization of N in time poly-
nomial inlogN.

Proof. We start from equation
ed,—1=ky(p—1)
with ki = kp + Ce.
Note thatksy < 2N9+0 < %N% implies thatg can’t di-
vide k.
We compute an approximation
kpp:=edy—1

of kyp, up to an additive error of at most

[ksp— kip| = Jed; — 1+ ks, — eds + 1|

— |e(ds — df) + K| <N+ 2N9+% < 2N,
Since the approximatioﬁﬁ) satisfies the hypothesis

of Theorem 3, we can find the factorization ¥fin
time polynomial in logN. O

The bound of Theorem 7 implies that an attacker
has to know at least Iggv bits, where

d’{) - 2Nl+0

— = . :ZN%+G+0
ds—dy|  Ni-c

(5)

This bound holds when the conditiotf o < IN4
holds, which is not always the case in our settings. For
example an RSA modulus of 1024 bit with log=

256 andlog,¢ = 128 will have N9 < 2N8. For
these cases we are unaware of successful applications
of Coppersmith’s method.

In(Luetal., 2014) Section 4 itis presented a novel
technique for the CRT case with better bound but with
the requirement to hawd, not full size. This require-
ment also implies that no countermeasure is applied.

6 EXPERIMENTAL RESULTS

Here we present experimental results for the attacks
described in previous sections.

We consider RSA applications with 2048-bit mod-
ulusN and public exponerg = 216+ 1, since this is
the most common choice made for real implementa-
tions.

In addition we assume that a random multiple
of @(N) (or of (p— 1) for CRT-RSA applications) is
added to the private exponeth({respectivelydp).

For each dimension df, we first report the theo-
retical bound on the minimum number of bits of the
secret key that the attacker needs to know to recover
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. . . . Table 1: Experimental results for partial key exposurecitta
it entirely. This values are derived from theorems we given least significant bits of the secret exponght= d +

have proved in previous sections. {@(N). The modulusN is 2048-bit long and = 216+ 1.
Then, we report the average minimum number of thea exp
bits that we really needed in our tests. In fact, theo- | log,?¢ bound bound dim(L) | LLL

retical bounds are reached when the lattice dimension
goes to infinity. In general, the smaller is the number
of known bits, the bigger the lattice shall be. To con-
cretely mount an attack, one needs to construct a lat-
tice whose dimension is such that the LLL-algorithm
runs in practical time. Recall that the running time of
LLL-algorithm depends on the lattice dimension and
on the dimension of the entries of its matrix-basis.
Since the dimension of the entries depends on themental bounds is of very few bits and the LLL-
boundsX; and on the modular polynomial used, the algorithm’s running time is really small.

LLL-algorithm may have different running times for It is worth to say that fof = 0 and smalk, the at-

the same lattice dimension. tack in (Boneh et al., 1998) is more effective than our

We decided to fix an upper bound on the dimen- attack. Indeed tha/4 least significant bits ofl are
sion of the lattices we constructed. We chose the sufficient to factoN. However their attack requires
threshold 80 as a tradeoff between efficiency and ef- a brute-force search dg that is allowed only when
fectiveness of our attacks. Indeed, this choice allows e+ ef is small. Thus, foe= 216+ 1 and¢ = 0 their
us to get closer to the theoretical bounds as opposedmethod is more effective than ours. But, with the in-
to smaller dimensions. On the other hand, 80 is small troduction of exponent blinding, or for larger dimen-
enough to make the LLL-algorithm running in practi- sion ofe, their method can’t be applied, because the
cal time. brute force-search becomes impractical.

We fixed the same threshold for all attacks in order Now, we compare our approach and the approach
to compare their effectiveness when using the sameof (Joye and Lepoint, 2012) for the same scenario.
lattice dimension. We use a bivariate polynomial instead of a trivari-

We implemented our methods with the SAGE ate polynomial, thus we perform a single resultant
computer-algebra system (Stein et al., 2014) and runcomputation, instead of three.
it on a 3GHz Intel Core i5. In order to compare the two approaches, we re-

With the exception of the CRT-MSB case, where port experimental results obtained using the same pa-
we used only 10 experiments, for all other attacks rameter choices made by the authors in (Joye and
we ran 100 experiments generating different key pairs Lepoint, 2012). Specifically, we consider 1000-bit
and different values of. We reportthe average values modulusN, public exponenie = 216+ 1 and/ ¢

0 1040 1043 78 18s
10 1060 1063 78 19s
32 1103 1106 78 22s
64 1164 1171 78 50s
100 1232 1243 78 70s

obtained from these experiments. {10,100,200,300}.
As shown in Table 2, the theoretical bound is the
6.1 Resultswith known LSB of d* same, but our approach allows us to get closer to it.

Moreover, we do it by using smaller lattices.

In Section 4.1 we proved that if the attacker knows . .
a sufficiently large number of least significant bits of 6.2 Resultswith known MSB of d
d*, then she can factad\.

For generating the lattices, we used= 11 and In this section we report experimental results on fac-
t = m, wheret is defined in the proof of Theorem 4. toring with knowledge of the most significant bits of
Notice thatr is always very small resulting in= 0 for the protected private exponent.
each experiment. Thus, the dimension of the latticeis  Since this method uses an univariate polynomial,
fixed and equal to 78. it is possible, in theory, to match the theoretical

In Table 1 we present our results. For different di- limit, although the lattice dimension would make LLL
mensions of we report theoretical and experimental highly impractical. By imposing the threshold for
bounds on the minimum number of leaked bits neces- the maximum dimension of the lattice equal to 80,
sary to mount the attack. Then we report the lattice the LLL-algorithm’s running time is about 2 hours.
dimension that allowed us to get the corresponding For constructing such a lattice, we used= 40 and
experimental bound and finally the running time of t =40.

LLL-algorithm for these lattices. In Table 3 we present our results. We report the-

The difference between theoretical and experi- oretical and experimental bounds on the number of
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Table 2: Comparison between the approach of (Joye and Lie@ilh2) and our approach for partial key exposure attack
given least significant bits of the secret expordint= d + £@(N). The modulusN is 1000-bit long ana: = 216 4 1.

log, ! A{)hproach of (Joye and Lepoint, 2012) " Our approach
ea ex . ea ex .
bound bou?ld dim(L) | LLL bound boul;d dim(L) | LLL
10 535 580 16 1sec 535 540 10 1sec
100 700 760 16 1sec 700 720 10 1sec
200 871 960 16 1sec 871 920 10 1sec
300 1033 1160 16 1sec 1033 1120 10 1sec

Table 3: Experimental results for partial key exposurecitta Table 4: Experimental results for partial key exposurecitta

given most significant bits of the secret exponght=d + given most and least significant bits of the secfet= d +
(@(N). The modulus\ is 2048-bit long ana = 216 4 1. £@(N). The modulus\ is 2048-bit long anag = 216+ 1.
log,¢ | hea eXP | gimL) | LLL logy¢ | nea eXP | gim) | LLL
2> | bound | bound 2 bound | bound
0 1555 1555 80 112 m 0 17+514 | 17+526 80 2h 27m
10 1538 1555 80 112 m 10 27+514 | 27+526 80 2h 27m
32 1538 1555 80 112 m 32 49+514 | 49+526 80 2h 27m
64 1538 1555 80 112m 64 81+514 | 81+526 80 2h27m
100 1538 1555 80 112 m 100 | 117+514| 117+526| 80 2h 27m

leaked bits, the dimension of the lattice and the run- makes the LLL-algorithm’s running time highly im-

ning time of the LLL-algorithm. practical. By setting the threshold 80 for the lattice
The experiments confirmed the independence of dimension, the LLL-algorithm’s running time is about

the bound with respect to the dimension of the random 13 minutes.

integer. In Table 5 we present our results. We report the-
Unfortunately, in this case we cannot compare our oretical and experimental bounds on the number of

approach with the approach of (Joye and Lepoint, leaked bits, the dimension of the lattice and the run-

2012), because they didn’t provide any experimen- ning time of the LLL-algorithm.

tal result respecting our assumptions. In fact, they Table 5: Experimental results for partial key exposurecatta

use very large values df namely 500, 600 or 700-  5gainst CRT-RSA, given least significant bits of the secret
bit long for a modulusN of size 1000 bits. These exponentd’ = dp+¢(p—1). The modulusN is 2048-bit

unrealistic settings do not satisfy our requirement of gng ande = 216 4 1.
Lemma 1 folN%*% < 2NE. In any case, our approach

' i id i i thea ex .

improves their bound, as said in section 4.2. log, ¢ bound bou?ld dim(L) | LLL

Resultsusing both MSB and LSB. As said in sec- 100 gg ?2; ;g for?n

tion 4.2, it is possible to mount an attack knowing

both MSB and LSB off*. An univariate polynomial 32 681 758 8 13m

is constructed and its root is found by constructing a 64 745 822 8 17m
100 817 894 78 18 m

lattice as in the proof of Theorem 3. In Table 4 we
provide some experimental results for this method.

] In this case, the difference between theoretical and
6.3 Resultswith known L SB of dj experimental bounds is about 80 bits. Given a smaller
number of leaked bits one can still mount the attack by
In this section we report experimental results for CRT- constructing bigger lattices, but the computation will
RSA applications when the attacker knows the least need more time to end. For example, by setting5
significant bits of the blinded private exponetit= andm= 18 it is sufficient to obtain 50 bits more than
do+4(p—1). the theoretical bound to solve. But the correspond-
To get close to the theoretical bound, the lattice ing lattice dimension is 190, which makes the LLL-
dimension has to be significantly increased. But this algorithm end in about one day. By setting 7 and
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m= 24 it is sufficient to obtain 40 bits more than the factor¢. In particular, we focused on public exponent
theoretical bound to solve. But the lattice dimension e such that 3 e < 2256, combining the upper bound
is around 500 and we think that the LLL-algorithm provided by NIST with the frequent value of 3. Addi-

would be highly impractical in this case. tionally, we focused on full size private exponents and
Notice that for = 0 and smalk, Blomerand May ¢ < 2128 as commonly used in real implementations.
show that a quarter af,, is sufficient to the attacker We derived sufficient conditions to successfully
to factorN (Blomer and May, 2003). To prove their mount partial key exposure attacks in different sce-
result, they use a brute-force searchkgnthat is al- narios and validated them providing numerical exper-
lowed only where+ e/ is small. Thus, foe=2%41 iments, using\ of size 2048 ane = 2641, which

and/ = 0 their method is better than our method, since is the most commonly used setting in real implemen-
a smaller number of leaked bits are sufficient to fac- tations.

tor N. But, for larger dimension of and whery > 0 As for RSA, we improved the results of (Joye and
their method is no more effective because the brute Lepoint, 2012) with the aim of reducing the number
force-search becomes unfeasible. of bits to be recovered by the adversary through side-
channel. In particular, when least significant bits are
6.4 Resultswith known M SB of d’F‘) exposed, our approach allows to get closer to the the-

oretical bound by using smaller lattices, as shown in

Here we report experimental results for CRT-RSA ap- 1able 2. Whereas, when most significant bits are ex-

plications when the attacker knows the most signifi- PoS€d, we presented a method that does notrely on the

cant bits of the protected private exponent. heuristic assumption and that provides better bounds,
Also in this case we imposed the threshold 80 for @S shown in Section 4.2.

the lattice dimension, which allowed us to run the = Additionally, we provided novel results for the

LLL-algorithm in practical time. We constructed lat- Particular case where the adversary is able to recover

tices by usingn= 40 andt = 40. non-consecutive portions of the private information.

In Table 6 we report the theoretical and experi-  As for CRT-RSA with exponent blinding, we pro-
mental number of leaked bits, the lattice dimension Vided novel results for both scenarios when either
and the running time of LLL-algorithm. least or most significant bits are exposed.

In Table 7, we recap the numerical results we ob-
tained from our experiments. For each dimension of
£ we provide the minimum number of bits of the pro-

Table 6: Experimental results for partial key exposurecitta
given most significant bits of the CRT secret export

d+£p-1). tected exponent that is sufficient to the attacker to suc-
thea exp ) cessfully break the system.
1062 | pound | bound | dimL) | LLL With the only exception of the RSA attack based
0 528 540 30 3h 03m on most signifiqan_t bits, the nu_ml:_)er of known bits de-

10 537 550 30 3h 59m pends on the bit-size of the blinding factor
32 560 573 80 4h 23m
64 591 604 80 4h 52m
100 628 640 80 6h 13m ACKNOWLEDGEMENTS
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