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Abstract: The paper presents shortly a history and development of database management tools in last decade. The 
movement towards a higher database performance and database scalability is discussed in the context to 
requirements of practice. These include Big Data and Big Analytics as driving forces that together with a 
progress in hardware development led to new DBMS architectures. We describe and evaluate them mainly in 
terms of their scalability. We focus also on a usability of these architectures which depends strongly on 
application environment. We also mention more complex software stacks containing tools for management 
of real-time analysis and intelligent processes. 

1 INTRODUCTION 

In 2007 we published the paper (Pokorny, 2007) 
about database architectures and their relationships to 
requirements of practice. In some sense, a 
development of database architectures reflects always 
requirements from practice. For example, earlier 
Database Management Systems (DBMS) were 
focused mainly on OLTP applications typical for 
business environment. However, the requirements 
changed also according to the progress in hardware 
development and sometimes go hand in hand with a 
theoretical progress. Today, hardware technology 
makes it possible to scale higher data volumes and 
workloads, often very specialized, in the way that was 
not possible in middle 2000s. As a consequence some 
new database architectures have emerged. Some of 
them are scalable with some technical parameters 
appropriate for Big Data storage and processing as 
well as for cloud-hosted database systems. In other 
words, they reflect the challenge of providing 
efficient support for Big Volume of data in data-
intensive high performance computing (HPC) 
environments. Moreover, the architectures of 
traditional OLTP databases have been proven also 
obsolete. Already in 2007, (Stonebraker, et al., 2007) 
described in-memory relational DBMS (RDBMS) 
overcoming former traditional DBMSs by nearly two 
orders of magnitude. We could also observe that high 
performance application requirements shifted from 

transaction processing and data warehousing to 
requirements posed by Web and business intelligence 
applications. 

This paper aims to discuss the basic 
characteristics and the recent advancements of these 
technologies, illustrate the strengths and weaknesses 
of each technology and present some opportunities 
for future work. Particularly, we will describe 
movement in the development of database 
architectures towards scalable architectures. 
Obviously, this movement is related to the advent of 
the Big Data era, where data volume, velocity, and 
variety influence significantly its processing. 
Although Big Data can be viewed from various 
perspectives and in various dimensions, e.g. 
economical, legal, organizational, and technological 
one, we mention only the last one, i.e., Big Data 
storage and processing.  Big Data processing can be 
of two categories – namely Big Analytics and online 
read-write access to large volume of rather simple 
data. This leads to the development of different types 
of tools and associated architectures. 

In Section 2, we describe a history of DBMS 
architectures by binding to the work (Pokorný, 2007). 
Section 3 is devoted to scalable architectures, namely 
NoSQL databases, Hadoop and MapReduce, Big 
Data Management Systems, NewSQL DBMSs, 
NoSQL databases with ACID transactions, and SQL-
on-Hadoop systems. Section 4 summarizes these 
approaches and concludes the paper. 
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2 DBMS ARCHITECTURES  
– A HISTORY 

In this section we review two main phases of database 
evolution which influenced the development of the 
database software. We start with the universal 
architecture consisting from a hierarchy of layers 
where the layer k is defined by the layer k-1. The 
proposed layers are not fine grained enough to map 
them exactly to DBMS components but they became 
the basis for the implementation of all traditional 
DBMSs in the past. We describe also the 
development of special purpose database servers 
which were a response to the some inappropriate 
properties of the universal architecture. Here we will 
often use the more common short term database 
instead of DBMS. 

2.1 Universal Architecture 

The concept of a multi-layered architecture consisting 
of five layers L1,…, L5 was proposed in (Härder and 
Reuter, 1983). There L1 ensures a file management 
and L5 enables an access to data with a high-level 
language, typically SQL. The middle layers use 
auxiliary data structures for mapping higher-level 
objects to more simple ones in a hierarchical way. In 
other words, they enable to transform logical data 
(tables, rows) and SQL operations to physical records 
and sequences of simple access operations over them. 
A typical property of the universal architecture is that 
users can see only this outermost layer. In practice, 
the number of layers is often reduced, e.g. to three, 
due to some techniques enabling a more effective 
performance (Härder, 2005a).  

The same model can be used in the case of 
distributed databases for every node of a network 
together with a connection layer responsible for 
communication, adaptation, or mediation services. 
Also, a typical shared-nothing parallel RDBMS can 
be described by this architecture. Layers L1-L4 are 
presented usually at each machine in a cluster. 

Extension of database requirements to process 
other data types than relational, e.g. VITA (video, 
image, text, and audio) has led to a solution to use 
common maximally the layer L1. The others had to 
be implemented for each type separately. Solutions 
with universal servers or universal DBMS so popular 
in 90s were based on adding loosely coupled 
additional modules (components) for each new data 
type. Their data models owned some object-
orientation features, but not standardized yet.  
Vendors of leading DBMSs called these components 
extenders, data blades, and cartridges, respectively. 

Remind, that e.g. spatial and text components had a 
background in software of specialized vendors built 
on a file system equipped by a sophisticated 
functionality for processing spatial objects and texts, 
respectively.  Integration of such components with 
relational engines presented a problem and 
effectiveness of the resulted system was never fully 
resolved. Any efficient solution of optimization 
problems resulted usually in modification of the 
DBMS kernel that was very expensive, time-
consuming, and tending to errors.  

Development of the L5 layer during 90s peaked in 
a specification of so-called object-relational (OR) 
data model. Its standardization in SQL started in the 
version SQL:1999. Tables can have structured rows; 
their columns can even be of user-defined types or of 
new built-in data types. Relations can be sets of 
objects (rows) linked via their IDs. For new built-in 
data types there is a standardized set of predicates and 
functions for manipulation of their instances. 
Although the ORDB technology is already available 
for use in all the major RDBMS products, its 
industrial adoption rate is due to its complexity not 
very high.   

2.2 Special Purpose Database Servers 

In 2005, (Stonebraker, 2005) and other scientists 
claimed “the one size fits all” model of DBMS had 
ended and raised a need to develop new DBMS 
architectures reminding rather separate database 
servers tailored to requirements of particular 
applications types. Not only functionality was 
considered, but also the way how data is stored. 
Candidates for special-purpose database servers have 
been found in application areas, namely: 

• data warehousing, OLAP 
• XML processing, 
• data streams processing, 
• text retrieval, 
• processing scientific data. 

We consider also mobile and embedded DBMS. 
This application area produces large and complex 
datasets that requires more advanced database 
support, than that one offered by universal DBMS. 

2.2.1 Data Warehousing and OLAP 

Without doubts data warehouses belong to the oldest  
special purpose databases. Based principally on 
RDBMS techniques, data warehouse architecture has 
to include explicit specialized support for a 
specialized logical model (denormalized, 
multidimensional), historical, summarized and 
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consolidated data operations for ad hoc analysis 
queries, and efficient access and implementation 
methods for such operations. Optimizations using 
column stores, pipelining operations, and vectorising 
operations are used here to take advantage of 
commodity server hardware. For example, column-
stores use “once-a-column” style processing, which is 
aimed at better I/O and cache efficiency. Sybase IQ 
(today in Version 16) belongs to pioneering 
implementations of column-stores. An experience 
with column-stores from the past emphasizes their 
high performance and scalability for complex queries 
against large data sets. That is why the variants of 
column-stores have become a popular platform for 
managing and analysing Big Data using SQL-based 
analytic methods. 

Oracle produces a remarkable solution for data 
warehouses, so called Oracle Exadata Database 
Machine (https://www.oracle.com/engineered-
systems/exadata/index.html, 2015). It is a complete, 
optimized, hardware and software solution that 
delivers extreme performance and database 
consolidation for data warehousing and reporting 
systems. It uses very efficient hybrid columnar 
compression. 

Today, the column-oriented HP Vertica Analytic 
Database with massively parallel processing (MPP) 
and shared-nothing architecture is most popular 
(Lamb et al., 2012). This tool is cluster-based and 
integrated with Hadoop. Its SQL has built-in many 
analytics capabilities.  

An example of a progress in OLAP database 
technology is standalone OLAP server EssBase 
(Anantapantula and Gomez, 2009) which stores data 
in array-like structures, where the dimensions of the 
array represent columns of the underlying tables, and 
the values of the cells represent precomputed 
aggregates over the data.   

2.2.2 XML Processing 

In late 90s, XML started to become more popular for 
representing semi-structured data. New XML query 
languages and XML DBMSs occurred. A significant 
role in storing XML data in a database way is whether 
the data is data-centric or document-centric. 

One possibility how to store XML data is an XML-
enabled database. It means to map (shred) the XML 
documents into data structures of the existing 
RDBMS. Experiments show that such database is 
most feasible if only simple XPath operations are 
used or if the applications are designed to work 
directly against the underlying relational schema. 

Data-centric documents using XML as a data 
transport mechanism are suitable for this approach. 

A more advanced solution was to develop a 
DBMS with a native XML storage (native XML 
database or NXD). These databases are suitable for 
document-centric XML data. An implementation of 
NXD was a challenge in 2000th both for developers 
and researchers of DBMSs. In database architectures, 
NXDs provide a nice example when a DBMS needs 
a separate engine. We can distinguish two main 
approaches to NXD implementations: 

• NXD DBMS as a separate engine (Tamino 
XML Server, XHive/DB, XIndice, eXist, etc.), 

• adding native XML storage to RDBMS (e.g., 
XML Data Synthesis by Oracle), 

• hybrid solutions, i.e. a RDBMS natively stores 
and natively processes XML data (e.g., DB2 9 
pureXML, ORACLE 11g with more storage 
models for XML data, SQL Server 2012). 
These approaches include also possibility to 
parse and shred the XML documents to an 
XML-data-driven relational schema. 

An advantage of the latter is the possibility to mix 
XML with relational data and/or with other types of 
data (e.g. textual, RDF) within one DBMS. XML data 
can be accessed via the combined use of SQL/XML 
and full XQuery language. While critical data is still 
in a relational format, the data that do not fit the 
relational data model is stored natively in XML. 
Härder shows in (Härder, 2005b) how the layered 
architecture described in Section 2.1 can be used to 
implement NXD DBMS. 

Unfortunately, it seems in the last years, that 
research in XML database area is not too intensive 
and that XML databases become rather a niche topic. 
The more lightweight, bandwidth-non-intensive 
JSON (JavaScript Object Notation) is now emerging 
as a preferred format in web-centric, so-called 
NoSQL databases (Section 3.1). Even, PostgreSQL 
from version 9.2 has a JSON data type. 

2.2.3 Data Stream Processing 

Data streams occur in many modern applications as, 
e.g., network traffic analysis, collecting records of 
transactions and their analysis, sensor networks, 
application exploiting RFID tags, telephone calls, 
health care applications, financial applications, Web 
logs, click-streams, etc. Data transmission poses 
continuous streaming data, which are indexed in time 
dimension to be filtered to individual (possibly 
mobile) users. Applications require near real-time 
querying and analyses. These requirements justify the 
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existence of special DBMSs because the relational 
ones are not effective in this area. 

Special purpose Data Stream Management 
Systems (DSMS) have been implemented to deal with 
these issues. These systems are not based primarily 
on loading data into a database, except transiently for 
the duration of certain operations. For example, data 
streams containing RFID tags generated from events 
obtained by RFID readers are filtered, aggregated, 
transformed, and harmonized so that events 
associated with them can be monitored in real-time. 
Events processing is data centric, it requires in-
memory processing. Associated query languages are 
based on SQL, e.g., StreamSQL 
(www.streambase.com/developers/docs/latest/stream
sql/, 2004). Queries executed continuously over the 
data passed to the system are called continuous 
queries. Typical for DSMS are windows operators 
that only select a part of the stream according to fixed 
parameters, such as the size and bounds of the 
window. For example, in the sliding windows, both 
bounds move. 

A pioneering STREAM project (http:// 
ilpubs.stanford.edu:8090/641/, 2004) started in 2002 
and has officially wound down in 2006. A number of 
other DSMS have occurred since then. For example, 
Odysseus (http://odysseus.informatik.uni-
oldenburg.de/, 2007) belongs to this category. Many 
big vendors such as Microsoft, IBM, or Oracle, have 
their own data stream management solution. 
However, there is neither a common standard for data 
streaming query languages nor an agreement on a 
common set of operators and their semantics until 
today. 

Although these systems proved to be an optimal 
solution for on the fly analysis of data streams, they 
cannot perform complex reasoning tasks. 

2.2.4 Text Retrieval 

Previous full text search engines did not have too 
many database features. They provided typical 
operations like index creation, full text search, and 
index update. Again some hybrid solutions are 
preferred today. Some projects use current DBMS as 
backend to existing full text search engines. For 
example, the index file is stored in a relational 
database.  

A significant representative of this development is 
the search engine Apache Lucene (now in Version 
4.7.1) (http://lucene.apache.org/, 2011). An 
associated open source enterprise search platform 
Apache Solr is now with Lucene integrated 
(Lucene/Solr). Its major features include full text 

search, hit highlighting, faceted search, dynamic 
clustering, database integration, and rich document 
(e.g., Word, PDF) handling.  

Based on the standard SQL/MM from 2003 we 
can find text retrieval features in SQL (similarly as 
spatial objects and still images), e.g., in RDBMS 
PostgreSQL. But performance tests (Lütolf, 2012) 
have shown that full text search queries with a large 
result set are fast with Apache Lucene/Solr but with 
PostgreSQL are very slow. 

2.2.5 Processing Scientific Data 

A special category of database servers is used for 
scientific data storage and processing. Biomedical 
sciences, astronomy, etc., use huge data repositories 
often organized in grid or cloud architectures.  
However, a use of commercial cloud services raises 
issues of governance, cost-effectiveness, trust and 
quality of service. Consequently, some frameworks 
use hybrid cloud, combining internal institutional 
storage, cloud storage and cloud-based preservation 
services into a single integrated repository 
infrastructure. It seems, that universal and hybrid 
servers are effective especially when the data 
requirements can be simply decomposed into 
relatively independent parts evaluated separately in 
database kernel and in the module built for the given 
special data type. 

A notable representative of this data processing 
category is DBMS SciDB proposed in 2009. Now, 
SciDB is a DBMS optimized for multidimensional 
data management of Big Data and for so called Big 
Analytics (Stonebraker et al., 2013). Data structures 
of SciDB include arrays and vectors as first-class 
objects with built-in optimized operations. SciDB is 
usable also for geospatial, financial, and industrial 
applications. 

2.2.6 Mobile and Embedded DBMSs 

Embedded DBMSs are a special case of embedded 
applications. Typically, they are single application 
DBMS that are not shared with other users, their 
management is automatic, and their functions are 
substantially limited. Their self-management 
includes at least backups, error recovery, or 
reorganization of tables and indices. Such 
applications run often on special devices, mostly 
mobile. The client and server have wireless 
connections. We talk then about mobile and 
embedded DBMS. 

A sufficient motivation for movement to this new 
data management seems to be applications as 
healthcare, insurance or field services, which use 
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mobile devices. In the case data is in backend 
databases, and/or generally somewhere on Web, or 
accessible, e.g., in form of cloud computing. In many 
applications, databases are needed in a very restricted 
version directly on mobile devices, e.g., on sensors. 
An important property of these architectures is 
synchronization with backend data source. Current 
most mobile DBMSs only provide limited 
prepackaged SQL functions for the mobile 
application. 

Typical commercial solutions for mobile and 
embedded DBMSs include, e.g., Sybase's Ultralite, 
IBM's Mobile Database, SQL Server Express, MS-
Pocket Access, SQL Server Compact, and Oracle 
Lite. 

Now mobile and embedded DBMSs typically: 
• use a component approach, i.e. a possibility to 

configure the database functionality according 
to application requirements and minimize 
thereby the size of application software; 

• are often in-memory databases, even without 
requirements on any persistence. It means they 
use special query techniques and indexing 
methods.  

3 SCALABLE DATABASES 

The authors of (Abiteboul et al., 2005) emphasized 
two main driving forces in database area: Internet and 
particular sciences, as the physics, biology, medicine, 
and engineering. Said in today’s words, it means a 
shift towards Big Data. The former led to 
development of Web databases, the latter to scientific 
databases that require today not only a relevant data 
management (see Section 2.2.5) but also tools for 
advanced analytics. Similar requirements occur in 
Big Data and Big Analytics trends today. In the 
course of the last eight years, the classical DBMS 
architecture was challenged by a variety of these 
requirements and changes, i.e. data volume and 
heterogeneity, scalability and functional extensions in 
data processing.  

It is typical, that traditional distributed DBMS are 
not appropriate for these purposes. They are many 
reasons for it, e.g.: 

• database administration may be complex (e.g. 
design, recovery), 

• distributed schema management, 
• distributed query management, 
• synchronous distributed concurrency control 

(2PC protocol) decreases update performance. 

DBMS   architectures   suitable  for   Big  Data are 

mostly built on a new hardware.  A rather traditional 
solution is based on a single server with very large 
memory and multi-core multiprocessor. A popular 
infrastructure for Big Data is a HPC cluster (a.k.a. 
supercomputer). Some RDBMS installations use SSD 
data storage that is 100 times faster in random access 
to data than the best disks. Such installations are able 
to process PBytes of data. HPC cluster as well as grid 
is appropriate especially for Big Analytics in context 
of scientific data. We can scale vertically such 
databases, i.e. scale-up, by adding new resources to a 
single server in a system. This approach to data 
scalability is appropriate for corporate cloud 
computing (Zhao et al., 2014).  

Architectures suitable rather for customer cloud 
computing scale DBMSs across multiple machines. 
This technique, scale-out, uses well-known 
mechanism called database sharding, which breaks a 
database into multiple shared-nothing groups of rows 
in the case of tabular data and spreads them across a 
number of distributed servers. Sherds are not 
necessarily disjunctive. Each server acts as the single 
source of a data subset. Sharding is just another name 
for horizontal data partitioning. However, database 
sharding reminding classical distributed databases 
cannot provide high scalability at large scale due to 
the inherent complexity of the interface and ACID 
guarantees mechanisms. This had an influence on 
development of so called NoSQL databases (Cattell, 
2010).  

3.1 NoSQL Databases 

A new generation of distributed database products 
labelled NoSQL emerged from 2004. Obviously, the 
term NoSQL is misleading. Though not based on the 
relational data model, some of these products offer a 
subset of SQL data access capabilities. To be able to 
scale-out, NoSQL architectures differ from RDBMS 
in many key design aspects (Pokorny, 2013): 

• simplified data model, 
• database design is rather query driven,  
• integrity constraints are not supported, 
• there is no standard query language, 
• unneeded complexity is reduced (simple API, 

weakening ACID semantics, simple get, put, 
and delete operations). 

Most NoSQL databases have been designed to 
query over high data volumes and provide little or no 
support for traditional OLTP based on ACID 
properties. Indeed, CAP theorem (Brewer, 2005) has 
shown that a distributed database system can only 
choose at most two out of three properties: 
Consistency, Availability and tolerance to Partitions.  
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Then preferring P in our non-reliable Internet 
environment, NoSQL databases support A or C. For 
example, Cassandra and Hbase databases have 
chosen, AP and CP, respectively. Cassandra uses also 
tuneable consistency, enabling different degrees of 
balance between C, A, P.    

In practice, mostly strict consistency is relaxed to 
so-called eventual consistency. Eventually consistent 
emphasizes that after a certain time period, the data 
store comes to a consistent state. 

There are many of NoSQL databases. Some well-
known lists, e.g. (http://nosql-database.org/, 2015), of 
them consider also XML, object-oriented, and graph 
databases and others in this category. Today, mainly 
key-value stores and their little more complex 
column-oriented and document-oriented variants 
represent the NoSQL category. Remind that the 
column-oriented data model uses the column as a 
basic term and it is implemented similarly as 
relational column stores (see Section 2.2.1). A 
management of graphs is possible with graph 
databases (see, e.g.,  Neo4j (http://neo4j.com/, 2015).  

Every NoSQL database has some special features 
and functionality which makes it different to decide 
for using in an application. Diversity of query tools in 
these databases is also very high and it seems that it 
will be very difficult to develop a single standard for 
all categories (Bach and Werner, 2013). A system 
administrator must thus consider carefully which type 
of database best suits user needs before committing to 
one implementation or the other. Today, NoSQL 
evolve and take on more traditional DBMS-like 
features. However, their ad-hoc designs prevent their 
wider adaptability and extensibility.  

A special problem is quality and usability of these 
engines. Partially interesting information can be 
obtained from DB-Engines Ranking (http://db-
engines.com/en/ranking, 2015) where score of a 
DBMS product expresses its popularity. Considering 
NoSQL, the document store MongoDB, column-
oriented Cassandra, and key-value store appear in the 
top ten rated database engines in April 2015. 

Concerning the application level, NoSQL systems 
are recommended for newly developed applications, 
particularly for storage and processing Big Data, but 
not for migrating existing applications which are 
written on top of traditional RDMSs. 

An important point is that the term NoSQL has 
come to categorize a set of databases that are more 
different than they are the same. Today, scaling is 
certainly the first requirement but modern databases 
must meet more, at least, the must: 

• adapt to change, e.g. mine new data sources and 
data types without the database restructuring, 

• be able to offer tools for formulating rich 
queries, creating indexes, and searching over 
multi-structured and quickly changing data. 

Unfortunately, only some of NoSQL databases meet 
all three requirements. 

3.2 Hadoop and MapReduce 

Many NoSQL databases are based on Hadoop 
Distributed File System (HDFS) 
(http://hadoop.apache.org/docs/r0.18.0/hdfs_design.
pdf, 2007), which is a part so called Hadoop software 
stack. This stack enables to access data by three 
different sets of tools in particular layers which 
distinguishes it from the universal DBMS 
architecture with only SQL API in the outermost 
layer. The NoSQL HBase is available as a key-value 
layer with Get/Put operations as input. Hadoop 
MapReduce (M/R) system server in the middle layer 
enables to create M/R jobs. Finally, high-level 
languages HiveQL, PigLatin, and Jaql are at disposal 
for some users at the outermost layer. HiveQL is an 
SQL-like language; Jaql is a declarative scripting 
language for analysing large semi-structured datasets. 
Pig Latin is not declarative. Whose programs are 
series of assignments similar to an execution plan for 
relational operations in a RDBMS.  

On the analytics side, M/R emerged as the 
platform for all analytics needs of the enterprise, i.e. 
as an effective tool to pre-process unstructured and 
semi-structured data sources such as images, text, raw 
logs, XML/JSON objects etc. A special attention 
belongs to above mentioned HiveQL. It is originally 
a part of infrastructure (data warehousing application) 
Hive (https://hive.apache.org, 2011), which is the 
first SQL-on-Hadoop solution (see Section 3.6) 
providing an SQL-like interface with the underlying 
M/R. Hive converts the query in HiveQL into 
sequence of M/R jobs.  

Not all from M/R is perfect. For example, its 
implementation is sub-optimal, it uses brute force 
instead of indexing. Despite of the critique of many 
aspects of M/R, there are many approaches to its 
improvement (Doulkeridis and Nørvåg, 2014). For 
example, often it is emphasized the one main 
limitation of the M/R framework is that it does not 
support the joining multiple datasets in one task. 
However, this can still be achieved with additional 
M/R steps (Zhao et al., 2014). An approach for 
extending M/R for supporting real-time analysis is 
introduced at Facebook (Borthakur et al., 2011).  

On the other hand, rapid implementation of 
majority of the data discovery and data science 
attempts requires strong support for SQL with, e.g. 
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embedded analytical capabilities normally available 
in an MPP-based analytic database. 

Other solution is offered by so called Hadoop-
relational hybrids. For example, above mentioned 
column-oriented HP Vertica Analytic Database is 
cluster-based and integrated with Hadoop. Its SQL 
has built-in many analytics capabilities. 

3.3 Big Data Management Systems 

Hadoop software stack dominates today in industry, 
but for Big Analytics it is not too practical. To address 
Big Analytics challenges, a new generation of 
scalable data management technologies has emerged 
in the last years. A Big Data Management System 
(BDMS) is a highly scalable platform which supports 
requirements of Big Data processing. Now, BDMS is 
considered as a new component of more general 
information architecture in an enterprise into which 
Big Data solutions should be integrated.  

Example: Considering Hadoop software stack as 
BDMS architecture of a first-generation, a 
representative of BDMS of a second-generation is 
ASTERIX system (Vinayak et al., 2012). It is fully 
parallel, able to store, access, index, query, analyse, 
and publish very large quantities of semi-structured 
data (represented in the JSON format). The 
ASTERIX architecture (see Table 1) is a software 
stack also with more layers for data access with some 
new platforms. For example, Pregel (Malewicz et al., 
2010) is a system for large-scale graph processing on 
distributed cluster of commodity machines. 
Algebrick’s algebra layer is independent on a data 
model and is therefore able to support high-level data 
languages like HiveQL and Piglet (a subset of 
PigLatin in Hadoop software Stack)) and others. 
Partitioned parallel platform Hyracks for data-
intensive computing allows users to express a 
computation as a directed acyclic graph of data 
operators and connectors. IMRU provides a general 
framework for parallelizing a large class of machine 
learning algorithms, including batch learning, based 
on Hyracs. 

Microsoft also developed a Big Data software 
stack targeted for Big Analytics (Chaiken et al., 
2008). Data are modelled by relations with a schema. 
A declarative and extensible scripting language called 
SCOPE (Structured Computations Optimized for 
Parallel Execution) is a clone of SQL. Lower layers 
of the stack contain a distributed platform Cosmos 
designed to run on large clusters consisting of 
thousands of commodity servers. 

There are other software stacks addressing Big 
Data challenges, e.g. Berkeley Data Analytics Stack, 
Stratosphere Stack, etc. 

Finally, note that to manage and analyse non-
relational Big Data not only NoSQL, BDMS, even no 
DBMS is needed. Non-DBMS data platforms such as 
low-level HDFS can be sufficient, e.g. for a batch 
analysis.  

3.4 NewSQL Databases 

NewSQL is a subcategory of RDBMS preserving 
SQL language and ACID properties. These tools 
achieve high performance and scalability by offering 
architectural redesigns that take better advantage of 
modern hardware platforms such as shared-nothing 
clusters of many-core machines with large or non-
volatile in-memory storage. Their architectures 
provide much higher per-node performance than 
traditional RDBMS.  

Obviously the NewSQL architectures can 
distinguish significantly. Some of them are really 
new, e.g., VoltDB (http://voltdb.com/, 2015), 
Clustrix (www.clustrix.com/, 2015), NuoDB 
(www.nuodb.com/, 2015), and Spanner (Corbett, 
2012), some are improved versions of MySQL. These 
DBMSs are trying to be usable for applications 
already written for an earlier generation of RDBMSs. 
However, Spanner uses a little different relational 
data model enabling to create hierarchies of tables. 
Often, SQL features are not so strict, e.g. SQL in 
VoltDB does not use NOT in WHERE clause. The 
horizontal scalability of NewSQL databases is high. 
They are appropriate for data volumes up to the PByte 
level. An excellent review of above mentioned four 
NewSQL systems and a lot of NoSQL DBMSs is 
offered by the paper (Grolinger et al., 2013).  

A high performance is often achieved by in-
memory processing approach. Thanks to considerable 
technological advances during the last 30 years these 
DBMSs finally become available in commercial 
products. For example, above mentioned VoltDB is 
in-memory, parallel DBMSs optimized for OLTP 
applications. It is a highly distributed, relational 
database that runs on a cluster on shared-nothing, in-
memory executor nodes.  

The fundamental problem with in-memory 
DBMSs, however, is that their improved performance 
is only achievable when the database is smaller than 
the amount of physical memory available in the 
system. To overcome the restriction that all data fit in 
main memory, a new technique, called anti-caching 
(DeBrabant et al., 2013), was proposed for H-store 
(the academic version of VoltDB). An  anti-caching 
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Table 1: The ASTERIX Software Stack. 

 Level of abstraction                    Data processing 
L5 non-procedural access Asterix QL 

 
ASTERIX     
DBMS        HiveQL, Piglet, … 
 
                     Other HLL      
                     compilers          M/R jobs   Pregel job 

                   
Algebricks               Hadoop M/R        Pregelix    IMRU    Hyracks 
Algebra Layer         compatibility                                        jobs                    

 
 
L2-L4 

 
 
algebraic approach 

L1 file management  Hyracks Data-parallel Platform 
 

DBMS reverses the traditional hierarchy of disk-
based systems, i.e. all data initially resides in 
memory, and when memory is exhausted, the least-
recently accessed records are collected and written to 
disk. 

3.5 NoSQL Databases with ACID 
Transactions 

A notable new generation of NoSQL databases we 
mention enables ACID transactions. Many NoSQL 
designers are therefore exploring a return to 
transactions with ACID properties as the preferred 
means of managing concurrency for a broad range of 
applications. Using tailored optimizations, designers 
are finding that implementation of ACID transactions 
needs not sacrifice scalability, fault-tolerance, or 
performance. Such NoSQL databases are also called 
Enterprise NoSQL. They are database tools that have 
the ability to handle the volume, variety, and velocity 
of data like all NoSQL solutions, and have the 
necessary features to run inside the business 
environment. 

These DBMSs: 
• maintain distributed design, fault tolerance, 

easy scaling, and a simple, flexible base data 
model, 

• extend the base data models of NoSQL, 
• have monitoring and performance tools,  
• are CP systems with global transactions.  

A good example of such DBMS is a key-value 
FoundationDB (https://foundationdb.com/, 2015) 
with scalability and fault tolerance (and an SQL 
layer). Oracle NoSQL Database provides ACID 
complaint transactions for full CRUD (create, read, 
update, delete) operations, with adjustable durability 
and consistency transactional guarantees. The in 
Section 3.4 mentioned Spanner is also NoSQL which 
can be considered as NewSQL as well. 

MarkLogic (Cromwell S., 2013) is a document 
database that can store XML, JSON, text, and large 
binaries such as PDFs and Microsoft Office 
documents.  MarkLogic run on HDFS, has full-text 
search built directly into the database kernel. 
MarkLogic is a true transactional database. Similarly, 
the distributed graph database OrientDB guarantees 
also ACID properties.  

3.6 SQL-on-Hadoop Systems 

Although Hadoop software stack seems to be 
sufficiently mature now for some applications, we 
have seen that there are still possibilities to improve 
and optimize tools based on it. These concerns 
especially SQL-on-Hadoop systems that evolve to 
more database-like architectures, mainly towards 
SQL. 

Obviously, Hive mentioned in Section 3.2 
belongs to this category. Technologies such as Hive 
are designed for batch queries on Hadoop by 
providing a declarative abstraction layer (HiveQL), 
which uses M/R processing framework in the 
background. Hive is used primarily for queries on 
very large data sets and large ETL jobs.   

SQL processed by a specialized (Google-inspired) 
SQL engine on top of a Hadoop cluster is Cloudera 
Impala (www.cloudera.com/content/ 
cloudera/en/products-and-services/cdh/impala.html, 
2015) - designed as MPP SQL query engine that runs 
natively in Hadoop. Impala provides interactive query 
capabilities to enable traditional business intelligence 
and analytics on Hadoop-scale datasets. 

Splice Machine (Splice Machine, 2015) is a 
Hadoop RDBMS. It is tightly integrated into Hadoop, 
using HBase and HDFS as the storage level. Splice 
Machine supports real-time ACID transactions.  

The Vertica mentioned in Section 3.2 is often 
categorized as a Hadoop-relational hybrid because it 
can work with Hadoop together. 
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Table 2: New Database Architectures in last 15 years. 

Milestone Category Subcategory Representatives 
2009 NoSQL Key-value Redis  
  Column-oriented Cassandra 

Document-oriented MongoDB 
Graph databases Neo4j 

2005 BDMS 1. generation Hadoop software stack 
2010 2. generation Asterix software stack 
2011 NewSQL General purpose NuoDB, VoltDB, Clustrix 
  Google’s hybrids Spanner 

Hadoop-relational Vertica  
SQL-on-Hadoop Hive, Impala, Presto, Splice 
NoSQL with ACID FoundationDB, MarkLogic 

 
 

There is also a technology of “connectors”. In this 
architecture Hadoop and a DBMS product are 
connected in a simple way so that data can be passed 
back and forth between these two systems. 

As a representative of this approach we can 
mention Presto (http://prestodb.io/, 2013) - an open 
source distributed SQL query engine for running 
interactive analytic queries. Presto supports HiveQL 
as well. A user has also connectors Hadoop/Hive, 
Cassandra, and TPC-H at disposal that provide data 
to queries.  The last connector dynamically generates 
data that can be used for experimenting with and 
testing Presto. Unlike Hive, Presto and Impala follow 
the Google distributed query engine processor 
inspired by Google Dremel (Melnik, et al., 2010) – a 
query system for analysis of read-only nested data. 

4 CONCLUSIONS 

Summarizing, the current approaches to DBMS 
architecture turn in towards:  

• improvements of present database 
architectures, 

• radically new database architecture designs.  
The former includes challenges given by new 
hardware possibilities and Big Analytics, i.e. some 
low-level data processing algorithms have to be 
changed. This influences also approaches to query 
optimization. But (Zhao, et al., 2014) believe that it is 
unlikely that MapReduce will completely replace 
DBMSs even for data warehousing applications.  

Both SQL-on-Hadoop systems and NoSQL 
DBMS aimed at Big Data management require much 
more care in a design and tuning of application 
environment. It is necessary to select a database 
product according to the role it is intended to play and 
the data over which it will work. This causes higher 
complexity of new architectures, particularly of their 

hybrid variants, that are becoming dominant. We 
have mentioned some query tools of today’s new 
DBMSs, which are partially SQL-like. To use more 
data manipulation languages in one hybrid platform 
is certainly possible, but also complicated. Any 
abstraction/virtualization layer would be useful. 
However, the concept of a unifying language is not 
yet real. The database history in  the last 15 years is 
summarized in  Table 2.  

We have discussed horizontal layers coming from 
special software stacks. In real Big Data environment 
it is necessary to consider explicitly applications 
layers as well. They are vertical and include at least 
universal information management, real-time 
analytics, and intelligent processes, which are so 
important to most organizations today. Behind we can 
find data flows between particular data stores.   

However, this all complicates the design of 
enterprise information systems and create particular 
challenges for research and development not only of 
new database architectures. 
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