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Abstract: The lenses of modern single lens reflex (SLR) cameras may contain a dozen or more individual lens elements 
to correct aberrations. With processing power more readily available, the modern trend in computational 
photography is to develop techniques for simple lens aberration correction in post-processing. We propose a 
similar approach to remove aberrations from images captured by a single imaging Fresnel lens. The image is 
restored using three-stage deblurring of the base color channel, sharpening other and then applying color 
correction. The first two steps are based on the combination of restoration techniques used for restoring images 
obtained from simple refraction lenses. Color correction stage is necessary to remove strong color shift caused 
by chromatic aberrations of simple Fresnel lens. This technique was tested on real images captured by a simple 
lens, which was made as a three-step approximation of the Fresnel lens. Promising results open up new 
opportunities in using lightweight Fresnel lenses in miniature computer vision devices. 

1 INTRODUCTION 

Modern camera lenses have become very complex. 
They typically consist of a dozen elements or more 
necessary to remove optical aberrations (Meyer-
Arendt, 1995). Recently, simple lenses with one or 
two optical elements were proposed (Heide et al., 
2013). These lenses are similar to lenses used 
hundreds years ago, and chromatic aberration is still 
an issue for images captured using simple lenses 
(Heide et al., 2013). This aberration can now be 
corrected with digital processing. 

A chromatic aberration is a correlation between 
optical system characteristics and a wavelength of the 
registered light. Chromatic aberrations result in a 
chroma in achromatic objects and/or in coloring the 
contours. 

Lens producers use special arrays of low-
dispersing elements to negate aberrations in imaging 
elements. The weight of these complex lenses may 
vary from 400 to 800 grams, sometimes as much as 
1500 grams. Algorithmic solutions for the aberration 
problem were proposed (Powell, 1981; Farrar et al., 
2000; Millan et al., 2006; Fang et al., 2006).  

Chromatic aberrations in distorted images can be 
computationally corrected with two methods: with 
the blind or semi-blind deconvolution using PSF 
estimation, and with a contour analysis in different 

color channels (Chung et al., 2010). In (Kang, 2007), 
a combination of these two is used. 

Aberration model in this case is derived as a 
generalization of an optical system defocus model. 
Well known Richardson and Lucy proposed an 
iteration deconvolution method for optical defocus 
compensation in astronomical observations. In recent 
years, a modified approach was used to correct 
chromatic aberration (Kang, 2007; Cho et al., 2010; 
Cho et al., 2012). 

We use both correction methods to improve 
images obtained with Fresnel lenses. This type of lens 
(Soifer, 2012) can be defined as a stepped 
approximation of the Fresnel lens (Fig. 1), when a 
Fresnel lens is created by consecutive etching with 
different binary masks. 

Fresnel lenses have advantages over refractive 
lenses in weight and linear size, especially 
pronounced for long focal lengths, where a single 
Fresnel lens can replace a complex set of refractive 
lenses. However, this comes at a cost: resulting 
images are blurred depending on the light wavelength 
and have multiple distortions such as moiré. As a 
result, Fresnel lenses are typically used as optical 
collimators or concentrators but not as imaging lens 
(Davis and Kuhnlenz, 2007). 

Fresnel lenses have much stronger chromatic 
aberrations than simple refractive lenses do, which 
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need to be corrected in post-processing. One of the 
color channels (in this paper we use the green 
channel) has less blurring and can be used as a 
reference to correct the other two channels. 

If color aberrations can be corrected, Fresnel 
lenses can be used as imaging lenses. In this paper we 
propose the model for correcting chromatic 
aberrations in the images obtained with Fresnel 
lenses, followed by the deconvolution, edge analysis 
and color correction. Finally, we present correction 
results for images captured using lens manufactured 
as a three-step approximation of Fresnel surface. 

 

Figure 1: Conceptual illustration of collapsing aspheric 
refraction lens into Fresnel lens. 

2 IMAGE CORRECTION FOR 
FRESNEL LENSES 

A Fresnel lens typically adds a strong chromatic 
distortion in the non-monochromatic light. For any 
wavelength further away from the base wavelength 
λ0, diffraction efficiency of the zero order decreases. 
The light focused in the zero order creates an 
additional chromatic highlight. This highlight 
becomes stronger as the wavelength deviates from λ0. 
Diffraction efficiency of zero order can be expressed 
as: 

 2 1
0 cos 1 ,n h       (1)

where   is transmittance coefficient in the zero order 
direction, 0  total lens transmittance coefficient, h  - 

height of Fresnel lens microrelief, n  – refraction 
index. We will call the color highlights caused by the 
energy focused in non-working diffraction orders as 
chromatic shift, in addition to the chromatic 
aberration. Chromatic aberration leads to color fringe 
along the edges and the color shift distorts colors of 
uniform colored areas of the image. 

Chromatic aberration in refraction lenses is 
described by the general defocus model (Heide et al., 
2013). In this model, the point spread function (PSF) 
is supposed to be linear, at least in the local spatial 
area, as shown in: 

   0 n,B
RGB RGBp p  x B x  (2)

where  B
RGBp x  is the one of color channels of the 

blurred image, and  0
RGBp x  is the corresponding 

channel of the underlying sharp image, B  is a blur 
kernel, or PSF, n  is additive image noise, 2

 x  is 

a point in image spatial domain. 
Paper (Shih et al., 2012) shows that the lens PSF 

varies substantially being a function of the aperture, 
the focal length, the focusing distance, and the 
illuminant spectrum. So, a blur kernel B  in (2) being 
a constant is not accurate enough, especially for 
Fresnel lenses with strong chromatic aberration.  

For this strong aberration, a kernel B  is space-
varying. There are two distortion types in the image: 
a space-varying blur along the edges and a color shift 
in the regions with plain colors. Therefore, to handle 
these distortions, we use the following modification 
of (2): 

   , n,D B D
RGB RGB RGBp p  x B x  (3)

    0 .D
RGB RGB RGBp D px x  (4)

Here  ,D B
RGBp x  are color channels of the image 

captured with Fresnel lens;   0
RGB RGBD p x  is a 

component characterizing the color shift, caused by 
the energy redistribution between diffraction orders. 
Blurring kernels RGBB  in (3) are different for different 

color channels; let us call these kernels the chromatic 
blur. 

According to (3), the correction consists of two 
stages – removing the chromatic blur and the 
correction of the color shift. To correct chromatic blur 
we will use both deconvolution and sharpening. At 
first, we obtain a deblurred green channel, the 
sharpest one, by a deconvolution: 

    1 ,D D B
G G Gp p x B x  (5)

Here operation 1
G
 B  is a deconvolution for the 

chromatic deblurring, with an intermediate image 

 D
Gp x  as a result. 

Then we apply sharpening to red and blue 
channels using the deblurred green channel as the 
guidance image: 

      , , .D D B D
RB RB Gp S p px x x  (6)

Finally, we apply color correction to the obtained 
image: 

      , .D D
RGB RB Gp F p px x x  (7)
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    ,D D
RB GF p px x  is a color correction 

transformation. Similar to sharpening, we use 
information available in the green channel to correct 
color shift in red and blue channels.  

Combining the above steps, we propose the 
following technique based on model (3)-(4): 

1) the chromatic deblurring (5) of the green 
channel based on the deconvolution, described in 
Section 3); 

2) the chromatic sharpening (6) of the blue and red 
channels using the contours analysis (this approach is 
described in Section 4); 

3) the color correction (7) to remove color shift, 
which is described in Section 5. 

3 DECONVOLUTION BASED 
CHROMATIC DEBLURRING 

To solve the image deconvolution problem (6), we 
base our optimization method on the optimal first-
order primal-dual framework by Chambolle and Pock 
(Chambolle and Pock, 2011), whose original paper 
we recommend for an in-depth description. In this 
section, we present a short overview of this 
optimization. 

Let X and Y be finite-dimensional real vector 
spaces for the primal and dual space, respectively. 
Consider the following operators and functions: 

: X YK  is a linear operator from X to Y; 
: X [0, ) G  is a proper, convex, (l.s.c.) 

function; 
: Y [0, ) F  is a proper, convex, (l.s.c.) 

function, where l.s.c. stands for lower-
semicontinuous. 

The optimization framework considers general 
problems of the form 

    ˆ arg min 
x

x F K x G x  (8)

To solve the problem in the form (8), the 
following algorithm is proposed in the paper 
(Chambolle and Pock, 2011). 

Initialization step: choose - , R   , [0,1]  , 

 0 0, X Y x y  – some initial approximation, 

0 0x x . 

Iteration step: 0n  , iteratively update , ,n n nx y x  

as follows: 

 1 *n F n nprox   y y Kx  (9)

 *
1 1n n nprox   Gx x K y  (10)

 1 1 1n n n n    x x x x  (11)

Following paper (Chung et al., 2010), a proximal 
operator with respect to G in (8), is: 

     

 

1

2

2

ˆ ˆ

1
ˆarg min ,

2

prox 



   

  

G

x

x E G x

x x G x
 (12)

where E is identity matrix. The proximal operator in 
(9) *Fprox  is the same. 

In order to apply the described algorithm to the 
deconvolution model, we follow (Chambolle, 2011): 

  1
F i i    (13)

  2

2
G i i j  B  (14)

Using (13) and (14), it is possible to obtain the 
proximal operators for steps (9) and (10) of the 
algorithm. Further details are available in 
(Chambolle, 2011). The deconvolution algorithm 
based on the total variance can preserve sharp edges. 

This deconvolution step is applied to the sharpest 
channel of the distorted image. The other two 
channels are restored using an edge processing 
procedure described in the next section. 

4 COLOR CONTOURS 
PROCESSING 

We propose a modification of the algorithm (Chung 
et al., 2010) to sharpen red and blue channels based 
on the deblurred green channel. This algorithm makes 
transition areas along the edges in red and blue 
channels look similar to transition areas in the green 
channel. An example of this area is shown in Fig. 2. 
For this algorithm to work properly, edges must be 
achromatic. While this is not always the case, we 
must rely on this assumption because we need to get 
strong chromatic blur removed in red and blue 
channels. 

The original algorithm is based on the contour 
analysis. One of the color channels is used as a 
reference channel, a green channel in our case. Here 
we will consider one row of the image pixels with 
fixed 2x . Below in this section we will use one-

dimensional indexing for clarity. 
We will search for the edges in the green channel. 

Let cx  be the first detected transition point in the 

green channel, such as  G cp x T  , where T  – a 

threshold value. Let us consider a neighborhood of 

cx  – N : 
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      max .G c RGB
x N

B x sign p x p x


    (15)

The required transition zone ( )C cN x  is defined as 

follows: 

    : T, .C c cN x x B x x x    (16)

Let Cl  be the left border, and Cr  be the right 

border of this area. 
In the transition area, an abrupt change of values 

in red or blue or both color channels occurs. The 
algorithm transforms signals in red and blue channels 
to match the signal in the green channel in the 
transition area  C cN x  as closely as possible. 

To do this, we define differences between signals: 

     .RB RB Gd x p x p x   (17)

For each pixel Cx N , these differences must be 

smaller than the differences on the border of the 
transition area. If this is not the case, red and blue 
components of these pixels need to be corrected in 
one of the following ways. 

(a) 

(b) 

Figure 2: Algorithm output results: (a) an original image (b) 
an image after color contour processing. 

The signal  RBS x  depends on the color 

difference between channels (17) at a pixel Cx N : 

 

      
      

      
      

max , ,

if max , ;

min , ,

if min , ;

0, else.

RB C RB C G

RB RB C RB C

RB C RB C G

RB RB C RB C

d l d r p x

d x d l d r

d l d r p x

d x d l d r

 

 
 






 (18) 

Therefore, color differences RBd  decrease, and 

the red and blue signals in the transition area look 
more similar to the green signal. An example of the 
algorithm output is shown in Fig. 2(b). 

The energy of the red and blue channels can be 
low or high compared to the green channel. We can 
define normalization constants RBc  to reduce this 

imbalance. RBc  are defined as a ratio of per pixel 

energy in the red and blue channels to the energy in 
the green channel. So, (17) takes the following form: 

( ) ( ( ) ( )) .n
RB RB G RBd x p x p x c   (19)

After replacing RBd  with n
RBd  ( )RBS x  takes the 

following form: 

 

 
 

 
 

min ( ), ( ) ( ),

if ( ) min ( ), ( ) ;

max ( ), ( ) ( ),

if ( ) max ( ), ( ) .

n n
RB C RB C G

n n n
RB RB C RB C

n n
RB C RB C G

n n n
RB RB C RB C

d l d r p x

d x d l d r

d l d r p x

d x d l d r

 

 







 (20) 

If pixel luminosity in the red and blue channels in 
transition regions is close to zero, we replace it with 
the middle value in a neighboring window. 

There are several pixels with close to zero values 
in the green channel, pixels #16-19 in Fig. 2(a). This 
means that there is no significant information in the 
green channel for pixel correction in the red and blue 
channels in this part of the transition area. We 
propose the following algorithm to solve this 
problem: 

1) We use a median filter to preprocess the green 
channel in order to handle close to zero values. We 
replace a pixel with a close to zero value to the middle 
value in a neighboring window. If the new value is 
also close to zero, the window size of the median filter 
increases. 

2) We compute the matrix of the correction 
coefficients  RBR x  for the whole image. Then we 

apply the post processing steps 3) and 4) to the 

 RBR x  values. 

3) We apply grayscale dilation (Gonzalez and 
Woods, 2001) to matrices of sharpening values 

 RBS x . 

4) We limit excessively bright pixels to values 
allowed inside the transition area. 

Finally we sharpen red and green channels using 
the following rule: 

 
   
   ,

, 0;

, 0.

RB RBD
RB D B

RB RB

S S
p

p S

 


x x
x

x x
 (21)
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After deblurring of the green channel and 
sharpening of the red and blue channels, we use color 
correction, described in the following section, to 
remove the strong color shift caused by the energy 
redistribution between diffraction orders. 

5 COLOR SHIFT CORRECTION 

The proposed chromatic aberration correction 
includes color correction in its final stage. A detailed 
description of the color correction approach is 
provided in (Nikonorov et al., 2014). This correction 
problem consists of correcting non-isoplanatic 
deviation in illumination  ,I  x  and restoring an 

image with the given illumination  0I  : 

       
       0 0

, , ,

, ,

R I d

R I d

   

   

 

 




p x x x T x

p x x T
 (22)

where R  and I  are 2 [0,1]R   functions of the 

wavelength  . R  is the spectral reflectance of the 
scene surfaces. I  is the spectral irradiance that is 
incident at each scene point. 

         1 ,...,
T

KT T     T  is the spectral 

transmittance distribution of color sensors. In 
(Nikonorov et al., 2014) it was shown that the task 
(22) could be solved by finding the correction 
function. 

We propose using prior knowledge of the colors 
of small isolated patches in the image in the same way 
as any color correction specialist would do. These 
small neighborhoods, limited in color and space, are 
defined in (Nikonorov et al., 2014) as color shape 
elements, CSE. This model was useful for both, color 
correction and artefact removing problems 
(Nikonorov et al., 2010). 

Using CSE, the task of the correction function 
identification takes the following form: 

 

 0* arg min ( , ),i iF
a

a u a u  (23) 

where  iu  is a set of distorted CSE, and  0
iu  is a 

set of distortion-free CSE. Hausdorff-like measure 
between CSEs in three dimensional color space is 
used as a metric ,  in (23). A general form for this 

metric is: 

 
max min (x), (y) ,

, max ,
max min (x), (y)

ji

ij

i j





 
    
 

y ux u

x uy u

p p
u u

p p
 (24) 

where ,  is a distance in color space. We use a 

separate parameter estimation (23) for each color 
channel. 

Since we use a channel-wise correction 
procedure, the metric (19) can be calculated using 
only two values for each color channel independently, 
and (18) takes the following form for each color 
channel p : 

 

 

   
   

0

1

0 0 0 0
1

* arg min , , ,

p min , p max ,

p min , p max .

k k

k i k i

k i k i

F p p

p p

p p





 

  


 

a
a a

u u

u u

 (25) 

Here we assume that the distortions are described 
by a modified dichromatic model (Maxwell et al., 
2008) of the following form: 

 
       

   
,

( ) ( , ) ,

RGB B

A B RGB

p H I R

I R D d

 

    

 

  

x x x

x T
 (26) 

where    ,I R  x  is the diffuse reflection, 

( , ) ( , )SI R x x  is the specular reflection, and the 

ambient light is ( )AI  , ( )H x  is the attenuation 

factor, and  RGBD   is added to describe the color 

shift caused by energy redistribution between 
diffraction orders. We use this model for correction 
identification using calibration tables so specular 
reflection is ignored in our case. 

For the distortions described by this model, the 
CSE matching condition theorem from (Nikonorov et 
al., 2014) could be proven with constraints on the 
ambient light. Using necessary condition from this 
theorem, the identification problem of the correction 
function takes the following form: 

 
   

 

20

'

* arg min , ,

, 0.

k k

k

F p p

F p

  

 

a
a a

a
 (27) 

In the problem of color correction for Fresnel 
lenses, we use a color checker scale, shown in 
Fig. 4(c, f), for correction identification of each color 
channel. The original colors of the scale are used as 
distortion-free CSE, 0

iu . The same scale captured 

using a Fresnel lens is used for getting distorted 
CSEs, iu . 
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As shown in (Nikonorov et al., 2014), the problem 
(27) could be solved for polynomial representation of 

 F . However, the distortions caused by the 

aberrations in the simple Fresnel lens are too strong. 
To improve color correction quality, we apply 
additional conditions. 

First, we add two boundary conditions for  F : 

setting it to zero at the starting point, while setting it 
to one at the end: 

    0, 0, 1, 1.F F a a  (28) 

Because these conditions cannot be applied to a 
polynomial representation of  F , we use cubic 

smoothed splines with boundary conditions (28). 
Second, as shown in Fig. 3, an initial SSEs set is 

too noisy, and some data points must be dropped. A 
classic algorithm for noisy data selection with 
dropping outliers is RANSAC algorithm. We use a 
slightly modified RANSAC-based scheme: 

1) Select a subset of the initial set. 
2) Using this subset, estimate cubic smoothing 

spline parameters for  F  according to (26)-(27). 

3) For each pair of SSEs, the following 
inequality can be computed: 

   0, , ,i iF tu a u  (29) 

where t is a threshold. Inequality (29) is true for 
inlayer CSEs pairs and false for outliers. 

 

Figure 3: Chromatic shift correction curve for the green 
channel, solid points for inlayers CSEs, pitted – for outliers. 

After identifying color correction transform 
parameters we apply this transform to the image as 
the final step of the technique based on model (3)-(4). 

To check correction quality we use the following 
measure: 

    0
2

max max , ,
j i

j j
i

q



x u

p x p x  (30) 

where 
2

,  is Euclidian distance between colors of 

corresponding points of two CSEs – source  0 jp x  

and corrected  jp x . We know the matching 

between the source and the corrected point for color 
checker tables. This usually unavailable knowledge 
allows us to estimate the value of quality measure 
(30), and we will use this measure to evaluate 
correction quality. 

6 RESULTS 

The results of the correction are shown in Fig. 4. The 
original picture was captured using a simple, wich 
was made as three-step approximation of the Fresnel 
lens. First we removed the blur from the green 
channel using deconvolution, and then we used edge 
analysis for the red and blue channels. Color 
correction transform was identified using color 
checker table (Fig. 4(c, f)), and finally color 
correction was applied to the image. 

As shown in Fig. 4, the proposed correction 
technique restores both colors and edge information 
from distorted images, captured by a simple Fresnel 
lens. We compared our color correction technique 
with an implementation of Retinex approach from 
(Limare et al., 2011). Results for Retinex-based 
correction are shown in Fig. 4(e). Visual quality of 
color correction exceeds the quality of the Retinex-
based correction. The value of the quality measure 
(30) for Retinex is 113 versus 14 for our method. 

7 CONCLUSIONS 

We show that a simple Fresnel lens can be used for 
imaging. Strong aberrations inherent in this optical 
system can be restored by digital image processing. 
Images captured with a simple Fresnel lens are 
corrected with deconvolution and contour analysis 
with good results. After we applied deconvolution for 
deblurring of the typically less blurred green channel, 
we then sharpened the image for other color channels 
taking green channel as the guidance image. 

After deblurring and sharpening we applied color 
correction to remove strong chromatic shift. 
Correction transformation was identified using color 
checker tables. These tables help to quantify 
correction quality, and the proposed correction 
technique shows a better quality than the well-known 
Retinex method of color correction. 

For  further  research,  we  see  two main directions 

Computational�Correction�for�Imaging�through�Single�Fresnel�Lenses

73



 

Figure 4: Example of chromatic aberration correction: (a) - image captured by four-step Fresnel lens, (b) - image after color 
correction, (d) - image captured by refraction lens, (e) - image after Retinex-based color correction; (c) - color checker image 
for correction identification, and (f) - color checker image after correction; (g) - part of color chart, captured by four-step 
Fresnel lens, (h) - same part after computational correction, (i) – after final color sharpening. 

that may yield additional quality improvements: 1) 
increasing the quality of deconvolution, taking into 
account the estimation of space-varying PSF and 2) 
combining edge analysis and color correction to a 
single filter.

ACKNOWLEDGEMENTS 

This work was partially supported by project 
#RFMEFI57514X0083 by the Ministry of Education 
and Science of the Russian Federation. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

SIGMAP�2015�-�International�Conference�on�Signal�Processing�and�Multimedia�Applications

74



REFERENCES 

Chambolle, A., & Pock, T., 2011. A first-order primal-dual 
algorithm for convex problems with applications to 
imaging. Journal of Mathematical Imaging and Vision, 
vol. 40, no. 1, pp. 120–145. 

Cho, T. S., Joshi, N., Zitnick, C. L., Sing Bing Kang, 
Szeliski, R., & Freeman, W.T., 2010. A content-aware 
image prior IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 169-176. 

Cho, T. S., Zitnick, C. L., Joshi, N., Sing Bing Kang, 
Szeliski, R., & Freeman, W.T., 2012. Image restoration 
by matching gradient distributions. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol. 34, 
no. 4, pp. 683-694. 

Chung, S.-W., Kim, B.-K., & Song, W.-J., 2010. Removing 
chromatic aberration by digital image processing. 
Optical Engineering, vol. 49, no. 6, 067002. 

Davis, A., & Kuhnlenz, F., 2007. Optical design using 
Fresnel lenses - basic principles and some practical 
examples. Optik & Photonik, vol. 2, no. 4, pp. 52–55. 

Fang, Y. C., Liu, T. K., MacDonald, J., Chou, J. H., Wu, B. 
W., Tsai, H. L., & Chang, E. H., 2006. Optimizing 
chromatic aberration calibration using a novel genetic 
algorithm. Modern Optics, v. 53, no. 10, pp. 1411-1427. 

Farrar, N. R., Smith, A. H., Busath, D. R., & Taitano, D., 
2000. In situ measurement of lens aberration. Proc. 
SPIE, vol. 4000, March, pp. 18-29. 

Gonzalez, R. C., & Woods, R. E., 2001. Digital Image 
Processing, Second Edition, Prentice Hall, 2001. 

Heide, F., Rouf, M., Hullin, M. B., Labitzke, B., Heidrich, 
W., & Kolb, A., 2013. High-quality computational 
Imaging Through Simple Lenses. ACM Transactions 
on Graphics, vol. 32, no. 5, article No. 149. 

Kang, S. B., 2007. Automatic removal of chromatic 
aberration from a single image. Computer Vision and 
Pattern Recognition, 2007, pp. 1-8. 

Limare, N., Petro, A. B., Sbert, C., & Morel, J. M., 2011. 
Retinex Poisson equation: a model for color perception. 
Image Processing On Line. 

Maxwell, B. A., Friedhoff, R. M., & Smith, C. A., 2008. A 
bi-illuminant dichromatic reflection model for 
understanding images. Computer Vision and Pattern 
Recognition, IEEE Conference on, pp. 1–8. 

Meyer-Arendt, J. R., 1995. Introduction to Classical and 
Modern Optics. Prentice Hall. 

Millan, M. S., Oton, J., & Perez-Cabre, E., 2006. Chromatic 
compensation of programmable Fresnel lenses. Opics 
Express, vol. 14, no. 13, pp. 6226-6242. 

Nikonorov, A., Bibikov, S., & Fursov V., 2010. Desktop 
supercomputing technology for shadow correction of 
color images. Proceedings of the 2010 International 
Conference on Signal Processing and Multimedia 
Applications (SIGMAP), pp. 124-140. 

Nikonorov, A., Bibikov, S., Yakimov, P., & Fursov, V., 
2014. Spectrum shape elements model to correct color 
and hyperspectral images. 8th IEEE IAPR Workshop on 
Pattern Recognition in Remote Sensing, 2014, pp. 1-4. 

Powell, I., 1981. Lenses for correcting chromatic aberration 
of the eye. Applied Optics, v. 20, no. 24, pp. 4152–4155. 

Shih, Y., Guenter, B., & Joshi N., 2012. Image 
enhancement using calibrated lens simulations. 
Computer Vision – ECCV 2012, pp. 42-56. 

Soifer, V. A. (ed.), 2012. Computer Design of Diffractive 
Optics. Woodhead Publishing. 

Computational�Correction�for�Imaging�through�Single�Fresnel�Lenses

75


