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Abstract: Transport and logistics faces fluctuations in cargo volume that statistically can only be captured with a large 
error. Observing and managing such dynamic volume fluctuations more effectively promises many benefits 
such as reducing unused transport capacity and ensuring timely delivery of cargo. This paper introduces an 
approach that combines user-friendly mobile devices with internet-connected sensors to deliver up-to-date, 
timely, and precise information about parcel volumes inside containers. In particular, we present (1) RCM, a 
mobile app for unique identification of containers, and (2) SNAP, a novel approach for employing internet-
connected low-cost, off-the-shelf 3D scanners for capturing and analyzing actual cargo volumes. We have 
evaluated the accuracy of SNAP in controlled experiments indicating that cargo volume can be measured 
with high accuracy. We have further evaluated RCM together with SNAP by means of a survey study with 
domain experts, revealing its high potential for practical use.  

1 INTRODUCTION 

The execution and management of transport and 
logistics processes strongly benefits from up-to-date, 
timely, and precise information about transported 
goods. Current technology developments such as 
internet-connected devices (Internet of Things), 
mobile and cloud computing, as well as software-
based web services provide unprecedented opportu-
nities for collecting relevant information in real-
time. For example, sensors can be placed at relevant 
positions along a transport chain and even be at-
tached to the transport containers and transported 
goods, thereby delivering real-time data about cargo. 
Such data can in turn be conveyed to downstream 
logistics partners, allowing them to better plan and 
manage the delivery of goods, match the actual car-
go volume to the cargo capacity more precisely, 
consolidate shipments to benefit from better freight 
rates or increased cargo security, and, in general, 
more effectively plan transport and handling activi-
ties for the enterprise (Metzger et al. 2014). 

This paper focusses on parcel transport and lo-
gistics as one area where real-time information fos-
ters better, even proactive, reaction to deviations. 
Parcel transport faces frequent volume fluctuations. 
For example, the amount of parcels that should be 

transported from an online reseller to its customers 
may deviate from the planned amount of parcels for 
that day, as actual parcel volumes can statistically be 
captured only with large error. Observing and man-
aging such dynamic volume fluctuations more effec-
tively promises many benefits for a transport and 
logistics enterprise, such as reducing unused 
transport capacity and ensuring timely delivery of 
goods. 

Our contribution is to combine user-friendly mo-
bile devices with internet-connected sensors for 
delivering up-to-date, timely, and precise infor-
mation about parcel volumes. In particular, we pre-
sent1 (1) RCM (Roll Container Manager), an An-
droid app for the unique identification of parcel-
containers, and (2) SNAP (Scan and Analyse Parcel-
Containers), a novel approach for employing inter-
net-connected low-cost, off-the-shelf 3D scanners to 
measure parcel volumes. RCM matches data ob-
served by the 3D scanner to the parcel-container, 
thus providing unique identification of the container 
for effective process management. 

3D scanners are one promising class of sensors 
that can be applied to “estimate” volumes of spatial 
 

1 Additional information about RCM, SNAP  
and its quantitatively evaluation is provided at 
https://sites.google.com/site/snaprcm 
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objects. Volume scanning using 3D has been applied 
in various areas but mostly using proprietary, com-
plex, and costly 3D scanning devices. Therefore, 
systems using low-cost 3D scanners promise to be 
an attractive alternative to industrial sensor systems 
due to their lower capital expenditures and their 
capability of efficient process integration (Kückel-
haus et al. 2013). The quality of existing low cost 
3D scanners has reached a level that makes it feasi-
ble to apply them in industrial settings. Successful 
applications of such scanners have been reported in 
cases such as warehouse picking operations (Xing-
yan Li et al. 2012), humanoid driving (Rasmussen et 
al. 2013), or object reconstruction (Izadi, New-
combe, et al. 2011; Zhou and Koltun 2013; Xu et al. 
2012; Bondarev et al. 2013; Kainz et al. 2012).  

To quantitatively assess the accuracy of parcel 
volume recognition as facilitated by SNAP, we per-
formed controlled experiments. Results indicate that 
the position of the parcel-container and its payload 
influence the accuracy. In the best case, we were 
able to achieve accuracy with an average error rate 
of about -15%. Complementing this quantitative 
evaluation of our solutions, we performed qualitative 
evaluations of SNAP and RCM through a survey 
study with domain experts, indicating its high poten-
tial for practical use. Especially, knowledge about 
the container volume in operative transport man-
agement was perceived as high importance. 

The remainder of the paper is structured as fol-
lows. Section 2 gives an overview of the foundations 
for 3D scanning. Section 3 relates our contribution 
to the state of the art. Section 4 describes the imple-
mentation of SNAP and RCM. Section 5 presents 
and discusses the design, execution, and results of 
our quantitative evaluation. Section 6 describes our 
qualitative evaluation.  

2 FOUNDATIONS 

We employ Microsoft Kinect as 3D scanner (con-
cretely, Microsoft Kinect for Windows v1 (Mi-
crosoft 2014)) and therefore present its main founda-
tions as basis for the remainder of the paper. 

Kinect solutions have previously been experi-
mentally evaluated against professional solutions 
concerning accuracy, effective field of view, and 
object detection (Smisek et al. 2011; Khoshelham 
2011; Dutta 2012). In (Dutta 2012) Kinect solutions 
have been reported to perform better in some aspects 
than professional solutions.  

With the release of the Kinect for Windows SDK 
v1.7, Kinect Fusion was introduced, enabling the 

calculation of 3D-volume from depth stream data 
(Izadi, Newcombe, et al. 2011; Izadi, Kim, et al. 
2011; Microsoft Developer Network 2013). Several 
depth-pictures are integrated step-by-step to obtain a 
3D representation of the depth information (New-
combe et al. 2011; Freedman et al. 2012), and then 
can be exported as a 3D-object. The raw-data of 
such a 3D-object can be exported in form of a point-
cloud, an accumulation of points in a 3D space with 
x, y and z coordinates, and can be processed further. 
For example, raw-data is used to identify objects in a 
scene by comparing two point-clouds and identify-
ing the changed points (Litomisky and Bhanu 2013) 
or by creating silhouettes from the color and depth 
data to separate objects from the scene (Xu et al. 
2012). We use both ideas in our work to separate 
parcel-containers from their background. 

The Kinect device is very cost effective, but has 
its own limitations. First, Kinect Fusion requires a 
graphics processor for real time image processing, 
which means the graphics hardware and memory can 
become a restrictive factor (Microsoft Developer 
Network 2014). Depending on the point cloud reso-
lution, scenes up to multiple cubic meters can be 
scanned. Second, the depth sensor has noise and a 
limited range. Several algorithms address these limi-
tations, e.g., (Bondarev et al. 2013; Roth & Vona 
2012; Whelan et al. 2012; Zeng et al. 2012). 

3 RELATED WORK 

In this section, we describe approaches related to our 
work.  

With depth data available from 3D scanners, var-
ious application problems can be addressed. For 
example, (Xingyan Li et al. 2012) present an imple-
mentation for the visual detection of objects in a 
warehouse order picking process. A Kinect sensor is 
used to identify goods each time an item is placed in 
a basket. Both the basket and the goods are static. 
The color images and depth images of the Kinect are 
used to compare textures and geometric shapes of 
detected objects against known objects in a database. 
Recognition rates approaching 100% have been 
achieved. However, the solutions does not employ 
the new Kinect Fusion APIs. The authors use a 
method for calculating the volume of objects located 
within the basket. The depth of the container is 
compared with the height of the measured object 
points and the difference represents the height of the 
object, which is then multiplied by the convex hull. 

A project similar to our work was carried out by 
DHL. Two low-cost depth sensors (similar to Kinect 
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sensors) were used to measure the volume of cargo 
on pallets. The results of the pilot phase indicated 
high accuracy (Kückelhaus et al. 2013). Although 
the project of DHL is a very similar scenario, it is 
significantly different in structure from the applica-
tion considered in our work. In the project, the load-
ing volume of pallets is measured. Pallets have the 
advantage that all sides are open. Due to the fact that 
two sensors are used, a complete 3D capture of the 
objects to be measured can be performed. From the 
data, for example, the volume of the point cloud can 
be calculated with the Delaunay triangulation (De-
launay 1934). In our work, only one sensor and 
parcel-containers with only one open side are used. 
Thereby, the Delaunay triangulation cannot be ap-
plied to the cloud point, because a full coverage 
cannot be ensured, yet the space has to be calculated 
within the container. These circumstances make it 
more difficult to capture volume in our case. 

4 IMPLEMENTATION 

In this section, we briefly describe the implementa-
tion of the 3D scanning solution SNAP and the An-
droid App RCM. 

Overview of SNAP. Our implementation for 
volume scanning employs a Microsoft Kinect 3D 
scanner for real-time volume recognition of parcel-
containers, called SNAP (Scan and Analyze Parcel-
Containers). For the technical setting, the Kinect 
sensor is mounted on a tripod slightly above the 
parcel-container to attain a complete overview of the 

payload. The key idea for the volume calculation is 
to use the point cloud of the scene, provided by the 
Kinect Fusion algorithm and based upon the depth 
stream of the Kinect sensor, to extract the point 
cloud of the parcel-container and calculate its vol-
ume.  

Our process for volume recognition consists of 
two activities with three steps each: (cal) calibration 
and (scan) actual scanning (see Figure 1). During 
the calibration activity, the background and also an 
empty parcel-container are scanned as baseline. The 
calibration of the background is a simple snapshot of 
the point cloud of the scene without a parcel-
container in it (see cal-1 in Figure 1), and is used for 
the algorithms for volume recognition, as described 
in detail below. 

To achieve precise measurements of volumes, 
our algorithm performs two essential steps both 
during calibration and scanning. First, the point 
cloud of the parcel-container is scanned (cal-2 / 
scan-1). Second, the points of the container are 
extracted from the scene by filtering out the back-
ground (cal-3 / scan-2). Based on these intermediate 
steps, the volume of a loaded parcel-container can 
finally be calculated by simply subtracting the vol-
ume of the empty parcel-container from the volume 
of the loaded container (scan-3). 

Overview of RCM. In addition to SNAP, we 
developed the Android application Roll Container 
Manager (RCM) to control the Kinect and to inte-
grate the prototype in a user-friendly way into given 
business processes to perform the scan process. As 
mentioned above, such integration requires a unique 
identification of  the parcel-containers.  This  can  be 
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Figure 1: Abstract process for volume recognition. 
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done via the app by leveraging human-in-the-loop 
knowledge (e.g., to make sure that the 3D scanner 
indeed scans the parcel-container of interest). 

To integrate volume recognition into a given 
business process, users are able to control the scan-
ning of a loaded parcel-container by performing 
three steps within the RCM-App. First, they identify 
the container by scanning a QR-Code (rcm-1 in 
Figure 1) to ensure correct data-matching to the 
business-process. Following this, SNAP can be 
started from the app to scan and analyze the volume 
of the payload of the parcel-container (rcm-2). This 
also ensures that the containers are only scanned 
after their loading has been completed. The results 
of volume scanning are directly sent to the RCM and 
is visualized for immediate confirmation by users. 
By confirming the results (rcm-3), users indicate 
they have checked the correctness of results. Results 
are then made available to the dispatcher responsible 
for process management (dispatchers in turn may 
employ control centers for process management). In 
addition, users may access an overview of the scans 
(rcm-4) where they can compare planned and 
scanned container amounts in a chart and review the 
details of past scans in a card view. 

5 QUANTITATIVE EVALUATION 

In the following, we discuss the design, execution, 
and results of the conducted quantitative evaluation 
of SNAP. 

5.1 Experimental Design 

We follow the definition of (Prechelt 2001) and 
distinguish between dependent, independent, and 
confounding variables. Our goal is to measure accu-
racy (relative error of measurement). We will inves-
tigate how the dependent variables are influenced by 
(variations of) the independent variables and wheth-
er there are confounding variables that might indi-
cate wrong estimations. 

5.1.1 Variables in the Experiment 

Dependent Variable. We observe one dependent 
variable during our experiment: 
 Accuracy of the recognition results. It is meas-

ured in the form of the relative error of meas-
urement:  

error ൌ
ሺmeasured	volume െ real	volumeሻ

real	volume
(1)

Independent variables. During the experiment, 

three independent variables are systematically varied 
to analyze their influence on the dependent variable:  
 Horizontal distance between the parcel-container 

and the Kinect sensor. The analysis of this varia-
ble is crucial in practical settings since it takes 
some effort for the user to take care of the exact 
position when containers are scanned. 

 Angle of the parcel-container to the Kinect sen-
sor. This is measured as follows: The vertical 
line from the Kinect to the ground is the basis. 
From this point, we build a radian measure to 
span the field of view of the Kinect sensor. The 
angle from orthogonal lines of the radian meas-
ure to the container front is the independent vari-
able. For the sake of simplicity, we took only one 
line in the center of the Kinect field of view. 

 Loading volume, i.e., we want to measure wheth-
er and how the actual loading volume influences 
the accuracy of volume recognition.  

5.1.2 Variation of Independent Variables 

In order to control the variation of the independent 
variables, we determined the granularity of changes 
and the order in which the variables are modified.  

Granularity. For each of the independent varia-
bles, we determined the levels for which we want to 
observe the influence on the dependent variable. The 
number of levels has been chosen such that we ob-
tain high significance along with feasible experi-
mental efforts (see Table 1). 

For the horizontal distance of the container, the 
maximal and minimal levels have been restricted by 
the Kinect environment and the available space. 
Concerning the angle of the container for settings 
with 20° and -20° the internal space of the container 
is completely visible for the Kinect. For the actual 
loading volume, further variations beyond the ones 
used did not lead to new or different results. 

Ordering of variable variation. According to 
the previously described granularities, each combi-
nation of the different levels has been evaluated, 
leading to 100 combinations in total. Each round 
consists of 35 measurements, which makes 3500 
measurements in total. 

Table 1: Independent Variables and Assignments. 

Horiz. Distance [m] 2.58, 2.1, 1.62, 1.3 

Angle [°] 0, 10, 20, –10, –20 

Loading Volume [m³] 0.001, 0.131, 0.262, 0.481, 0.642
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Figure 2: Distance and Deviation. Figure 3: Angle and Deviation. Figure 4: Cargo Volume and Deviation.

 

5.1.3 Confounding Variables 

During the experiment, we observed three main 
confounding variables: 
 The background and changes in the background 

might cause wrong volume estimations. To avoid 
this, a static background must be guaranteed dur-
ing the experiment.  

 The infrared sensor of the Kinect is sensitive to 
daylight. Hence, the experiment location has 
been protected from daylight.  

 The surface of the parcel-container either reflects 
or refracts the infrared light. To remedy this, the 
inner container surface has been covered with 
cardboard. 

5.1.4 Technical Setting and Constraints 

The Kinect is located on a tripod at a height of 2.9m, 
the inclination angle is -38°. The range of the view-
ing area of the Kinect is 57° horizontal and 43° ver-
tical. The data are processed by a computer equipped 
with Intel i7 3770, nVidia GT630, 16GB of memory, 
and Windows 7 Professional x64 SP1 as the operat-
ing system. As software, we use Microsoft Visual 
Studio 2012, .Net Framework 4.5, Microsoft Kinect 
SDK 1.8 including the Developer Toolkit, and XNA 
Gamestudio 4.0.  

The parcel-container must be located completely 
in the viewing area. The size of the parcel-container 
is 0.92m * 1.13m * 1.67m (inside) and 0.95m * 
1.2m * 1.9m (outside). The open side of the contain-
er is in front of the Kinect such that the inner space 
of the container is visible. The parcel-container must 
be optimally loaded, i.e., without empty spaces be-
tween parcels. Settings of the Kinect such as resolu-
tion, transformations, and algorithms are fixed. 

5.1.5 Expected Effects 

When designing the experiment, we identified ex-
pected effects caused by the variation of the inde-

pendent variables, leading us to formulate three 
hypotheses (H1 – H3): 
 H1/H2: “Variations of the distance/angle have no 

influence on the error of measured loading vol-
ume and real loading volume.” The dis-
tance/angle determine the geometric position of 
objects. Variations of them are variable factors 
that are handled by Kinect algorithms. 

 H3: “The larger the real loading volume is the 
less are the relative measurement errors.” The 
volume is computed as the difference between 
the volume of the loaded container and the vol-
ume of the empty container. Due to some general 
variations in the scanning, lower volume has 
higher impact on deviations.  

5.2 Experimental Results 

In total, we collected 3.5GB of raw data during ex-
periment execution, covering 3345 out of 3500 pos-
sible measurements. For the analytics, we used IBM 
SPSS Statistics v22.0.0.0 x64. 

First, we analyzed the influence of the geomet-
rical position of the container on the accuracy 
(measurement error). 

Figure 2 and Figure 3 show the influence of the 
distance and the angle of the container to the Kinect. 
Figure 2 indicates that the Kinect delivers a low 
error in the 2100mm and 2580mm range. However, 
the error increases as the container gets closer to the 
Kinect sensor (1620mm and 1300mm). The angle 
analysis (Figure 3) shows a similar picture, with the 
smallest error being at -10° and 0° and increasing 
the further it moves away from the zero point. 

We also analyzed the influence of the amount of 
payload. Figure 4 shows that the more payload is 
used, the less relative measurement error we have, 
starting from a very high error for lowest payload up 
to a very small error for highest payload. 

In general, statistical influence of the independ-
ent variables is highly significant. Table 2 shows a 
more detailed analysis. Based on these results, we 
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constructed a best case scenario where we only 
picked the best values for the independent variables 
(see Table 3). 

Comparing the results of the best case with the 
average case, a significant lower standard deviation 
can be identified in the best case. This means that 
with the choice of optimal variables, it is possible to 
heavily reduce the deviation to a minimum. Even if 
an optimal position for the container (angle and 
distance) cannot be ensured, a low level of deviation 
can be observed for high amounts of payload. Com-
paring a 14.90 standard deviation of the average case 
for the maximum payload (0.642m³) used and a 7.31 
standard deviation in the best case with the same 
amount of payload, which compares to a 28.84 std. 
deviation in the average case with distance set to 
2.58m and 37.59 std. deviation in the average case 
with angle set to 0°. 

5.3 Discussion 

While error values showed a variance of only േ15% 
in the best case scenario, error and variance in gen-
eral showed a significant movement off the desired 
zero baseline. This behavior is mainly caused by the 
distance variables to the Kinect and the angle of the 
container, leading to a stronger geometrical distor-
tion. The more the container moves off the optimal 
orthogonal view, the more SNAP has problems with 
recognizing the front surface, leading to faulty vol-

ume measurements. Therefore, the user is advised to 
place the container as close to the optimal spot as 
possible to ensure accurate measurements.  

Also, the amount of payload has a high influence 
on deviation. The more payload was used, the lower 
the deviation was. This leads to more results that are 
accurate the higher the payload is. In practice, users 
strive to pack the parcel-containers as full as possi-
ble, thus we can expect relatively ideal situations for 
this independent variable. 

Considering internal validity, in total, three con-
founding variables have been detected. After the 
experiment, a manual review was performed to ex-
hibit evidence of further confounding variables, but 
none with noticeable impact on the results have been 
observed. Considering external validity, a couple of 
adjustments had to be done to ensure a feasible 
workload and functionality. This includes using a 
fixed set of configuration parameters for the volume 
algorithms whose effects have yet to be determined. 
Also, the container had to be lined with cardboard, 
which is a very unlikely preparation for a practical 
use. This is yet an unlikely scenario, so either easy 
to apply methods or sensing technologies without 
this weakness need to be tested. The Kinect also 
needs to be placed in a static environment as chang-
ing of objects within the environment makes a recal-
ibration of the background necessary. 

6 QUALITATIVE EVALUATION 

We evaluated our approach regarding usefulness, 
usability, and adoption by performing a survey study 
(questionnaire-based) with domain experts from the 
parcel logistics domain during a live demonstration 
of our prototype. 

For each question of the questionnaire, we of-
fered five choices reflecting the degree of approval, 
ranging from “strongly disagree”, “disagree”, “neu-
tral”, and “agree” to “strongly agree”. A partici-
pant’s choice was quantified (1 for strongly agree, 
0.75 for agree, 0.5 for neutral, 0.25 for disagree and 
0 for strongly disagree), summarized and divided by 
the mean value, ending up with a single degree of 
approval. The result is summarized in Table 4.  

The responses from domain experts indicate the 
usefulness of our approach. Especially, knowing the 
container volume in operative transport management 
(79.2%) was perceived of high importance.  

Also, the usability of our volume scanning solu-
tion in practical environments has been confirmed, 
e.g., by a high approval of the fact that only a short 
training period and only few instructions are neces-
sary. Finally, the analysis of potential adoption indi-

Table 2: Significance analysis. 

Independent 
Variable 

t Significance Sign. 
Level 

Distance -33.4492941 2.3527E-205 ** 

Angel 9.877020051 1.26671E-22 ** 

Cargo Volume -24.4620010 1.8005E-119 ** 

Table 3: Accuracy (measurement error) for the best case
and the average case. 

 best case avg. case 

std. deviation 7.31 61.41 

std. error  
(95% confidence interval) 

0.61 1.18 

mean value -16.68 17.44 

median -17.94 -1.87 

minimum level 
(95% confidence interval) 

-17.90 15.12 

maximum level 
(95% confidence interval) 

-15.46 19.76 
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cated that there is a high interest to apply our Kinect 
approach in general (63.9%).  

However, the appropriateness of the provided 
functionality for the expert’s individual businesses 
received an agreement of only 54.2 %. This may 
partially be attributed to the fact that the IT permea-
tion of transport and logistics industry is still quite 
low in many areas and thus it may be difficult for 
domain individuals to relate to their current state of 
practice. Another mentioned aspect was an eventual 
vulnerability of the approach to soiled sensors. 

Table 4: Results of expert evaluation. 

Usefulness 

The amount of roll containers is important 
for operative transport management. 

72.2 % 

The used capacity (volume) of each roll 
container is important for operative transport 
management. 

79.2 % 
 

The interaction with the Kinect via mobile 
apps is useful. 

70.8 % 

Usability 

Using the automatic volume scan (e.g., with 
the Kinect) would only require a short train-
ing period. 

76.7 % 

Using the automatic volume scan (e.g., with 
the Kinect) would require some instructions. 

68.3 % 

Adoption  

I would like to work with the automatic 
volume scan (e.g., with the Kinect). 

63.9 % 

The provided functionality of the automatic 
volume scan (e.g., Kinect) is appropriate for 
my business. 

54.2 % 

7 SUMMARY AND CONCLUSION 

This paper presented an approach for using Mi-
crosoft Kinect, a low-cost, off-the-shelf 3D scanner, 
to measure the cargo volume of a parcel-container in 
real-time. To quantitatively assess accuracy of pay-
load volume recognition, we performed controlled 
experiments. The evaluation showed a high accuracy 
with only 15% relative error under optimal circum-
stances. However, it also revealed some weaknesses 
when the geometrical position of the container dif-
fers from the optimal position. Complementing this 
quantitative evaluation of our solutions, we per-
formed qualitative evaluations through a survey 
study with domain experts, which indicated the 

usefulness and applicability of our approach. It thus 
has a high potential for practical use. 

In the meantime, Kinect for Windows v2 was re-
leased and promises further improvement of our 
approach, especially concerning overall accuracy, 
noise-reduction. Furthermore, we are evaluating 
several other parameters to help improve accuracy 
and performance of volume recognition. As an on-
going step, we implement a second algorithm with 
Euclidean Cluster Extraction and repeat the experi-
ments for comparison. An interesting further aspect 
might be to apply our solution to the Food Supply 
Chain, e.g., Big Box2. This would allow scanning 
parcel-containers containing objects with the same 
size and thus calculate the exact amount of objects. 

Finally, we are going to bring our solution into 
the cloud, using distributed thin-clients with con-
nected Kinect for Windows v2. This facilitates scal-
ing our solution to extend the visible space and scan 
multiple containers as well as outsourcing computa-
tional-intensive algorithms. 
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