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Abstract: In this paper, we propose a method to remove noise in digital images. Our method is based on the well-
known variational approach. The novelty of proposed method consists in removing of mixed Poisson-
Gaussian noise. This is the actual problem for many types of real raster images, for example, biomedical 
images. Our method is developed with the goal to combine two famous models: ROF for removing Gaussi-
an noise and modified ROF for removing Poisson noise. As a result, our proposed method can be also ap-
plied to remove Gaussian or Poisson noise separately. We develop procedure to perform noise removal with 
automatically evaluated parameters to get the best result of denoising. 

1 INTRODUCTION 

Digital image is a type of a signal that is obtained 
from a real analogous signal by discretization and 
quantization. Many digital devices can create digital 
images, such as digital camera, X-ray scanner, and 
so on. In practice, these devices can give unexpected 
effects. One of them is noise. Noise reduces image 
quality and efficiency of image processing. 

The problem of noise removal from digital imag-
es is very actual today. In order to solve this prob-
lem, many different strong approaches were already 
developed.  

The variational approach (Chan, 2005, Burger, 
2008, Chambolle, 2009, Xu, 2014, Rankovic, 2012, 
Lysaker, 2006, Li, 2006, Zhu, 2012, Tran, 2012, 
Getreuer, 2012, Caselles, 2011, Rudin, 1992, Chen, 
2013) is well-known and very promising.  

This concept was pioneered by Rudin (1992). He 
proposed the total variation to solve many problems 
in image processing. Especially, he built a model for 
denoising of digital images. This model is referred to 
by ROF (Rudin, 1992, Chen, 2013). 

It is known, ROF model is used to remove only 
Gaussian noise. However, another important type 
like Poisson noise is usually presented in digital 
images. For example, this noise appears in medical 
X-ray images. In order to remove this noise, Le T. 
(2007) developed so called modified ROF model. 

Gaussian and Poisson noises are popular sepa-
rately, but their combination is also important 
(Luisier, 2011). This combination of noises usually 
appears in biomedical images, for example, in elec-
tronic microscope images (Jezierska, 2011, 2012). 

Nevertheless, ROF and modified ROF models 
ineffectively treat this combination. ROF model 
gives priority to Gaussian noise, but modified ROF 
model gives it to Poisson noise. 

Our goal is to combine ROF model (for Gaussian 
noise) and modified ROF model (for Poisson noise) 
to create new model that can treat this combination 
effectively. Our model will treat this combination 
with considering proportion of noise between them.   

In experiments, we used initial images and added 
noise into them. We performed denoising of digital 
images by proposed method and other methods, such 
as ROF model, median filter (Wang 2012) and Wie-
ner filter (Abe 2012). In order to evaluate an image 
quality after denoising, we used well-known criteria 
MSE (Mean Square Error), PSNR (Peak Signal-to-
Noise Ratio) and SSIM (Structure SIMilarity) 
(Wang, 2004, 2006). We give priority to PSNR, 
because it is most popular and used to evaluate the 
quality of restored signal in signal processing in 
general, and in image processing, especially.  
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2 DENOISING MODEL FOR 
MIXED POISSON-GAUSSIAN 
NOISE 

Let in 2R  space a bounded domain 2R   be 
given. Let us call functions 2( , ) Ru x y   and 

2( , ) Rv x y  , respectively, ideal (without noise) and 

observed images (noisy),  where ( , )x y  .  

If the function u  is smooth, then its total varia-
tion is defined by 

[ ] | |TV u u dxdy


  , 

where ( , )x yu u u  is a gradient (nabla operator), 

/xu u x   , /yu u y   , 2 2| | x yu u u   . In this 

paper, we only consider function u  that always has 
limited total variation [ ]TV u   . 

2.1 Denoising Model 

According to results (Chang, 2005, Burger, 2008, 
Rudin, 1992, Chen, 2013, Scherzer, 2009), image 
smoothness is characterised by the total variation. 
The total variation of noisy image is always greater 
than the total variation of smoothed image.  

When Rudin solved the problem [ ] minTV u  , 

he used this characteristic and assumed, that Gaussi-
an noise variance is fixed by the additional con-
straint  

2( )u v dxdy const


   

He proposed the ROF model to remove Gaussian 
noise from an image 

* 2arg min | | ( )
2u

u u dxdy u v dxdy


 

 
     

 
  , 

where 0  is a Lagrange multiplier. 
Le T. (2007) proposed another model to remove 

Poisson noise based on ROF model: 

* arg min | | ( ln( ))
u

u u dxdy u v u dxdy
 

 
     

 
  , 

where   is a regularization coefficient. We call it a 

modified ROF model for Poisson noise. 
In order to develop the denoising model for 

mixed noise, we also solve the problem based on the 
smooth characteristic of the total variation 

[ ] minTV u  . 

And we also define a constrained condition. We 
assume that with given image u , the mixed noise in 
image is fixed too (Poisson noise is unchangeable, 
and Gaussian noise only depends on noise variance): 

ln( ( | ))p v u dxdy const


 , (1)

where ( | )p v u  is a conditional probability. 

Let us consider Gaussian noise. Its probability 
density function (p.d.f.) is 

2

1 2

( )
( | ) exp / ( 2 )

2

v u
p v u  


 

  
 

. 

For Poisson noise the p.d.f.  is 

2

exp( )
( | )

!

vu u
p v u

v


 . 

We have to note that intensity levels of image col-
ours are integer (for example, the intensity interval 
for an 8-bit grayscale image is from 0 to 255), so we 
regard u  as an integer value, but this will ultimately 
be unnecessary (Le 2007). 

In order to treat combination of Gaussian and 
Poisson noises, we assume the following linear 
combination 

1 1 2 2ln( ( | )) ln( ( | )) ln( ( | ))p v u p v u p v u   , 

where 1 0  , 2 0  , 1 2 1   . 

According to (1), we obtain the denoising prob-
lem with constrained condition as following: 

*

21
22

arg min | |

( ) ( ln( )) ,
2

u
u u dxdy

v u u v u dxdy


 






  

         




  

where  is a constant value. 
We can transform this constrained optimization 

problem to the unconstrained optimization problem 
by using Lagrange functional 

21
2

( , ) | | ( )
2

L u u dxdy v u dxdy


 
 


    


   

2 ( ln( ))u v u dxdy 



  


  

to find 
* *

,
( , ) arg min ( , )

u
u L u


  , (2)
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where 0   is a Lagrange multiplier.  
This is our proposed model to remove mixed 

Poisson-Gaussian noise from digital image. We have 
to notice that, if 1 0   and 2   , we obtain 

modified ROF model for removing Poisson noise. If 

2 0   and 2
1 / (2 )   , then we obtain ROF 

model for removing Gaussian noise. In the case of 

1 20, 0    we get the model for removing mixed 

Poisson-Gaussian noise. 

2.2 Model Discretization 

In order to solve the problem (2), we can use the 
Lagrange multipliers method (Zeidler, 1985, 
Rubinov, 2003, Gill, 1974).  

However, in this paper, we will solve it by using 
the Euler-Lagrange equation (Zeidler, 1985).  

Let function ( , )f x y  be defined in limited do-

main 2R   and be the second-order continuous 
differentiable one by x  and y  for ( , )x y  .  

We consider the special convex functional 
( , , , , )x yF x y f f f , where /xf f x   , /yf f y   .  

The solution of the optimization problem 

( , , , , ) minx yF x y f f f dxdy


  

satisfies the following Euler-Lagrange equation 

( , , , , ) ( , , , , )
xf x y f x yF x y f f f F x y f f f

x


 


  

( , , , , ) 0
yf x yF x y f f f

y





, 

where 

/fF F f   , /
xf xF F f   , /

yf yF F f   . 

We use the result above to solve the problem (2). 
The solution of the problem (2) is given by the fol-
lowing Euler-Lagrange equation: 

 

1
22

( ) (1 )
v

v u
u





       

2 2 2 2
0,yx

x y x y

uu

x yu u u u
 

        
        

(3)

where 1 /  . We can reduce (3) to 

 

 

1
22

( ) (1 )
v

v u
u





     

2 2

2 2 3/ 2

2
0

( )
xx y x y xy x yy

x y

u u u u u u u

u u


 



, 

(4)

where 
2

2xx

u
u

x





, 
2

2yy

u
u

y





, 

xy yx

u u
u u

x y y x

               
. 

In order to discretize the equation (4), we add an 
artificial time parameter and consider the function 

( , , )u u x y t . Then the equation (4) relates to the 

following diffusion equation 

1
22

( ) (1 )t

v
u v u

u





      

2 2

2 2 3/2

2

( )
xx y x y xy x yy

x y

u u u u u u u

u u


 


, 

(5)

where /tu u t   . 

We can write the discretized form of the equation 
(5) as following: 

11
2

( )k k k
i j i j i j i ju u v u





 
   


 

2 (1 )i j k
i jk

i j

v

u
 


  


, 

(6)

where 

2

2 2 3/2

( )( ( ))

(( ( )) ( ( )) )

k k
xx ij y ijk

i j k k
x ij y ij

u u

u u


 
 

  
 

2

2 2 3/ 2

2 ( ) ( ) ( ) ( ( )) ( )

(( ( )) ( ( )) )

k k k k k
x ij y ij xy ij x ij yy ij

k k
x ij y ij

u u u u u

u u

      

  
, 

1, 1,( )
2

k k
i j i jk

x ij

u u
u

x
 

 


, , 1 , 1( )
2

k k
i j i jk

y ij

u u
u

y
 

 


, 

1, 1,

2

2
( )

( )

k k k
i j ij i jk

xx ij

u u u
u

x
  

 


, 

, 1 , 1

2

2
( )

( )

k k k
i j ij i jk

yy ij

u u u
u

y
  

 


, 

1, 1 1, 1 1, 1 1, 1( )
4

k k k k
i j i j i j i jk

xy ij

u u u u
u

x y
         

 
 

, 

1 1 2 20 1 1, , 0 1 , 1 ,; ; ; ;k k k k k k k k
j j N j N j i i i N i Nu u u u u u u u      

IMTA-5�2015�-�5th�International�Workshop�on�Image�Mining.�Theory�and�Applications

40



1 21,..., ; 1,..., ;i N j N   

0,1,..., ; 1; 0 1k K x y        . 

Here K is enough great number. In this paper, we 
use 500K  . For initial condition, we have 

0
1 2; 1,..., ; 1,...,i j i ju v i N j N   . 

2.3 Finding Optimal Parameters 

We can use the procedure (6) to perform image 
denoising. In this procedure, values of parameters 

1 2, , ,     need to be given. In some cases, we 

have to define these parameters to perform image 
denoising automatically. Then parameters 1 2, ,    

in process (6) need to be changed into 1 2, ,k k k   for 

each step k . So we obtain new procedure that al-
lows us to calculate values of these parameters au-
tomatically in iteration steps. 

2.3.1 Optimal Parameters 1 and 2 

Let ( , )u   be a solution of the problem (2). Then we 

get the condition 

( , )
0

L u

u





. 

This condition gives us the optimal parameters 

1 2,  : 

1

2

(1 )

1
( ) (1 )

v
dxdy

u
v

v u dxdy dxdy
u







 




  



 
, 

2 11   . 

Its discretized form is 

1 2

1 2

1 1

1

2
1 1

(1 )

( 1 )

N N
ij

k
i j ijk

kN N
ij ij ij

k
i j ij

v

u

v u v

u





 

 






 




, 

2 11k k   , 

where 0,1,...,k K . 

2.3.2 Optimal Parameter  

In order to find an optimal parameter  , we multiply 

(3) by ( )u v  and integrate by parts over  . Final-

ly, we obtain the formula to find the optimal pa-
rameter  : 

2
21

22

2 2

2 2

( )
( ( ) )

( )x x y y
x y

x y

u v
u v dxdy

u
u v u v

u u dxdy
u u

 


 




  




 





. 

Its discretized form is 

1 2

1 2

2
21

22
1 1

1 1

( )
( ( ) )

kN N k
ij ijk k

ij ij k
i j ijk

N N
k
ij

i j

u v
u v

u

 





 

 


  





, 

where 

2 2( ( )) ( ( ))k k k
ij x ij y iju u       

2 2

( ) ( ) ( ) ( )

( ( )) ( ( ))

k k
x ij x ij y ij y ij

k k
x ij y ij

u v u v

u u

   

  
, 

1, 1,( )
2

k k
i j i jk

x ij

u u
u

x
 

 


, , 1 , 1( )
2

k k
i j i jk

y ij

u u
u

y
 

 


, 

1, 1,( )
2

k k
i j i jk

x ij

v v
v v

x
 

 


, , 1 , 1( )
2

k k
i j i jk

y ij

v v
v

y
 

 


, 

1 1 2 20 1 1, , 0 1 , 1 ,; ; ; ;k k k k k k k k
j j N j N j i i i N i Nu u u u u u u u      

1 1 2 20 1 1, 0 1 , 1 ,; ; ; ;j j N j N j i i i N i Nv v v v v v v v      

1 21,..., ; 1,..., ;i N j N  0,1,..., ; 1k K x y     . 

2.3.3 Optimal Parameter  

In order to evaluate this parameter  , we use the 
result of Immerker (1996): 

1 2

1 11 2

/ 2
| * |

6( 2)( 2)

N N

ij
i j

u
N N


 

 
   , where 

1 2 1

2 4 2

1 2 1

 
     
  

 is the mask of an image. 

Operator * is a convolution operator, where 

1, 1 33 , 1 32 1, 1 31 1, 23*ij i j i j i j i ju u u u u                

22 1, 21 1, 1 13 , 1 12 1, 1 11ij i j i j i j i ju u u u u              , 

1 21,..., ; 1,..., ;i N j N   
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0iju  , if 0i  , or 0j  , or 1 1i N  ,  

or 2 1j N  . 

We have to notice, that the parameter   is just 
evaluated at first time of the iteration process. 

2.4 Image Quality Evaluation 

In order to evaluate image quality after denoising, 
we use criteria MSE (Mean Square Error), PSNR 
(Peak Signal-to-Noise Ratio) and SSIM (Structure 
SIMilarity) (Wang 2004, 2006): 

1 2
2

1 11 2

1
( )

N N

MSE ij ij
i j

Q u v
N N  

  , 

1 2

2
1 2

2

1 1

10lg

( )
PSNR N N

ij ij
i j

N N L
Q

u v
 

 
 
   

  
 


, 

1 2
2 2 2 2

1 2

(2 )(2 )

( )( )
uv

SSIM
u v

u v C C
Q

u v C C


 

 


   
, 

where 

1 2

1 11 2

1 N N

ij
i j

u u
N N  

  , 
1 2

1 11 2

1 N N

ij
i j

v v
N N  

  . 

1 2
2 2

1 11 2

1
( )

1

N N

u ij
i j

u u
N N


 

 
  , 

1 2
2 2

1 11 2

1
( )

1

N N

v ij
i j

v v
N N


 

 
  , 

1 2

1 11 2

1
( )( )

1

N N

uv ij ij
i j

u u v v
N N


 

  
  , 

2 2
1 1 2 2 1 2( ) , ( ) ; 1; 1C K L C K L K K    .  

For example, 6
1 2 10K K   , L  is image intensity, 

where, for example, 82 1 255L     for an 8-bit 
greyscale images. 

The greater value PSNRQ , the better image quali-

ty. If PSNRQ  is between 20 and 25, then an image 

quality is acceptable, for example, for the wireless 
transmission (Thomos 2006). 

SSIMQ  is used to evaluate image quality by com-

paring similarity of both images. Its value is between 
-1 and 1. The greater value SSIMQ , the better image 

quality. 

MSEQ  is a criteria to evaluate the difference be-

tween two images. MSEQ  is mean-squared error. The 

lower value MSEQ , the better restoration result. The 

value of MSEQ  also relates to the value of PSNRQ . 

2.5 Image Sample Initialization 

In experiment with artificial image, we use an image 
with the size of 300x300 pixels. This image has six 
vertical bars (Fig. 1a). Bar grey level intensities are 
110, 130 and 160, respectively, where numbers of 
pixels are same (30.000). We zoom, crop and show 
the part of the original image under processing (Fig. 
1b – 1f). 

First, we create the noisy image by adding 
Gaussian noise (Fig. 1c) and second, create noisy 
image by adding Poisson noise (Fig. 1d).  

We want to generate a noisy image, the quality 
of which is very low, but we cannot control the Pois-
son noise intensity. So, we just only control the 
variance of Gaussian noise. In order to calculate 
proportion between intensities of Gaussian and Pois-
son noises, we calculate the variance of Poisson 
noise. The value of variance of Gaussian noise is 
calculated via Poisson noise variance. Let the vari-
ance of Gaussian noise be four times greater than the 
variance of Poisson noise. 

First, let us consider Poisson noise. Its distribu-
tion is 2 ( | )p v u , value of the variance of Poisson 

noise is 2 iju  , respectively, with iju  at every 

pixel ( , )i j  of image, where 1 21,..., ; 1,...,i N j N  . 

We denote this Poisson noisy image as (2)v . Obvi-

ously, intensity value of (2)v  ought to be between 0 
and 255. If the intensity value of some pixels are out 
of this interval, they need to be reset to intensity 
value of respective pixel of the original image u , 

that means (2)
ij ijv u .  

In this case, number of them is zero. The vari-
ance of Poisson noise can be calculated as average 

value 2 ( 110 130 160) 11.5130     , beca-

use this image has three intensity levels and their 
numbers of pixels are identical.  

Now, we consider Gaussian noise. Its variance 
need to be 46.052 (because we explained above, 
variance of Gaussian noise is four times over vari-
ance of Poisson noise). We denote this Gaussian 
noisy image as (1)v . As above case, intensity value 

of (1)v  also need to be between 0 and 255. In this 
case, there are 1063 pixels out of this interval, re-
spectively 1.2% of all image pixels. 

We create resulting noisy image (Fig. 1e) by 
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combining first noisy and second noisy images with 
proportion 0.6 for Gaussian noisy image (1)v  and 0.4 

for Poisson noisy image (2)v . 

This means (1) (2)0.6 0.4v v v  . Hence:  

1 2/   46.052 0.6 /11.513 0.4    

27.63 / 4.6 6 /1 . 
As a result: 1 6 / 7 0.8571   , 2 1/ 7 0.1429   . 

Values of QMSE, QPSNR and QSSIM of noisy image 
are respectively 718.8782, 19.5643, and 0.1036. The 
value of QPSNR of noisy image is lower than 20. That 
means quality of noisy image is very low and it 
cannot be used, for example, for wireless transmis-
sion. 

2.6 Experiments 

In order to test our model, we consider the following 
cases for above sample image: parameters are 
1=0.2, 2=0.8 (worse restoration); 1=2=0.5 (better 
restoration); 1=0.8571, 2=0.1429 (best restoration) 
and with automatically evaluated 1=0.8102, 
2=0.1898. Result of denoising with 1=0.8571, 
2=0.1429 is given on Fig. 1f.  

 
a) b) 

 
c) d) 

 
e) f) 

Figure 1: Result of noise initialization and denoising: 
a) original image, b) cropped image, c) with Gaussian 
noise, d) with Poisson noise, e) with mixed noise, f) after 
denoising.  

We also compare the result of our model with 
other noise removal methods: ROF, Wiener filter, 
median filter. Results are given in Table 1. 

Table 1 shows, the proposed method with auto-
matically evaluated parameters effectively removes 
noise and gives us the high quality images to use 
them, for example, for wireless transmission. 

Fig. 2 shows vertical cut of grey level intensities 
of original image, noisy image and denoised image. 

 

Figure 2: Intensity of original, denoised and noisy images. 

Table 1: Quality comparison of noise removal methods for 
the artificial image. 

 QPSNR QSSIM QMSE 

Noisy 19.5643 0.1036 718.8782 
ROF 35.1284 0.9130 19.9635 

Median 31.4844 0.7797 46.1996 
Wiener 30.1502 0.6018 62.8146 

Proposed method 
with 

1=0.2, 
2=0.8, 

 = 0.1140, 
 = 46.0520 

29.1325 0.5933 79.4014 

Proposed method 
with 

1=2=0.5, 
 = 0.1429, 
 = 46.0520 

37.0462 0.9453 12.8370 

Proposed method 
with 

1=0.8571, 
2=0.1429, 
 = 0.4738, 
 = 46.0520 

42.8237 0.9902 3.3940 

Proposed method 
with evaluated  

parameters 
1=0.8102, 
2=0.1898, 
 = 0.3846, 
 = 45.4523 

42.7795 0.9900 3.4287 
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We also use another example to test our model in 
the case of processing a real image. In this case, we 
use an image of human skull (Nick 2009) with the 
size 300x300 pixel (Fig. 3a). We add Gaussian noise 
(Fig. 3b), Poisson noise (Fig. 3c) and combine two 
these images to make final noisy image (Fig. 3d). 

Variance of Gaussian noise is 4 times over vari-
ance of Poisson noise and proportion of combination 
is 0.5 and 0.5, and 1=0.75, 2=0.25. Result of de-
noising is shown in Fig. 3e, Fig. 3f. In this case, the 
variance of Poisson noise is 10.0603, the variance of 
Gaussian noise is 40.2412. The number of pixels 
intensities of which is out of interval 0 and 255 for 
Poisson noise is 5 (respectively 0.0056%), and for 
Gaussian noise is 5780 (respectively 6.42%). 

The Table 2 shows the result of denoising for re-
al image in both case: given parameters and auto-
matically evaluated parameters. 

 

a) b) 

c) d) 

e) f) 

Figure 3: Denoising of real image: a) original image, b) 
cropped image, c) with Gaussian noise, d) with Poisson 
noise, e) with mixed noise, f) after denoising. 

We have to notice, that in the case of the real im-
age, the value of QPSNR of denoising for given ideal 

parameters is better, than the value of QPSNR of de-
noising for automatically evaluated parameters, but 
the value of QSSIM is inversed. 

Table 2: Quality comparison of noise removal methods for 
real image of human skull. 

 QPSNR QSSIM QMSE 

Noisy 21.4168 0.4246 427.9526 
Proposed method 

with 
1=0.75, 
2=0.25, 
 = 0.1, 

 = 40.2412. 

27.2808 0.8157 121.6189 

Proposed method 
with evaluated  

parameters 
1=0.8095, 
2=0.1905, 
 = 0.0970, 
 = 38.2310. 

27.2567 0.8383 122.2941 

3 CONCLUSIONS 

In this paper, we proposed the approach to remove 
combination of Poisson and Gaussian noises (mixed 
noise). This method is based on variational ap-
proach. 

The result of denoising depends on parameters, 
especially on coefficients of linear combination 1  

and 2 . We can specify values of parameters or 

these values can be automatically evaluated. In order 
to apply this model to real image, we need to use the 
proposed method with automatically evaluated pa-
rameters. 

The proposed method can be applied to remove 
separate Gaussian or Poisson noise (respectively 
ROF model and modified ROF model for Poisson 
noise), or mixed Poisson-Gaussian noise as well. 

We also can use this variational approach to re-
move other kinds of noise, such as noise of magnetic 
resonance images (MRI), ultrasonogram, etc. 
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