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Abstract: Transforming a software functional model that describes the underlying application to a concurrency model 
is considered as a critical issue in the model-based approaches for Real-Time Embedded Systems (RTES) 
development process. The formal methods have proven to be useful for making the development process 
reliable at a high abstraction level. Based on this approach, this current research proposes a generic 
approach to task construction that allows early detection of unfeasible design. Having a component-oriented 
specification as entry, the first stage of the methodology consists in the workload model specification. The 
workload model represents the system end-to-end computations triggered by an external stimulus and 
subject to hard real-time constraints. This model is then mapped into a Petri Nets formalism to perform P-
invariant method and generate all transactions in an optimized way. The refinement of the transaction set in 
a Schedulability Analysis Model defining an optimized threading strategy model. The latter presents the set 
of units of execution taken into account by the scheduler of the system and their scheduling parameters. We 
illustrate the advantages and effectiveness of the proposed method by constructing a concurrency model for 
a combined Cruise Control System and Anti-lock Braking System. 

1 INTRODUCTION 

In the development of Real-Time Embedded 
Systems (RTES), component-oriented high-level 
specifications are used to manage complexity. Each 
software component encapsulates the 
implementation of a specific functionality which is 
accessible only through the input and output access 
points.  In that context, the software application is 
described in a component-based model (called also 
functional model) still being independent of any 
specific platforms. Hence, this functional model 
(Mraidha et al, 2011) constitutes a first step in the 
definition of a structure able to fulfil requirements 
for the system.  

After building a logical component model, it is 
necessary to synthesize a mapping of functional 
blocks on threads in order to support the verification 
of non-functional requirements (NFP) at early 
design stages. The choice of the threading strategy 
defines how the system reacts due to an external 
event or a timer. Finding the adequate number of 
threads and the good grouping of functions to 
threads relies mainly on the designer experience 

towards the definition of a concurrency model of the 
system. 

Thus, the real-time application is described in a 
concurrency model that runs on a given target 
hardware platform and satisfies timing constraints. 
To this end an abstracted run-time model of the 
platform has to be assumed. 

In fact, the scheduling analysis phase makes it 
possible to predict and validate the concurrency 
model before the design stage. An analysis carried 
out earlier makes it possible to guide the designer in 
the construction of a valid design model with respect 
to the threading strategy.  

In this paper, we incorporate mapping functional 
blocks on threads problem in the design 
optimization. Since threading strategy is NP-hard 
problem, it is recommended to apply formal 
techniques intended to reduce the problem impact. 
This allows the construction and the validation of 
the concurrency model that is reliable at early design 
stage. The proposed approach adopts the model-
driven engineering. Indeed, the system behavior that 
is in response to external stimuli and platform 
resources are annotated with MARTE (OMG, 2008) 
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profile stereotypes. This input model, also called 
Workload model, is at the same level of abstraction 
of the functional model. After that, the mapping 
from UML into Petri Nets is performed in order to 
generate a concurrency model. Finally, the obtained 
concurrency model is automatically validated by 
using traditional schedulability tests. 

The present paper is organized as follows. 
Section 2, provides an overview of the main 
concepts of Petri Nets. In section 3 related work is 
discussed. In section 4 a description of the proposed 
methodology is given. Section 5 gives experimental 
evaluation results. Finally, section 6 concludes the 
paper and sketches some future work. 

2 OVERVIEW OF PETRI NETS 

In this section we provide enough information about 
Petri Nets to understand how and why we use them 
in our approach. 

2.1 Formal Definition 

Petri Nets (Murata, 1989) can be defined as 4-tuplet: 
 

PN = (P, T, IN, OUT)                     (1) 
  

where: 

• P = {p1, p2, . . . , pn} is a finite set of places n > 0; 
• T = {t1, t2, . . . , tm} is a finite set of transitions m 

> 0; 
• IN: (P × T)↦ ℕ is the backward incidence 

function; 
• OUT: (P × T)↦ ℕ is the forward incidence 

function. 

Each system state is represented by a marking M of 
the net. The notation M(p) denotes the number of 
tokens in place p in marking M. M0 is the initial 
marking of the net. A transition t is said to be 
enabled if and only if each place pi in the common 
pre-set of t has a token.  

2.2 Structural Analysis of Petri Nets 

Structural analysis makes it possible to prove some 
properties regardless of the evolution of the marking 
(without constructing the reachability graph). This 
analysis can be applied through the method of place 
invariant, which requires calculating the matrix of 
incidence presented by definition 1. 
 

Definition 1 
The incidence matrix C of a PN = (P, T, IN, OUT) is 
an (n × m) integer matrix whose rows correspond to 

places and whose columns correspond to transitions. 
The column t ϵ T denotes how the firing of t affects 
the marking of the net (Narahari and Viswanadham, 
1985):  
 

C (t, p) = OUT (pi, tj) – IN (pi, tj) (2) 
   

The solutions of the equation C X = 0 are called 
place invariants (P-invariants). A proper P-invariant 
is a solution of C X = 0 if X ≠ 0.  
A P-invariant indicates that the number of tokens 
remains unchanged in all reachable markings. In P-
invariant, tokens cannot evolve or disappear. They 
can “move” from one place in a system net to 
another and “change” their marking, i.e., inner state 
(Frumin and Lamazova, 2014). So P-invariant 
proves the conservative property of the net, i.e., 
places that can be fired with the same token (Murata, 
1989). This analysis method can be used to prove 
concurrency (places fired with the same token) and 
mutual exclusion (same place fired with different 
tokens) properties.  

3 RELATED WORK 

There have been a number of approaches proposed 
for real-time applications enabling early analysis of 
non-functional requirements. We will discuss in the 
following the methodologies that focuses in 
concurrency mapping from different structural 
models. 

COMET (Gomaa, 2000), proposes a 
methodology for designing real-time and distributed 
applications which integrates concurrency concepts 
and uses the UML notation. It is here proposed to 
support generation of concurrency models after the 
definition of functional blocks of the system and 
their connections.  The concurrent real-time model 
of the system is then designed in terms of active and 
passive objects without supporting schedulability 
validation. 

In (Saksena and Karvelas, 2000) a method for 
mapping the execution of active object methods 
(actions) into threads is proposed. However, the 
authors discuss two threading strategies: (i) a single 
thread solution: where all actions are implemented 
by a single thread and events are queued by priority, 
and (ii) multi-threading solution: where threads 
change their priority based on messages they handle. 
Unfortunately, while the single threaded 
implementation is analyzable and practically 
applicable the multi-threading solution is difficult to 
analyze or inapplicable (Bartolini et al., 2005). 
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In (Bartolini et al., 2005) the authors propose a 
mapping process considering EDF schedulability 
tests. In particular, the author defines two algorithms 
to generate the task real-time scheduling parameters. 
Nevertheless, there is not automated support for the 
test which is an ad-hoc test (Mraidha et al., 2011). 

In the same vein, (Kodase et al., 2003) have 
introduced a mapping process of a structural model 
to task model but only for a single-processor system. 

In (Mraidha et al, 2011) OPTIMUM 
methodology is provided for MARTE models 
considering schedulability analysis at early stages. 
Optimum is able to generate a concurrency model 
from activity diagram. Although this work supports 
MARTE notation, some elements of activity 
diagrams will not be processed, this leads to the 
impossibility of transforming complicated activity 
diagram into set of task. 

Other efforts have been specifically tailored to 
automotive architectures. In (Wozniak et al., 2014) 
(Mehiaoui et al., 2013) the partitioning of the set of 
functions and signals in tasks and messages has been 
treated in the design optimization. They assume that 
each function is assigned to exactly one task unlike 
these approaches, our approach proposes 
methodological rules to build concurrency model 
when actions are involved in multiple transactions. 

4 METHODOLOGY 

The proposed methodology intended the 
construction and the validation of the concurrency 
model at early design stage. The methodology 
defines a process depicted on Figure 1:  (i) the first 
step consists in workload model that describe system 
end-to-end scenarios and timing requirements 
annotated with MARTE profile, (ii) this model is 
mapped into Petri Nets formalism in order to 
generate concurrency model and (iii) finally, 
schedulability Analysis Results that describes the 
evaluated concurrency model is provided.  

The idea of performing scheduling analysis 
based on MARTE models assumes that all the 
information that is needed for the analysis is already 
part of the MARTE model. Therefore, concurrency 
model contains all necessary information for an 
analysis (tasks, shared resources, platform, 
scheduling algorithms, execution times, etc.). In 
Table 1 all used stereotypes offered by UML 
MARTE profile are presented. 

The following subsections give details of the 
intermediate models produced by our methodology. 

 

Figure 1: Methodology Process. 

Table 1: MARTE Elements of our methodology. 

MARTE Stereotype UML Extensions 

«gaPlatformResources» Classifier 

«saExecHost» Classes, Objects 

«saCommHost» Classes, Objects 

«schedulableResource» Classes, Objects 

«saSharedResources» Classes, Objects 

«saEndtoEndFlow» Activities 

«gaWorkloadEvent» Initial-Node 

«saStep» Methods 

4.1 Workload Model 

The definition of a well-formed analyzable model in 
case of component-oriented specifications has two 
steps. The first consists of gathering the components 
structure and defining the workload behavior of the 
system, the second representing platform resources. 
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4.1.1 Workload Behavior 

The workload behavior is built from the functional 
model that is specifying the flow of the executed 
actions during a certain system mode. Therefore, 
workload situations are defined by activity diagram 
stereotyped with MARTE «gaWorkloadBehavior» 
stereotype. The latter (HadjKacem et al., 2012) is 
able to expose the dynamics of a system and depict a 
great degree of resemblance to the Petri Nets. 

At this level, we focus on the MARTE 
annotations applied to the activity diagram. Indeed, 
end-to-end real-time constraints (deadline 
properties) are specified on transactions, that is, 
chains of operation activations enabled by external 
stimuli. Each transaction is stereotyped 
«saEndtoEndFlow». However, an event (e.g., timers, 
internal event and external occurrences) that triggers 
the behavior of a system and precedes all the action 
is annotated with MARTE «gaWorkloadEvent» 
stereotype. Each event is annotated with the property 
«arrivalPattern» in order to fix its period. In 
addition, any activity/action which represents the 
execution of an operation is extended with the 
«saStep» stereotype and has an execution time 
(execTime property) specified for a given execution 
host (host property). 

4.1.2 Platform Resources 

To this end an abstracted view of the execution 
platform resources is assumed to have execution 
time estimation for steps. Thus, the processor 
resources are represented as components with the 
«saExecHost» stereotype, bus resources are with the 
«saCommHost» stereotype and platform resources 
are stereotyped by «gaPlatformResources». To be 
executed, a software resource must obviously be 
mapped on processors or busses. Involved shared 
resources should also be described.   

4.2 Generation of Concurrency Model 

In order to generate a concurrency model from a 
workload behavior this stage consists of three steps: 
(1) Mapping Workload Behavior diagram to Petri 
Nets, (2)  identify transactions in Petri Nets model  
and (3) allocate actions in transactions to threads. 

4.2.1 Mapping Workload Behavior Diagram 
to Petri Nets 

The first step consists in mapping the workload 
behavior to Petri Nets formalism. Petri Nets 
(Murata, 1989) are formal models based on strict 

mathematical theories. They are powerful and 
appropriate for modeling and analyzing systems 
with parallelization, synchronization and confliction.  

The mapping process consists of the deriving 
activity diagram elements (nodes, transitions, 
signals, actions, and synchronisation bar) and 
MARTE annotations into Petri Nets elements. In 
that context, several methods (Yang et al., 2010) 
(HadjKacem et al., 2012) proposed mapping rules to 
enhance formal analysis. In this paper, the rules for 
transforming activity diagram elements into Petri 
Nets are similar to those proposed in previous 
literatures.  

4.2.2 Transaction Identification 

Once the mapping process is realized, the second 
stage consists of determining all transactions in the 
nets running in concurrency. A transaction is defined 
as a sequence of actions performed in the end-to-end 
processing in response to an external event. The 
general problem is quite difficult because there are a 
high number of transactions that derive all possible 
system modes. Thus, to identify all transactions of 
an optimized way we propose using the method of 
invariants based on Petri Nets formalism.  

Place invariant indicates a set of places in which 
the number of tokens remains unchanged in all 
reachable markings. As a consequence, it 
corresponds to a constraint on the states and system 
activities that will always be verified, regardless of 
its evolutions.  

As already mentioned, the solutions of the 
equation C X = 0 are called place invariants       (P-
invariants). The solution is called proper if X≠ 0. In 
this work we are interested only in proper place 
invariants describing all the operations that will be 
performed by the same token in only one 
transaction. Thus, the set of places pi with Xi > 0, 
called the support of the P-invariant, is considered as 
only transaction. The execution order of the 
operation sequence in a specific transaction is given 
by the crossing transitions order. 

4.2.3 Generation of the Task Set 

After identifying the transactions, it is necessary to 
specify the so-called schedulable Resources. These 
are units of execution taken into account by the 
scheduler of the system, called tasks in scheduling 
literature (Radermacher et al., 2010).  The task set is 
constructed by mapping all actions of the same 
transaction to one task i.e. the execution operations 
belonging to the place invariants must be assigned to 
threads of execution. In fact, we apply a transaction-
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based task model generation (to get one single 
thread of execution for each transaction). Note that, 
a software resource can be mapped into more than 
one thread. However, she is denoted as a critical 
sections needed to manage multi-threading whose 
code must be protected. 

Among these assumptions, the synchronization 
protocol, used to protect the access to the shared 
resource, must be considered in the concurrency 
model. In this paper, we use a classical solution 
(Mraidha et al., 2011) (Mzid et al., 2014) that 
considers the Priority Ceiling protocol (Goodenough 
and Sha, 1988) as a synchronization protocol in 
order to avoid deadlocks at the implementation 
level. 

4.3 Schedulability Analysis 

To this end, at this level, execution actions, shared 
resources and synchronization protocol are 
specified. This concurrency model is independent 
from any particular Real-Time Operating System 
(RTOS) in order to fulfill the MDA principals.  

To be analyzable, we assume that the 
schedulability analysis model must specify: (1) 
threads, here called schedulable resources, along 
with their scheduling parameters, (2) the allocation 
of threads to hardware resources (e.g. processors) 
and (3) the scheduler algorithm used by the 
processing resources stereotyped <<SaExecHost>> 
defined in the Workload model. 

Note how the specification of scheduling 
algorithm must be coherent with scheduling 
parameters for tasks. A task is characterized by its 
priority Pi, its execution time Ci, its activation period 
Ti, its blocking time Bi and its deadline Di that 
represents end-to-end limit in which a task must 
complete its execution.  The information on 
deadlines was already provided in the Workload 
Behavior. Let us remark that (Bartolini et al., 2005) 
a task activated by an event is considered to be 
periodic or aperiodic. In the case of a task that is 
activated by another task cannot be assigned a 
period. Anyway, dependencies between tasks allow 
setting some priority orders i.e., tj may not be 
executed before ti when tj depends on the output of 
ti. Then, we assume that succeeding tasks have 
higher priority than preceding ones. Tasks 
dependencies are derived from the dependencies of 
the functions mapped into them. Since a task is 
strictly sequential, the worst case execution time 
(WCET), denoted as Ci, is given by the sum of 
computational cost of the all actions contained in the 
task. Note that if a task have more than one 

execution path, the maximum execution time is 
considered. Due to the presence of shared resources, 
a task is also characterized by a blocking time Bi. 
The blocking time accounts for the time a higher-
priority task has to wait, before acquiring the lock, 
since a lower-priority task owns this lock.  The 
computation of this term depends on the worst case 
execution time Ci of the task that owns the access to 
the shared resource. 

The Schedulability Analysis Model, as defined, 
contains all the needed information to perform the 
schedulability tests. 

5 AUTOMOTIVE CASE STUDY 

In this section we illustrate the application of our 
methodology to an automotive case study 
constructed by merging two subsystems consisting 
of a CCS (Cruise Control System) (Anssi et al., 
2011) and ABS (Anti-lock Braking System) 
(Mraidha et al., 2011).  

The cruise control system maintains the vehicle 
speed according to driver inputs. This subsystem 
holds the correct distance from the vehicle in front to 
prevent collisions through Diagnosis function (to 
detect errors or inconsistencies in acquired data) and 
Limphome function (decides which action to take in 
case of detected error). Note that this Diagnosis 
function is connected also to the ABS subsystem in 
order to disable the anti-locking function in case a 
fault is detected.  

The ABS subsystem is composed of three 
elementary functions: Dataprocessing (acquiring 
data coming from the sensor), Diagnosis (to detect 
errors or inconsistencies in acquired data) and 
AntiLockControl (calculating the command to send 
to the actuator). 

5.1 Workload Model 

5.1.1 Workload Behavior 

The end-to-end computation represents the 
processing load of the system. It represents the 
different steps (functions) executed in the system 
and triggered by one or more external stimuli. Each 
step can be linked to a successor step with a control 
flow. In our methodology, the application workload, 
called Workload Behavior, is represented with a 
UML activity diagram annotated with MARTE 
profile in order to specify timing information.  The 
timing information contains both timing description 
(computational budget, activation event, etc.) and 
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timing constraints (operation deadlines). Figure 2 
shows the description of the workload behavior 
scenario.  

Figure 2: System-level end-to-end scenario. 

The end-to-end computations, stereotyped 
«saEndtoEndFlow», are activated by the both 
external events acquisitionforABS and 
acquisitionforDiagnosis with periods T1= 60 ms and 
T2 = 100 ms, respectively. The AntiLockControl step 
is a successor step for both Dataprocessing and 
Diagnosis steps. This precedence relation is modeled 
with a merge node in activity diagram which 
represents here the ‘or’ operator. In fact, the Limp 
home step is a successor step of Diagnosis. This is 
modeled with a decision node in the activity 
diagram. From this, when it occurs, Diagnosis step 
has two successor steps. The timing information of 
each step is specified through exec- Time property.  

5.1.2 Platform Resources 

As explained previously, at this stage of the 
methodology, a very abstract view of the system 
hardware resources is needed to have an estimation 
of execution time for steps. This estimation is used 
to perform feasibility tests with respect to expressed 
end-to-end deadlines and external events activation 
rates. Execution nodes and communication resources 
are specified with MARTE «saExecHost» and 
«saCommHost» stereotype. 

At this level, scheduling algorithm and  operating 
system resource concept must be specified in order 

to perform feasibility tests and coordinate the 
concurrent access of tasks to shared resources if 
exist. This platform model is modeled in the 
schedulability analysis stage (see Figure 4). 

5.2 Generation of Concurrency Model 

5.2.1 Mapping Workload Behavior Diagram 
to Petri Nets 

In order to generate concurrency model from the 
workload model, a preliminary transformation of the 
end-to-end scenario in Petri Nets is required. This 
transformation is applied in graphical and formal 
forms. Figure 3 depicts the mapping of the 
Workload model of combined CCS and ABS sub-
systems to Petri Nets.  

 
Figure 3: Petri Nets Model. 

The initial node corresponding to the launching of 
the scenario of the system (e.g, acquisitionABS and 
acquisitionDiagnosis) is transformed into a place 
marked with an initial token. Tokens are used to 
simulate the dynamic behavior of systems. Activity 
node is transformed into a place without any token at 
the beginning connected to a transition by means of 
an output arc. Thus, actions such as DataProcessing, 
Diagnosis, AntiLock and LimpHome are transformed 
to places without any token at the beginning.  

A transition represents cause/effect places 
relations and is enabled if its each input place that 
contains tokens. The Diagnosis step can cross one 
among all outgoing flows according to related guard 
conditions. The crossing of the transition t2 ensures 
fusion of several incoming places (DataProcessing 
and Diagnosis) to a single outgoing place 
(AntiLock). 
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5.2.2 Transaction Identification 

This stage of the methodology consists of 
determining all transactions in Petri Net model 
running in concurrency using the place-invariants 
method. We use this analysis method to prove 
concurrency (places fired with the same token) and 
mutual exclusion (same place fired with different 
tokens) properties. Corresponding to the Petri Nets 
model (Figure 3), the input matrix IN, the output 
matrix OUT and the incidence matrix C are 
presented in the following: 

                 t1  t2  t3  t4 
           1   0   0   0    p1 
            0   1   0   0    p2 
    IN =      0   0   0   0    p3                           
        0   0   1   0    p4 
      0   1   0   1    p5 
        0   0   0   0    p6 
           

                 t1  t2  t3  t4 
           0   0   0   0    p1 
            1   0   0   0    p2 
OUT =      0   1   0   0    p3                           
        0   0   0   0    p4 
      0   0   1   0    p5 
        0   0   0   1    p6 

             t1  t2  t3  t4 
       -1   0   0   0    p1 
         1  -1   0   0    p2 
     C =    0   1   0   0    p3                           
      0    0  -1  0    p4 
      0   -1   1  -1    p5 
     0    0   0   1    p6 
 

The initial marking M0 of the net, representing 
the initial distribution of tokens in places, is an 
integer vector given by: 

 
M0 = (1  0  0  1  0  0) (3) 

So, M0 indicates that only p1 and p4 are marked with 
only one token.  

The solution based on matrix multiplication of       
C X = 0 are called place invariants. For instance, the 
vector X1 = (1 1 1 0 0 0) and X2 = (0 0 1 1 1 1) are P-
invariants, their multiplication by the incidence 
matrix satisfies the property C X1=0 and C X2 =0. 
Note that each value in X1 and X2 vectors 
corresponds to conservative places that can be fired 
with the same token in all marking of the net.  

A P-invariant indicates that the number of tokens 
in all reachable markings satisfies some linear 

invariant. For example, the invariant X1 mean that all 
reachable markings M of places p1, p2 and p3 
denoted as M(acquisitionABS), M(DataProcessing) 
and           M (AntiLock) satisfy the initial marking 
(in M0 the sum of the tokens in p1, p2 and p3 is equal 
to 1).  The invariant X2 mean that all reachable 
markings M of places p3, p4, p5 and p6 satisfy the 
initial marking (is equal to1): 

M (acquisitionABS) + M (DataProcessing) 
+ M (AntiLock)  = 1 

(4) 

M (acquisitionDiagnosis) + M (Diagnosis) 
+ M (LimpHome) + M (AntiLock) =1 

(5) 

From these results, we identified two transactions: 
T1 (acquisitionABS, DataProcessing and AntiLock) 
with sequential order of execution and T2 
(acquisitionDiagnosis, Diagnosis, LimpHome 
andAntiLock) with sequential order of execution 
between both acquisitionDiagnosis and Diagnosis 
steps and decision execution between both 
Diagnosis and LimpHome steps.  

5.2.3 Generation of the Task Set 

After identifying the transactions, it is necessary to 
specify the so-called schedulable Resources. In this 
case study we have specified two transactions T1 and 
T2 running all function of the system. Schedulable 
Resources are identified from transactions, we apply 
a transaction-based task model generation (to get 
one single thread of execution for each transaction). 
In our combined CCS and ABS sub-systems, we 
obtain two different threads namely task1 
(acquisitionforABS, DataProcessing and 
AntiLockControl) and task2 
(acquisitionforDiagnosis, Diagnosis, LimpHome and 
AntiLockControl).  

The action AntiLockControl is shared among the 
two threads. This critical section is added in resource 
platform and extended with the property of actions 
SharedResources which actually represents a mutual 
exclusion. 

5.3 Schedulability Analysis 

Eventually, software resource must to be obviously 
allocated to processors for schedulability analysis. In 
Figure 4 the two threads task1 and task2 with 
priorities are included in the platform resources 
SaResources to perform schedulability analysis. 
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Figure 4: Platform Resource Model. 

Thus, in this case study the scheduling algorithm 
(FixedPriority) has been chosen for the execution 
host hecu stereotyped as «saExecHost» and the 
synchronization protocol (Priority Ceiling) has been 
specified to avoid deadlocks.  

The Schedulability Analysis Model, as defined 
in the previous subsection, contains all the needed 
information to perform the schedulability analysis 
tests. Table 2 gives a tabular description of the 
concurrency model showing the different parameters 
required to perform schedulability analysis. 

Table 2: Schedulability analysis model. 

Task Ti Ci Bi Pi Di 

task1 60 25 15 20 60 

task 2 100 25 0 10 100 

Consequently, a schedulability analysis test can be 
carried out on this model (table 2). Such test 
calculates the worst case response times for each 
schedulable Resource. Note that the worst-case 
response time includes the blocking time Bi. Table 3 
summarizes the results of the schedulability analysis 
obtained. The property isSched of the 
«saEndtoEndFlow» stereotype indicates the 
schedulability of each task. The response times of 
the two tasks are lower than their deadlines. Thus, 
this concurrency model satisfies the timing 
constraints of the system. 

Table 3: Schedulability analysis results. 

Task Response Time isSched 

task1 40 True 

task 2 25 True 

The evaluation of the concurrency model is 
produced as an artifact of our methodology in the 
form of a Schedulability Analysis Results provided 
to the designer. This evaluation can guide the 
designer for the refinement toward a design and an 
implementation model of the system. 

6 CONCLUSIONS 

In this paper, we propose a methodology of 
transforming workload models to concurrency 
models for schedulability with hard real-time 
constraints expressed at specification phase.  Our 
method is integrated in the software life-cycle since 
the very beginning that automates the transition from 
functional model to design model. The proposed 
approach is based on identifying transactions 
through a formal method, which can compute the 
optimal solution. After identifying transactions, the 
so-called schedulable Resource is specified to 
perform schedulability analysis. Such approach 
provides a guideline for the designer to find an 
implementable concurrency model describing a real-
time application of an optimized way. The feasibility 
of our approach has been successfully assessed 
through an automotive case study. The future tasks 
we have assigned to ourselves is to define empirical 
and comparative studies to provide quality indicators 
and to measure the benefits of our proposal.  
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