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Abstract: In the industrial field, the artificial neural network classifiers are currently used and they are generally 
integrated of technologic systems which need efficient classifier. Statistical classifiers also have been 
developed in the same direction and different associations and optimization procedures have been proposed 
as Adaboost training or CART algorithm to improve the classification performance. However, the objective 
comparison studies between these novel classifiers stay marginal. In the present work, we intend to evaluate 
with a new criterion the classification stability between neural networks and some statistical classifiers based 
on the optimization Fischer criterion or the maximization of Patrick-Fischer distance orthogonal estimator. 
The stability comparison is performed by the error rate probability densities estimation which is valorised by 
the performed kernel-diffeomorphism Plug-in algorithm. The results obtained show that the statistical 
approaches are more stable compared to the neural networks. 

1 INTRODUCTION 

In high dimension spaces, the precision of the 
estimation requires non realistic size of training 
sample since the sample data size required to obtain 
satisfactorily classification accuracy increases 
exponentially with dimension of data space. Hence, 
dimension reduction step is one of the important and 
efficient issues to overcome this problem. Among 
statistical methods for this purpose, we consider here 
a standard one called Fisher Linear Discriminate 
Analysis (LDA) and a second one based on a 
probabilistic distance. Artificial Neural Networks 
(ANNs or NNs) have been in use for some time now 
and we can find them working in data classification 
and non-linear dimension reduction.  

Various experimental comparisons of neural and 
statistical classifiers have been reported in the 
literature. Paliwal and Kumar presented in (Paliwal, 
2009) a recent review of these studies. Tam and 
Kiang showed in (Tam, 1992), by comparing the NNs 
with the linear classifiers as: Discriminate Analysis, 
the logistic regression and the k Nearest Neighbor 
ones for bank bankruptcy prediction in Texas. A 
performance evaluation of the neural networks 
against linear discriminate analysis was presented by 
Patuwo and al, in (Patuwo, 1993), for some 

classification problems. Their study proved that 
neural approaches are not better than the LDA but 
they are comparable in two-group two-variable 
problems.  

Most of researchers compare the neural and 
statistical techniques performance while forgetting 
the NNs instability criterion. This paper studies the 
stability of neural network classifier results compared 
to the statistical ones. In our work we propose to 
evaluate the stability by estimating the error rate 
probability density function (pdf) of each classifier. 
Such pdf is estimated by applying the Plug-in kernel 
algorithm (Saoudi, 2009), which optimizes the 
integrated mean square error criterion to search the 
best smoothing parameter of the estimator. The 
misclassification error is a positive real value 
bounded by the unity. Therefore we choose to 
improve the pdf estimation precision by using the 
performed kernel-diffeomorphism Plug-in algorithm 
recently developed in (Saoudi, 2009). 

Therefore this paper will be organized as follow. 
We begin in the section 2 by presenting the neural 
approach. Section 3 recalls the statistical classifiers 
which are based on two tasks. The first one consists 
on the dimensionality reduction after that, the 
classification procedure will be applied in the reduced 
space. The classifier based on Patrick-Fischer 

672 Othman I., Drira W., El Ayeb F. and Ghorbel F..
Comparison of Statistical and Artificial Neural Networks Classifiers by Adjusted Non Parametric Probability Density Function Estimate.
DOI: 10.5220/0005360906720678
In Proceedings of the 10th International Conference on Computer Vision Theory and Applications (VISAPP-2015), pages 672-678
ISBN: 978-989-758-089-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



distance will be described. After that, we will devote 
section 4 to the introduction of the criterion which 
will be given as the comparison study between the 
neural and the statistical classifiers. Simulation 
results are presented and analyzed in section 5. In the 
last section, we will apply this comparative study to 
the evaluation of real pattern recognition problem. So 
we intend to test the different classifiers stability and 
performance for the handwritten digits recognition 
problem by classifying their corresponding Fourier 
Descriptors. Such features form a set of invariant 
parameters under similarity transformations and 
closed curve parameterizations. This set has good 
proprieties as completeness and stability.  

2 NEURAL APPROACHES 

The most used and studied networks category is the 
mixed NNs, which present a combination of the 
features extractors NNs and the classifiers ones. Once 
the first networks layers carry out the primitive 
extraction, the last layers classify the extracted 
features. An interesting example is the Multi-Layer 
Perceptron.  

2.1 Multi-Layer Perceptron: MLP 

Based on the results from (Steven, 1991), a MLP with 
one hidden layer is generally sufficient for most 
problems including the classification. Thus, all used 
networks in this study will have a unique hidden 
layer. The number of neurons in the hidden layer 
could only be determined by experience and no rule 
is specified. However, the number of nodes in the 
input and output layers is set to match the number of 
input and target parameters of the given process, 
respectively. Thus, the NNs have a complex 
architecture that the task of designing the optimal 
model for such application is far from easy. 

In order to reduce the difference between the 
ANN outputs and the known target values, the 
training algorithm estimates the weights matrices, 
such that an overall error measure is minimized. The 
proposed technique requires improvements for MLP 
with the back-propagation algorithm. 

2.2 Neural Networks Critics 

Although the effectiveness and significant progress of 
ANNs in several applications, and especially the 
classification process, they present several limits. 
First, the MLP desired outputs are considered as 
homogeneous to a posterior probability. Till today, no 

proof of this approximation quality has been 
presented. Second, the NNs have a complex 
architecture that the task of designing the optimal 
model for such application is far from easy. Unlike 
the simple linear classifiers which may underfit the 
data, the NNs architecture complexity tends to overfit 
the data and causes the model instability. Breiman 
proved, in (Breiman, 1996), the instability of ANNs 
classification results. Therefore, a large variance in its 
prediction results can be introduced after small 
changes in the training sets. Thus, a good model 
should find the equilibrium between the under-fitting 
and the over-fitting processes.  

Qualified by their instability, the neural classifiers 
produce a black box model in terms of only crisp 
outputs, and hence cannot be mathematically 
interpreted as in statistical approaches. Thus, we 
recall in the next section some statistical methods 
such the basic linear discriminate analysis and the 
proposed Patrick-Fischer distance estimator. 

3 STATISTICAL APPROACHES 

The traditional statistical classification methods are 
based on the Bayesian decision rule, which presents 
the ideal classification technique in terms of the 
minimum of the probability error. However, in the 
non parametric context, applying Bayes classifier 
requires the estimation of the conditional probability 
density functions. It is well known that such task 
needs a large samples size in high dimension. 
However, a dimension reduction is required in the 
first step.  

3.1 Linear Discriminate Analysis: LDA 

The linear discriminate analysis is the most well-
known approach in supervised linear dimension 
reduction methods since this popular method is based 
on scatter matrices. In the reduced space, the between 
scatter matrices are maximized while the within class 
ones are minimized. To that purpose, the LDA 
considers searching for orthogonal linear projection 
matrix W that maximizes the following so-called 
Fisher optimization criterion (Fukunaga, 1990): 
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Sw is the within class scatter matrix and Sb is the 
between class scatter one. Their two well-known 
expressions are given by: 
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where μk is the conditional expectation of the original 
multidimensional random vector X relative to the 
class k. μ corresponds to the mean vector over all 
classes. c is the total number of classes and πk denotes 
the prior probability of the kth class. E(.) is the 
expectation operator.  

Fisher reduction space is generated by the d-
eigenvectors having the d-largest eigen values of the 
matrix  Sw

-1Sb. Note that this method is based on the 
scatter matrices which are defined from first and 
second order statistical moments of the conditional 
random variable. Therefore, for complex situations as 
the multimodal conditional distributions the low 
order moments do not enable to describe completely 
statistical dispersions. So, Fisher discriminate 
analysis could give wrong feature selection. In order 
to get rid this limitation, we have proposed in (Drira, 
2012) the method based on distances between the 
conditional probability density functions weighted by 
the prior probabilities. 

3.2 Patrick-Fischer Distance Estimator 
based on Orthogonal Series 

It is well known that the most suitable criteria for the 
discriminate analysis is defined from the distance 
between probability density functions whether 
conditional or mixture. Despite its theoretical interest, 
its use is still limited in practice while this distance 
does not admit practically no explicit estimator in the 
non parametric case.  

We recall here the Patrick-Fischer distance, which 
has links of decrease and increase with the probability 
error of classification, as following: 
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In (Drira, 2012), the authors introduce a Patrick-
Fischer distance estimator using orthogonal 
functions. Using orthogonal property of the function 
basis in the sense of L2(U), they replace in the Patrick-
Fischer distance expression, the different quantities 
by their corresponding estimators. The obtained 
estimator results in the following quantity: 
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Where k
iX is the ith observation of the kth class. iN is 

the sample size of the ith class and N is the total size 
of all classes. mN is the smoothing parameter for kernel 
density function estimator. ),( yxK

Nm is the kernel 

function associated to the orthogonal system of 

functions{em(x)}  used in (Drira, 2012). PFd̂ is an 

unbiased estimator of the Patrick Fischer distance.  
The estimator in the reduced space could be 

expressed as a function of the linear form W in RD: 
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where VW represents the scalar product operator of 

the two vectors V and W of the space RD and Re(z) is 
the real part of a complex z.  

For dimensionality reduction purpose, this 
distance is considered as the criterion function to be 
maximized with respect to a linear projection matrix 
W that transform original data space onto a d-
dimensional subspace so that classes are most 
separated. This functional maximization problem 
cannot be solved analytically.  Since this estimator 
equation is highly nonlinear according to the element 
of W and an analytical solution is often practically not 
feasible. Thus, we have resorted to a numerical 
optimization methods to compute a suboptimal 
projection matrix W. 

4 STABILITY STUDY 

The first step before comparing is to train the two 
classifiers, and then we proceed by measuring the 
error rate produced by each classifier with each one 
of N independent test sets. Let’s consider (Xi)1≤i≤N  the 
N generated error rates of a given classifier (ANN or 
Bayes). These random variables are supposed to be 
independent and identically distributed and having 
the same probability density function (pdf), fX.  

4.1 Non-parametric Error Estimation 
based on the Gaussian Kernel 

We suggest to use the kernel method proposed in 
(Fukunaga, 1990),   to estimate the classifiers error 
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rates pdfs. For this method, an approximation of the 
Mean Integrated Square Error (MISE) is optimized in 
order to estimate the involved smoothing parameters 
hN.  

The choice of the optimal value for the smoothing 
parameter will determine the estimation goodness 
level. Recently, the researchers try to determine it by 
the iterative resolution called the Plug-in algorithm. 
Actually, a fast variant of known conventional Plug-
in algorithm has been developed in (Saoudi, 2009).  

4.2 The Performed  
Kernel-Diffeomorphism Plug-in 
Algorithm 

The observed misclassification error rates (Xi)1≤i≤N of 
each classifier are positive real values bounded by the 
unity. Thus, there won’t be any interest to use the 
conventional kernel density estimation method while 
the pdfs are defined on a bounded or semi-bounded 
space. During their estimation phase, some 
convergence problems called the Gibbs phenomenon 
may occur at the edges. Several researchers have tried 
to solve this issue and some methods got described in 
order to estimate the probability densities under 
topological constraints on the support. Two 
interesting solutions mentioned in (Saoudi, 1994) 
present interesting results: the orthogonal functions 
method and the kernel diffeomorphism one. The last 
procedure is based on a suitable variable change by a 
C1-diffeomorphism. Although, the smoothing 
parameter value must be optimized, otherwise there 
won’t be any warranty to get a good estimation 
quality. The Plug-in diffeomorphism algorithm which 
is a generalization of the conventional Plug-in one 
(Saoudi, 2009) is used to perform the smoothing 
parameter optimization. 

For complexity and convergence reasons, we have 
suggested in (Othman, 2013) a new variant of the 
kernel-diffeomorphism semi-bounded Plug-in 
algorithm. This new procedure is based on the 
variable change )(XLogY  of the positive error 

rates. So, the kernel estimator expression becomes: 

 
(6)

In order to specify a new classification quality 
measure, we iterate the conventional Plug-in 
algorithm for the transformed data. Finally, we 
compute ˆ ( )ˆ ( ) Y

X
f Logx
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x
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5 PERFORMANCE EVALUATION 
BY SIMULATIONS 

The stability comparison between the ANN, the LDA-
Bayes and the Patrick-Fischer estimator proposed in 
our previous works (Drira, 2012) is first summarized 
by stochastic simulations. For this purpose, we have 
considered a binary classification problem adapted to 
a mixture of two different Gaussian distributions.  

For the training phase, we generate one adjusted 
set including 1000 samples for each class. By using 
this training set, we look to find the optimum 
transformation that represents the dimension 
reduction for both LDA and the proposed Patrick-
Fischer methods before applying the Bayesian rule, 
and then to fix the optimal neural model parameters. 

For the generalisation phase and in order to 
analyse the classifiers stability, we generate 100 
supervised and independent test sets (including 1000 
samples for each class). Then a set of 100 error rates 
are retained for each approach. Their probability 
densities are estimated using the performed kernel-
diffeomorphism Plug-in algorithm proposed in the 
previous section. 

Figure 1 shows the estimated error rates 
probability densities. In Fig.1.a and Fig.1.b, we 
illustrate respectively homoscedastic and classical 
heteroscedastic Gaussians. In Fig.1.c, we treated the 
case of two superposed distributions having the same 
means vector and different covariance matrices. 
Finally, Fig.1.d shows the case of two truncated 
Gaussians in a tridimensional space. In this last case, 
the second samples cloud surrounds the first one in a 
ball centred at the origin. In table 1, the classifiers 
stability and performance are also valorised by 
presenting their error rates bias and variances. 

By analysing the four illustrations of figure 1, we 
can observe that the neural density curve is generally 
situated on the right. Thus, the statistical classifiers 
(LDA-Bayes and PF-Bayes) are more efficient than 
the neural networks since they admit the smallest error 
rates means. Furthermore, the neural approach 
remains the least stable classifier for the four cases that 
presents the greatest variance and thus the widest 
curve. The results show also the performance and 
stability improvement of the Patrick-Fischer distance 
estimator against the conventional Fisher LDA. 
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Figure 1: Error rate densities of ANN (in green(--)), LDA-Bayes (in blue(..)) and PF-Bayes (in red(*)), for various simulations: 
homoscedastic (a), heteroscedastic (b), superposed (c) and truncated (d) Gaussians. 

Table 1: Comparison results of the presented approaches: Low (mean/variance) ==> Better (performance/stability) of the 
classifiers. 

Simulations ANN LDA-Bayes PF-Bayes 
Cases Class 1 Class 2 Mean Variance Mean Variance Mean Variance 

a 
μ1=(1,..,1) 10 

∑1=I10 
μ2=(1.5,..,1.5) 10 

∑2=I10 
0.2147 0.5883 0.2145 0.5590 0.2134 0.3978 

b 
μ1=(0,..,0) 10 

∑1=I10 
μ2=(2,..,2) 10 
∑2=2* I10 

0.0103 0.0550 0.0041 0.0181 0.0040 0.0175 

c 
μ1=(0,..,0) 10 

∑1=I10 
μ2=(0,..,0) 10 
∑2=2*I10 

0.3853 0.1224 0.3741 0.1145 0.3660 0.1224 

d 
μ1=(0,0,0) 

∑1=[0.06 0.01 0.01 
]*I3 

μ2=(0.1,0.1,0.1) 
∑2=[0.01 0.06 0.05 ] *I3 

0.2481 0.5988 0.2364 0.5762 0.2309 0.5383 

 
6 APPLICATION TO 

HANDWRITTEN DIGIT 
RECOGNITION 

In order to compare the classifiers stability and 
performance, we refer in the present section to the 
handwritten digit recognition problem. This task is 
still one of the most important topics in the automatic 
sorting of postal mails and checks registration. The 
database used to train and test the different classifiers 
described in this paper was selected from the 
publicly available MNIST database of handwritten 
digits (yann). For the training and test sets, we select 
randomly, from the MNIST training and test sets 
respectively, single digit images (the both sets 
contain 1000 images for the 10 digit classes).  

The most difficult task in handwritten digit 
recognition problems is the suitable features 
selections. The extracted characteristics must satisfy 

a non-exhaustive set of criteria such as fast 
computation, completeness, powerful discrimination 
and invariance. The Fourier descriptors (FD) verify 
such criteria. The FD are calculated from the digit 
outline boundary and are invariant regarding to the 
elementary geometrical transformations, such as 
translation, rotation and scaling. In this experiment, 
we compute a Fourier descriptors vector to each 
digit. The FD vector size is chosen to be equal to 
fourteen. This vector size is demonstrated in 
(Ghorbel, 1990) to be sufficient to represent a 
contour digit. The FD vectors set obtained for the 
whole digits in the selected sample will form the 
shape descriptors dataset to be tested. 

We intend to compare the classifiers stability by 
evaluating their respective performances for 100 
times using the 10-folds (default) Cross Validation 
(CV) algorithm. We use the CV algorithm from the 
MNIST test set to select the test sets (N=1000 images 
for  each  class). With  these  sets,  we  calculate  the 

(c) (d)

(b)(a) 
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Figure 2: Error rate densities of ANN (in green(--)), LDA-Bayes (in blue(..)) and PF-Bayes (in red(*)) for binary classification 
of digits ‘2’ and ‘3’ (in the left) and ‘3’ and ‘4’ (in the right). 

Table 2: Comparison results of the presented approaches on the MNIST database: Low (mean/variance) ==> Better 
(performance/stability). 

 Digit classes: ‘2’ and ‘3’ Digit classes: ‘3’ and ‘4’ 
Mean Variance Mean Variance 

ANN 0.1425 0.7285 0.1545 0.0012 
LDA-Bayes 0.1975 0.6803 0.3319 0.0011 
PF-Bayes  0.1682 0.6791 0.2292 0.0010 

 
classifiers misclassification rates (MCR). 

Figure 2 shows the classifiers error rate 
probability densities estimated using the suggested 
performed kernel-diffeomorphism Plug-in algorithm 
for Fourier descriptors. In table 2, we summarize the 
obtained MCR means and variances. The results 
show the performance of the ANN against the 
Bayesian classifier, but the superiority of its error 
rate variances proves their low stability against the 
statistical approaches. For these two complex real 
cases, the LDA fails to find the optimal projection 
subspace. 

Whereas, the Patrick-Fischer distance estimator 
performs better than the conventional LDA. By 
providing a better performance, the proposed 
Patrick-Fischer distance estimator is relatively more 
stable than the Fisher LDA. Thus, we can approve 
that the stability and performance of the Bayesian 
classifier increases with the use of the proposed 
Patrick-Fischer distance estimator as reduction 
dimension method. 

7 CONCLUSIONS 

In this paper, we have introduced a new criterion to 
evaluate the results stability of the artificial neural 
networks and some statistical classifiers based on the 
optimization Fischer criterion and the maximization 
of Patrick-Fischer distance orthogonal estimator. 
The stability comparison is valorised by the use of 
the performed kernel-diffeomorphism Plug-in 
algorithm. The stochastic simulations and the real 
dataset experiments demonstrated the neural 

networks are not stable as the statistical approaches. 
The results show also the performance and stability 
progress of the Patrick-Fischer orthogonal distance 
estimator against the conventional Fisher LDA. 
Associating different classifiers to improve their 
stabilities can be a quiet interesting point to focus on 
in our future works as combining the neural 
networks classifier with the ones based on the 
Patrick-Fischer distance or the CART algorithm. 
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