
MIMOPack
A HPC Library for MIMO Communication Systems

Carla Ramiro Sánchez1, Antonio M. Vidal Maciá1 and Alberto Gonzalez Salvador2
1Dpto. De Sistemas Informáticos y Computación (DSIC), Universitat Politècnica de València, Valencia, Spain

2Instituto de Telecomunicaciones y Aplicaciones Multimedia (iTEAM), Universitat Politècnica de València, Valencia, Spain

1 RESEARCH PROBLEM

Nowadays, several communication standards are
emerging and evolving searching higher
transmission rates, reliability and coverage. This
expansion is primarily driven by the continued
increase in consumption of mobile multimedia
services due to the emergence of new handheld
devices such as smart phones and tablets.

One of the most significant techniques employed
to meet these demands is the use of multiple transmit
and receive antennas, known as Multiple-Input
Multiple-Output (MIMO) systems (Paulraj et al.,
2004). The use of this technology allows to increase
the transmission rate and the quality of the
transmission through the use of multiple antennas at
the transmitter and receiver side.

MIMO technologies have become an essential
key in several wireless and broadband standards
such as Wireless Local Area Network (WLAN),
Wordlwide interoperability for Microwave Acces
(WiMAX), Long Term Evolution (LTE) and Next
Generation Handheld (DVB-NGH), for the reception
of digital terrestrial television (TDT) for handheld
devices. These technologies will be incorporated
also in future standards, therefore is expected in the
coming years a great deal of research in this field.

Clearly, the study of MIMO systems is critical in
the current investigation, however the problems that
arise from this technology are very complex. The
detector is present in the receiver side and is the
responsible for recover the transmmitted signals
(which are affected by the channel fluctuations) with
the maximum reliability. This step becomes in many
cases the most complex stage in the communication.

Another important factor that affects the
performance of a MIMO system is the number of
transmit and receive antennas, because as the system
grows the communication data processing becomes
more complicated. Although the number of antennas
currently allowed in the standards is not large, it is
expected that in the near future more than 100

transmit antennas will be used (Rusek, 2013),
(Lamare, 2013). All the above reasons motivate the
search for high-throughput versatile receiver
implementations capable to be reconfigured and
scalable with the system parameters.

The High Performance Computing (HPC)
systems, and specifically, modern hardware
architectures as multicore and manycores (e.g
Graphic Processing Units (GPU)) are playing a key
role in the development of efficient and low-
complexity algorithms for MIMO transmissions.
Proof of this is that the number of scientific
contributions and research projects related to its use
has been increased in the last years (Wu, 2011),
(Nylanden, 2010), (Falcao, 2009). Also, some high
performance libraries have been implemented as
tools for researchers or companies involved in the
development of future communication standards, for
example: IT++ library based on the use of some
optimized libraries for multicore processors (IT++,
2013) or the Communications System Toolbox of
Matlab (MathWorks, 2014) which use GPU
computing. However, there is not a library able to
run on a heterogeneous platform using all the
available resources whenever possible.

In view of the high computational requirements
in MIMO research and the shortage of tools able to
satisfy them, we have made a special effort to
develop a library to ease the development of
adaptable parallel applications in accordance with
the different architectures of the executing platform.
The library, called MIMOPack, aims to implement
efficiently, using parallel computing, a set of
functions to perform some of the critical stages in
MIMO communication systems. This library can be
run over the last generation of machine architectures
(e.g GPUs and multicore), or even simultaneously,
since it is designed to use on heterogeneous
machines to exploit the whole computational
capacity thus reducing the response time of the most
complex problems.

MIMOPack, may allow industrial and academic
researchers to include more complex algorithms in

3

Sánchez C., Maciá A. and Salvador A..
MIMOPack - A HPC Library for MIMO Communication Systems.
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

their simulations and obtain its results faster.
Moreover, it can be run in a wide range of
architectures even many of them callable from
MATLAB increasing the portability of developed
codes between different computing environments.

2 OUTLINE OF OBJECTIVES

The use of MIMO technology has had enormous
repercussions in today's telecommunications systems
and certainly it will do in the near future. The
benefits offered are achieved at the expense of an
increase in the material costs to deploy multiple
antennas at both the transmitter and the receiver, and
also at the expense of additional complexity at the
receiver end of the MIMO system. For that reason,
signal detection has been the subject of intense study
during the last decade and the search for high
throughput practical implementations also scalable
with the system size remains essential today.

The grand challenge is to develop fast algorithms
to optimize the design and the validation process of
new MIMO schemes and technologies. Then, this
work aims to contribute to meeting this goal. This
section describes some particular motivations
leading towards the high performance library design.

The use of HPC systems brings big benefits, but
it will also poses big challenges. These systems
introduce asymmetries and heterogeneities that
complicate the development of efficient algorithms.
In the recent years, a large variety of machine
architectures have appeared, in view of this situation
researchers of the scientific community are obliged
to write the codes in different programming
languages and consider many details of the
architecture to use efficiently the whole target
system. Therefore, this high performance computing
library is essential to facilitate the implementation of
scientific codes on a widespread range of
architectures.

Furthermore, there are several important
companies implicated in the development of new
communication standards. In the standardization
process different entities are involved such as:
administrations, network operators, manufacturers,
users, research bodies, universities, consultancy
companies, partnerships and others (ETSI, 2014).
The objective of a standard is to provide a set of
rules, guidelines or characteristics ensuring the
interoperability between systems developed by
different manufacturers.

Figure 1: Nature and scope of the thesis.

These manufacturers work to propose their own
technologies with the aim that it will be approved as
standard. This will allow to enforce their intellectual
property rights over its competitors, who will must
obtain the corresponding license to incorporate the
technology adopted as standard into their products.
In many cases, simulation is the only way to get
these proposals but these simulations often involve a
high computational burden, since they try to
simulate the transmission of large amount of bits in
order to obtain results close to than would be
obtained in a real transmission. Normally these
simulations require weeks or even months to be
completed. Thereby, MIMOPack may allow the
launch of large simulations, opening the door for
industrial researchers to analyze its technologies
faster than its conventional simulation and obtain
more patent opportunities than their potential
competitors. Taking into account the above
presented motivations, the main scope of this thesis
is the following (see Figure 1):
 To develop an efficient library of functions able

to perform some of the most important and
complex stages in a MIMO communication as
preprocessing, precoding, detection and
decoding.

 To contribute with high-throughput
implementations of functions using parallel
processing and to evaluate them in terms of
speedup, bit error rate and throughput and
compare them with other existing
implementations.

 To facilitate to the programmer the
implementation of codes on a wide range of
architectures, incrementing the portability of
codes between different computing platforms by
using common interfaces for all the considered
environments. This approach simplifies the use
of the library, regardless of the machine where it
will be executed.

PECCS�2015�-�Doctoral�Consortium

4

 To develop a set of functions highly configurable
able to be executed with different simulation
parameters and different computational
resources.

3 STATE OF THE ART

Programming applications over HPC systems allows
to reduce the execution time of complex problems,
but it use leads serious programming difficulties.
The programming challenge involves the developers
to know different programming languages and the
characteristics of the architecture in depth. In this
sense the high performance libraries become in
valuable tools for specialists of a particular field,
since it facilitate the development of scientific
codes.

Some software companies have already released
to the market various libraries, these libraries not
only facilitate the preparation of code but also
exploit the huge computing capabilities of new
architectures to accelerate and optimize these
implementations. There are several libraries with
extensive backgrounds and acceptance in the
scientific community, most of them in numerical
linear algebra. For example the Linear Algebra
PACKage (LAPACK) designed to run efficiently on
shared-memory vector and parallel processors
(Anderson, 1999). There are also some versions of
them, which provide implementations of basic
mathematical functions on GPUs as for example
CULA (CULA, 2014) or MAGMA (Tomov, 2011).

In the field of communication systems
applications, few tools or HPC libraries are
available. Nevertheless, we can find two remarkable
libraries:
 Communications System Toolbox provides

algorithms for designing, simulating, and
analyzing communications systems. These
capabilities are provided as MATLAB functions,
MATLAB System objects, and Simulink blocks.
The system toolbox enables source coding,
channel coding, interleaving, modulation,
equalization, synchronization, and channel
modeling. Also allows analyze bit error rates,
generate eye and constellation diagrams, and
visualize channel characteristics. Although this
software is excellent and widely used by the
scientific community, nowadays just a small set
of functions are prepared to use parallel
computing with GPUs.

 IT++ Library: is a C++ library of mathematical,

signal processing and communication classes and
functions. The kernel of the library consists of
generic vector and matrix classes, and a set of
accompanying routines. IT++ makes an
extensive use of existing open-source or
commercial libraries for increased functionality,
speed and accuracy (e.g BLAS, LAPACK,
FFTW, ATLAS, ACML, etc). However, this
library is oriented to its exclusive use on
multicore machines; it does not have support to
use GPUs.

4 METHODOLOGY

The methodology to be followed in this research
work is summarized in the following tree phases.

4.1 Conceptual Phase

This phase includes from conception of the research
problem to the concreteness of objectives.
 Find information about the current MIMO

systems and techniques used in different modules
existent in the communication process (Channel
coding and decoding, preprocessing, precoding,
hard/soft detection).

 Bibliographic review on efficient algorithms and
high performance libraries for MIMO
communication systems.

 Enumerate the main objectives and detect the
main motivations leading towards the library
implementation.

4.2 Methodological Phase

This phase includes the algorithms design and its
implementation on high performance hardware.
 Study of the performance of the algorithms

implemented sequentially to establish which
parts of the code are the computationally most
expensive.

 Design of algorithms: The parallelization
opportunities of each algorithm will be
discussed, and also the possibility of its
implementation with heterogeneous multicore +
heterogeneous multi-GPU programming.

 Implement the algorithms designed in the
previous stage using OpenMP (for multicore
systems) and CUDA for GPU devices.
Moreover, will be explored the possibility of
using numerical linear algebra libraries and

MIMOPack�-�A�HPC�Library�for�MIMO�Communication�Systems

5

optimized as LAPACK, BLAS, etc in some parts
of the code.

4.3 Empirical Phase

This phase involves validation, analysis and
interpretation of the results obtained with our
implementations.
 Analysis of different parameters to obtain the

best performance in the design of each module.
For example: number of threads, type of
distribution of tasks (static or dynamic), and
thread block size.

 Validation stage: Unit testing for each function
implemented above. These tests allow us to
ensure that our code work properly.

 Analyze the performance based on speedup, Bit
Error Rate and throughput.

 Perform the same computational analysis on
several systems, checking if the library is
portable and has a good performance on any type
of hardware platform. For example, different
types of machines GPUs, other numbers of
processors, etc.

 Optimization performance and efficiency of
various library functions. The optimization is
carried out either if the speedup was not
expected, or when necessary to optimize the code
for certain fixed parameters specified in a
particular standard.

5 EXPECTED OUTCOME

As a result of the research work described in
previous sections, a C library will be able for
simulation of MIMO communication systems. The
library will include tools and functions to perform
some of the critical stages in the communication
process, which can be executed over different types
of architectures to ease the development of adaptable
parallel applications in accordance with the different
architectures of the executing platform:
 Sequential processor
 Multi-core processor
 GPU and Multi-GPU
 Heterogeneous (multicore and GPUs)

For each simulation the library shall allow to
configure the following MIMO systems parameters:
 Number of transmitter/receiver antennas
 Signal to Noise Ratio (dB)

 Modulation
 Number of signal vectors to be transmitted
 Variation of the channel

Each function will be executed with the
configuration selected by the user:
 Number of CPU threads
 Number of GPUs
 Quantity of workload for GPUs and CPU
 Use or not MKL library whenever possible

6 STAGE OF THE RESEARCH

The library is composed by several modules. In
Figure 1 we can see the basic simulation chain
through the library headers, as we can see the library
allows the user to assign the type and the number of
resources to use during the execution and get the
simulation results to calculate some statistics (e.g
simulation time, Bit Error Rate, Symbol Error Rate
or throughput).

Figure 2: Simulation chain through the MIMOPack library
modules.

6.1 Software Package Functions

The library is continuously growing; the updated
release collects a set of functions to compute the
most important and complex stages in a MIMO
communication which are described in this section.

6.1.1 Hard-output Detectors

If nearly optimal data detection is desired, the
detector becomes often the most computationally
expensive algorithm within a MIMO receiver. The
detector is responsible of processing the received
mixture of signals affected by the channel in order to
recover the transmitted data with the accuracy
required by the considered application. This issue
motivates the search for high-throughput MIMO
hard-output detectors capable to be reconfigured and
scalable with the system parameters. The hard-

PECCS�2015�-�Doctoral�Consortium

6

output detectors currently available in the library are
listed below:
 MLE: MLE-Exhaustive (Agrell, 2002).
 SESD: Schnorr Euchner Sphere Decoder

(Schnorr, 1994).
 ZF-SIC: Zero Forcing SIC (Berenguer, 2003).
 HFSD: Hard Fixed Sphere Decoder (Barbero,

2008).
 K-BEST: K-Best Decoder (Guo, 2006).
 ASD: Automatic Sphere Decoder (Su, 2005).

Also, some strategies such as channel matrix
preprocessing techniques can be used in order to
decrease the computational cost of data detection
and are also implemented in MIMOPack.

6.1.2 Soft-Output Detectors

Error control coding ensures the desired quality of
service for a given data rate and is necessary to
improve reliability of MIMO systems. Therefore, a
good combination of detection MIMO schemes and
coding schemes has drawn attention in recent years.
The most promising coding schemes are Bit-
Interleaved Coded Modulation (BICM) (Caire,
1998). At the transmitter the information bits are
encoding using an error-correction code. The soft
demodulator provides the reliability information in
form of real valued log-likehood ratios (LLR). These
values are used by the channel decoder to make final
decisions on the transmitted coded bits.
Nevertheless, these sophisticated techniques produce
a significant increase in the computational cost and
require large computational power. The following
Soft-Output detectors have been implemented:
 Soft Fixed Sphere Decoder (Barbero, 2008).
 Fully Parallel Fixed-Complexity Detector
 Max-Log Detector (Müller, 2002).
 ML Optimum Detector (Müller, 2002).

6.1.3 Multiuser MIMO Precoding

In multi-user (MU) MIMO transmissions,
specifically, in the downlink scenario, a base station
equipped with multiple antennas transmits
information to several independent users. The
detection process becomes more complicated due to
the absence of cooperation between them. In order to
simplify the detector complexity at the receiver side,
several precoding techniques were devised by
various authors and have been included in the library
(Windpassinger, 2004), (Yao, 2002):
 Zero-Forcing Precoding

 Tomlinson-Harashima.
 Lattice Reduction Aided Tomlison-Harashima
 Enhanced Lattice Reduction Aided

6.2 Preliminary Performance Results

In order to asses the performance of the library, we
have evaluated the execution time of a set of Hard-
Output detectors. The tests are executed on a
platform with one Nvidia Tesla K20Xm GPU with
14 SM, each SM including 192 cores. The core
frequency is 0.73 GHz. The GPU has 5GB of
GDDR5 global memory and 48KB of shared
memory per block. The installed CUDA toolkit is
5.5. The Nvidia card is mounted on a PC with two
Intel Xeon CPU E5-2697 at 2.70 GHz with 12 cores
and hyperthreading activated.

We consider as simple simulation example of a
MIMO system with 6 transmit and receive antennas,
16-QAM symbol alphabet and a constant channel
during the entire simulation. The speedup is defined
as the ratio between the computational time resulting
of executing the simulation of 50000 signals on the
sequential CPU (with one OpenMP thread) and the
time to execute the same simulation on a multicore
and GPU system.

By linking the code with MIMOPack library, we
can easily reduce the execution time of our
simulations significantly. This execution time can be
decreased even more using the heterogeneous mode
(i.e multicore and GPU simultaneously).

Table 1: Runtime of Hard-Output MIMOPack detectors
with different library configurations.

Detector
Runtime (sec)

Sequential 48 Threads GPU

MLE 1.48 · 105 7.97 · 103 5.69 · 103

SESD 89.08 3.88 12.80

L
 =

 1

HFSD 0.45 0.13 0.34

2-BEST 0.48 0.07 0.50

4-BEST 0.82 0.14 0.74

16-BEST 3.31 0.26 1.64

L
 =

 3

HFSD 64.70 3.24 3.71

2-BEST 15.98 0.81 3.86

4-BEST 16.49 0.84 4.15

16-BEST 20.45 0.89 5.02

64-BEST 37.07 1.51 7.01

As we can see in Table 1, we have a good
speedup for the parallel versions for all kind of
detectors. MLE GPU version exhibits a good

MIMOPack�-�A�HPC�Library�for�MIMO�Communication�Systems

7

performance even better than that obtained with
multicore version. However, due to the low
complexity and the non parallel pattern of other
detectors especially of the suboptimal ones (ZF-SIC
and HFSD) methods, the OpenMP version obtains
better performance than CUDA version.

This gain gradually disappears when the
complexity of the detector increases, for example
with the number of levels to be fully expanded (L)
or increasing the number of survivors (K) to be
computed in each level in the K-BEST detector.

The variety of detectors with mixed complexities
and performances allows to cover multiple use cases
with different channel conditions and scenarios such
as massive MIMO. Moreover, parallel
implementations allow the execution of large
simulations over different architectures thus
exploiting the capacity of the modern machines.

7 CONCLUSIONS

This thesis is focused in the development of a high
performance library for MIMO communications
systems which aims to provide a set of routines
needed to perform the most complex stages in the
current wireless communications. The proposed
library has three important features: portable,
efficiently and user friendly. Results obtained with
the efficient hard-output detectors presented in this
paper demonstrate that MIMOPack library may
become in a very useful tool for companies involved
in the development of new wireless and broadband
standards which need obtain results and statistics of
its proposals quickly and also for other researchers
making easier the implementation of scientific
codes.

ACKNOWLEDGEMENTS

This work has been supported by SP20120646
project of Universitat Politècnica de València, by
ISIC/2012/006 and PROMETEO FASE II 2014/003
projects of Generalitat Valenciana; and has been
supported by European Union ERDF and Spanish
Government through TEC2012-38142-C04-01.

REFERENCES

Paulraj A.J., Gore D.A., Nabar R.U., Bölcskei H., 2004.
An overview of MIMO communications-a key to

gigabit wireless. Proceedings of the IEEE, 92(2):198-
218.

Rusek F., Persson D., Lau B., Larsson E., Marzetta T.,
Edfors O., Tufvesso F., 2013. Scaling Up MIMO:
Opportunities and Challenges with Very Large Arrays.
IEEE Signal Processing Magazine, 30(1):40-60.

Lamare R.C., 2013. Massive MIMO Systems: Signal
Processing Challenges and Research Trends. URSI
Radio Science Bulletin.

Wu M., Sun Y., Gupta S., Cavallaro J., 2011.
Implementation of a high throughput soft MIMO
detector on GPU. Journal of Signal Processing
Systems, 64(2):123-136.

Nylanden T., Janhunen J., Silven O., Juntti M., 2010. A
GPU implementation for two MIMO-OFDM detectors.
International Conference on Embedded Computer
Systems.

Falcao G., Silva V., Sousa L., 2009. How GPUs can
outperform ASICs for Fast LDPC decoding.
International Conference of Supercomputing.

IT++., 2014. IT++ User’s guide. http://itpp.sourceforge
.net /4.3.1/users_guide.html.

MathWorks., 2014. Communication System Toolbox.
User’s guide Version 6.5. http://jp.mathworks.com/
help/pdf_doc/comm/comm.pdf.

ETSI, 2014. European telecommunications standards
institute Members, http://www.etsi.org/index.php
/membership.

Anderson E., Bai Z., Bishof C., Demmel J., Dongarra J.,
1999. Lapack User Guide. Third Edition.
http://www.netlib.org/lapack/lug/

CULA., 2014. CULA Programmer’s Guide.
http://www.culatools.com/

Tomov S., Nath R., Du P., Dongarra J., 2011 MAGMA
Users’ Guide. http://icl.cs.utk.edu/projectsfiles/
magma/doxygen/

Agrell E., Eriksson T., Vardy A., Zeger K., 2002. Closest
point search in lattices. IEEE Transactions on
Information Theory, 48(8):2201-2214.

Schnorr C., Euchner M., 1994. Lattice basis reduction:
Improved practical algorithms and solving subset sum
problems. Mathematical Programming, 66(2):181-191.

Berenguer I., Wang X., 2003. Space-Time coding and
signal processing for MIMO communications. Journal
of Computer Science and Technology, 18(6):689-702.

Barbero L.G., Thompson J.S., 2008. Fixing the complexity
of the sphere decoder for MIMO detection, IEEE
Transactions on Wireless Communications, 7(6):
2131-2142.

Guo Z., Nilsson P., 2006. Algorithm and implementation
of the K-Best Sphere Decoding for MIMO Detection.
IEEE Journal on Selected Areas in Communications,
24(3):491-503., March 2006.

Su K., 2005. Efficient Maximum Likelihood detection for
communication over MIMO channels. University of
Cambridge, Technical Report.

Caire G., Taricco G., Biglieri E., 1998. Bit-interleaved
coded modulation. IEEE Transactions on Information
Theory, 44(3):927-946.

Barbero L.G., Ratnarajah T., Cowan C., 2008. A low-

PECCS�2015�-�Doctoral�Consortium

8

complexity soft-MIMO detector based on the fixed-
complexity sphere decoder. IEEE International
Conference on Acoustics, Speech and Signal
Processing. Las Vegas, Nevada (USA).

Müller-Weinfurtner S.H., 2002. Coding approaches for
multiple antenna transmission in fast fading and
OFDM. IEEE Transactions on Signal Processing, 50:
2442-2450.

Windpassinger C., Fischer R., Vencel T., H., Huber, 2004.
Precoding in multiantenna and multiuser
communications. IEEE Transactions on
Communications, 3(4):2057-2060.

Yao H., Wornell G., 2002. Lattice-reduction-aided
detectors for MIMO communication systems. IEEE
Global Communications Conference, Taipei, Taiwan.

MIMOPack�-�A�HPC�Library�for�MIMO�Communication�Systems

9

