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Abstract: Tracking surgical tools in mono-endoscopic surgery can offer a conventional (non-robotics) application of 
this type of procedure a versatile surgeon-computer interface. For example, tracking the surgical tools can 
enable the surgeon to interact with the overlaid menu which allows them to have access to medical information 
of the patient. Another example is the capability that such tracking can offer where the surgeon through 
surgical tool can manually register per-operative images of the patient approach on the surgical site. This 
paper presents the results of some of the tracking schemes which we have explored and analysed as a part of 
our studies. Tracking framework based on both Gaussian and non-Gaussian framework are explored and 
compared. Although majority of the approaches can offer a robust performance when used in the real surgical 
scene, the method based on Particle Filter is found to have a better success rate. Based on these experimental 
results, the paper also offers some discussions and suggestions for future research.  

1 INTRODUCTION 

The research and development in computer-aided 
surgical application can dramatically promote the 
delivery and training of modern medicine. For 
example, image guided surgical navigation can assist 
the surgeons in performing minimally invasive 
surgery (MIS) through tiny incisions. Moreover, a 
computer-based simulation system with Augmented 
Reality (AR) is able to offer a safe and realistic 
learning environment to medical students instead of 
using a real-life context. The critical part for these 
applications is the implementation of a user computer 
interactive system (UCIS) based on surgical 
requirements. 

To avoid unnecessary physical contact with the 
environment, some research groups have focused on 
the development of a gesture-based UCIS. In this kind 
of UCIS, the standard user computer interaction 
devices, such as mouse and keyboard, are replaced 
with sensing devices (e.g. Microsoft Kinect sensor) 
which can capture the motion and the hand gestures 
of the user in the workspace (Gallo et al. 2011; 
Ruppert et al. 2012). Another kind of UCIS integrates 
AR technology into surgical and medical 
requirements. These UCISs are able to superimpose 
the medical image data or 3D virtual medical model 
directly onto the view of the surgeon and to spatially 

register the image or model of the patient (Navab et 
al. 2007; Su et al. 2009).  

Although a number of robotic surgical systems 
with 3D stereo cameras have been developed to assist 
the surgeon during MIS, most hospitals still prefer 
utilizing a traditional and non-robotic surgical system 
with a monocular camera due to limited budgets. This 
paper is focused on the enhancement of such non-
robotic monocular MIS set-ups. In the previous work, 
a real-time interactive system for a non-robotic 
monocular endoscope MIS was developed to enhance 
the practice of MIS training without adding extra 
hardware to the existing setup (Sun 2012). In this 
system, the surgical instrument is being considered as 
the input control variable so a robust tracking 
algorithm is important to localize the instrument in 
the field of view.  

To achieve an accurate position of the surgical 
tool, a number of challenges must be overcome. 
These challenges include limited measured 
information from endoscopic video signals, the 
complexity of the surgical scene, reflection of light, 
occlusion of surgical tools and so on. To cope with 
these problems, a number of research groups attach 
specific markers on the surgical instrument to help 
with the tracking (Tonet et al. 2007) and others utilize 
segmentation techniques and feature detection to 
assist tracking (Doignon et al. 2005; Cano et al. 
2008).  
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For both marker-based and marker-less tracking 
methods, the information from an image is not 
enough to obtain a reliable result. Instead, the 
information contained in a sequence of images should 
be taken into account to improve the accuracy of the 
tracking. To estimate the position of the surgical tool, 
we introduced some probability based estimators, 
such as the Kalman Filter (KF) and the Extended 
Kalman Filter (EKF) to the visual tracking system in 
the previous work (Zhou & Payandeh 2014). The 
application of these estimators is able to return more 
accurate and reliable tracking results. This paper is a 
further development of the experimental study based 
on the previous visual tracking work. An adaptive 
Gaussian Mixture Model (AGMM) method is 
implemented to track the surgical instrument under 
the assumption of Gaussian background components. 
Moreover, to explore better tracking performance for 
surgical application, a more general tracking scheme 
based on Particle Filter (PF) is presented. This 
framework is further combined with the AGMM as 
the Hybrid approach to provide 2D feature 
information for the tool during tracking. These 
methods are experimentally evaluated in both an in-
vitro scene and an in-vivo setting, and also compared 
with the results from the previous work. 

2 METHODS 

In this section, we present an overview of three visual 
tracking approaches for MIS instrument localization. 
A Gaussian-type tracking method based on AGMM 
is firstly introduced, followed by a more general PF 
tracking scheme with a weight-based resample 
strategy. To explore better tracking performance, a 
Hybrid approach which combines the PF framework 
and the AGMM is also implemented. 

2.1 AGMM Method 

To detect a moving object in image sequences, one 
type of tracking methods is based on background 
subtraction. The AGMM method is a successful 
application in the visual tracking field. The basic idea 
for the AGMM is to set up a background model which 
can be used to distinguish the foreground object from 
background environment. The region of the moving 
object is highlighted by calculating a reference image 
and subtracting each new frame from this reference 
image. The AGMM was originally proposed in (Stau 
& Romano 1998) and was further developed by 
introducing a shadow detection scheme 
(Kaewtrakulpong & Bowden 2002). Our laboratory 

has successfully applied the AGMM method in a 
people surveillance system (Dai 2012). In this paper, 
we use the AGMM to track the moving surgical tool.  

In the AGMM, the pixel values in the scene 
background are modelled using a mixture of adaptive 
Gaussian components. Given an arbitrary pixel value 

tx , the ith  Gaussian density function at time t  is 
2
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where 
,i tw  is the weight for the ith  Gaussian 

component and k  is the number of components. To 
cope with slight changes in the background, such as 
changing illuminants, an adaptive background model 
is necessary. To allow a foreground object to become 
part of the background later, the Gaussian distribution 
having the lowest weight is replaced with a new 
Gaussian function. This new Gaussian component is 
given a low normalized weight which will be used in 
the time 1t   . Meanwhile, the mean and variance of 
the other remaining Gaussian components for the 
time 1t    are also updated.  

To deal with the shadow noise in the returned 
foreground object region, a shadow elimination step 
is added to the output of AGMM. Some 
morphological operations such as opening and 
closing are also applied to the shadow detected image. 
After these post-processing steps, the contour of the 
moving surgical instrument is accurately extracted 
frame by frame. 

2.2 PF Tracking Framework 

The idea of the PF is to generate a group of weighted 
samples (particles) to approximate the posterior 
probability density function (PDF). These particles 
are weighted according to the weighting function. 
This function is created based on the measurement 
from the image data. Generally, higher weights are 
given to more reliable particles. If the number of 
particles are large enough, we can recover the 
unknown posterior PDF for the state-space using its 
approximation after several iterations. Since the PF 
method does not assume any linearity of the system 
or Gaussian noise distributions, it is widely used to 
track objects in general and medical applications 
(Tehrani Niknejad et al. 2012; Ito et al. 2013). In the 
previous work, a colour-based PF method was used 
to track a coloured marker in the emulated surgical 
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scene (Sun 2012). In this paper, a modified PF 
framework is used to determine the possible region 
for the moving surgical instrument. 

For our tracking problem, the target object is 
selected to be the rectangle region Rec  which 
indicates the possible area for the surgical tool. The 
state vector X at the current time t  is described as 

[ , , , , , , , ] T
t C C C C R R R R tX x y x y w h w h     where 

( , )C Cx y  is the coordinate of the rectangle center. 
Rw  

and 
Rh  are the width and height of the rectangle. 

Cx  

and 
Cy  are its instantaneous velocities along the x 

and y directions respectively. 
Rw  and 

Rh  are the 

instantaneous change of width and height. To 
measure the similarity of the target and the particles, 
we choose the colour distribution in the HSV space as 
the tracking metric since the region of the instrument 
tends to have more dark or bright components than 
other regions. By calculating the 2D Hue-Saturation 
colour histogram from various areas, we can find 
those areas containing the same object owing to their 
similar colour distributions. 

The PF consists of prediction and update phases. 
The particles at current time t  are first propagated 
from particles at time 1t   according to a first-order 
auto-regressive system dynamic model. In the update 
phase, we compare the 2D colour histogram of each 
sample area with the reference histogram. The 
reference one is calculated in the initialization step. 
The weighting function is designed based on the 
histogram similarity. Higher weights are given to 
those areas with similar colour distribution to the 
reference region. From the predicted particles and 
their normalized weights, we can estimate the 
possible region for the moving surgical instrument 
using their expected value. 

To avoid the degeneracy problem in PF, we use 
an adaptive resampling strategy to eliminate particles 
with low weights. We first sort the predicted particles 
in a descending order according to their weight values 
so the particles with higher weights have the priority 
to be chosen. To generate the new particle set, we take 
the first element from the particle queue and make 

updaten  copies of it in the new particle set. The number 

updaten  is calculated from  

1
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where m  is the number of elements we selected from 
the particle queue. Figure 1 illustrates an example of 
weighted-based resampling. The original particle set 

has 5 particles indicated in different colours. The 
height represents its weight. In (b), the particles are 
organized in a descending order. After resampling, 
the new particle set contains the copies from those 
particles with high weights (green, blue and gray 
ones). The particles with low weights (red and 
orange) are removed from the particle set. 

 

Figure 1: Illustration of the weight-based resample strategy. 
(a) Original particle set. (b) Ordered particle queue. (c) New 
particle set.  

2.3 A Hybrid Method 

The AGMM method is able to detect the moving 
foreground object in a stable background but it may 
fail tracking if the background or the viewing 
condition is changing. The PF approach can be used 
for more general surgical scenes. However, it requires 
the initial state vector, usually obtained from the user. 
To overcome these two drawbacks, a hybrid method 
integrating the PF and the AGMM is presented. After 
we get the estimated region from the PF framework, 
2D feature detection is applied within the region so 
that the tip and two edges of the instrument can be 
returned. 

For a given video stream, we assume that the 
backgrounds in every constant short time period (e.g. 
1~2s) are relatively stable so that the AGMM is able 
to detect the moving object. Before we start the PF 
part, the AGMM is first applied to determine the 
initial position of the moving surgical tool and returns 
a rectangular region containing the tool. We use this 
rectangular region to compute the reference 
histogram and to generate particles in the 
initialization of the PF. After the initialization, the PF 
is responsible for the surgical tool tracking as stated 
in Section 2.2. If the tracking is lost, the AGMM is 
applied again to relocate the rectangular region that 
encloses the initial position of surgical tool, and the 
PF is re-initialized. After we obtain the region of 
interest from the PF, we use the feature detection 
method to find the tool’s tip position. The details for 
the feature detection can be referred to the previous 
work (Sun 2012). 

 

(a)                                  (b)                                 (c)
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3 EXPERIMENTAL RESULTS 

To evaluate the performance of all the three tracking 
methods we have presented (AGMM, PF, and the 
Hybrid one) for surgical and medical usage, the 
experiments were conducted under an in-vitro 
training environment and an in-vivo environment. 
The in-vitro training cases were captured from the 
surgical emulated setup in our laboratory (Sun 2012).  

For in-vivo surgical experiments, we used several 
surgical video clips from the online video atlas of Dr. 
Julio Alejandro Murra Saca Medical Clinic (see 
reference for the website). All the results are also 
compared with the KF and EKF methods which are 
proposed in the previous work (Zhou & Payandeh 
2014).  

3.1 Tracking in in-vitro Training 
Environment 

In this part of the experiments, we assume the 
endoscope is stationary and the background is rarely 
changing (i.e. as a part of the surgical training 
environment). First of all, we tested the tracking of a 
moving surgical tool in the ideal scene. For this type 
of scene, there are no objects in the background. In 
the next stage, to simulate the surgical environment, 
we test the tool tracking in a more complex scene. The 
ideal background is replaced with a training 
abdominal cavity model. Due to the hardware and 
software limitations, only the KF approach is tested 
in real-time and the other methods are tested offline. 

The tracking results for all the methods are 
demonstrated in Figure 2. For the KF approach, it 
returns the 2D features of the tool including the tool’s 
edges, midline and tip. The EKF method is able to 
detect two edges of the tool. The AGMM and PF 
methods indicate the region containing the moving 
surgical tool. The Hybrid method can detect the 2D 
features of the tool based on the interest region. 

3.2 Tracking in in-vivo Surgical 
Environment 

For the in-vivo experiments, we used 10 endoscopic 
video clips captured from the real surgical scenes. 
Each of them lasts for about 10s containing 200~300 
frames. In these initial experiments, we focus on the 
scenes with short duration where the motion of 
instrument is slow and smooth without rapid change 
in orientation, scale and position. The example of 
tracking results are displayed in Figure 3. 

 

 
Figure 2: The tracking results of all the five methods in the 
in-vitro training environments. The 1st column shows the 
results in ideal scene and the 2nd column displays the results 
in emulated scene. Each row corresponds to different 
methods. From top to bottom, they are using the KF, EKF, 
AGMM, PF and Hybrid approach respectively. 

To evaluate the tracking performance of each method, 
we select the tracking success rate, defined as the 
number of tracked frames per 200 frames, as the 
criterion for tracking performance. The tracking 
success rates for all the five tracking approaches 
under both the in-vitro training environment and the 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 
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in-vivo real surgical environment are listed in Table 
1. The in-vitro training environment is composed of 
the ideal scene and emulated scene. The in-vivo 
environment includes 10 surgical scenes labelled 
from video No.1 to video No.10. For the videos No.1, 
No.2, No.3, No.5 and No.6, the surface of the tool is 
dark and matt. For videos No.4 and No.7, the tool is 
made of a metallic material. Video No.8 involves 
multiple tool tasking. In video No.9, the tool is 
moving at a fast speed and video No.10 has a complex 
background. 

 
Figure 3: Examples for the tracking results of all the five 
methods in the real surgical scenes. Each row corresponds 
to different methods. From top to bottom, they are using the 
KF, EKF, AGMM, PF and Hybrid approach respectively. 

 

4 DISCUSSION AND 
CONCLUSION 

In this paper, we have proposed experimental studies 
of various visual tracking techniques for MIS and 
related training. The tracking performance of all the 
methods (AGMM, PF and the Hybrid one), is 
evaluated under different environments. For the in-
vitro experiment including the ideal scene and 
emulated scene, they all have successful performance 
when tracking single surgical instrument. In the 
previous work, the KF and EKF methods perform 
well when the instrument moves slowly and the 
background is clean but they are sensitive to the noise 
from the background. Compared to the KF and EKF 
methods, the methods presented in this paper are 
more robust with respect to such noises as long as the 
background is stable or has only a slight change. 
However, all the methods have limitations when 
coping with the real surgical scene. The AGMM 
method is able to keep tracking under a stable 
background but it cannot deal with the situation when 
the background changes rapidly. The PF method has 
the best tracking results in comparison with all the 
other methods even though it fails in the complex 
surgical scene and the fast tool motion. However, the 
manual initialization may lead to errors when the 
initial region has a similar colour histogram with 
another area in the background. The Hybrid method 
works well in the in-vitro environment without 
manual initialization and is able to come back from 
the lost tracking situation. Based on the tracked 
region, it is able to provide the tool’s feature 
information even if the tracked region just covers a 
small part of the tool. Nevertheless, the Hybrid 
method cannot be applied to real surgical scenes due 
to its unreliable initialization. Due to the motion of 
both the background and the surgical tool, the 
AGMM easily gives wrong information to the PF 
framework which may lead to tracking failure.  

In spite of the fact that none of the tracking 
methods in our experimental study can be used as a 
practical solution for the general surgical tool 
tracking problem, these methods have shown their 
possibility in a stable working condition which is the 
case for the surgical training box. Based on the results 
from our experimental study, a more robust tracking 
approach can still be developed using the PF 
framework. To obtain more reliable tracking results, 
a new measurement is required to consider both the 
colour distribution and feature information of the 
moving tool. A better detection algorithm is also 
needed to find the location of the tool’s tip. One 
possible solution is to include the tip location into the  

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 
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Table 1: The tracking performance of the KF, EKF, AGMM, PF and Hybrid method under various experimental environments. 

Method 
Tracking Success Rate (frames/200 frames *100%) 

KF EKF AGMM PF Hybrid 
Ideal Scene 90% 80% 98% 80% 83% 
Emulated Scene 86% 70% 96% 90% 92% 
Video No.1 30% 48% 42% 45% 20% 
Video No.2 48% 33% 53% 50% 15% 
Video No.3 52% Fail 38% 60% Fail 
Video No.4 Fail 50% 55% 67% 40% 
Video No.5 45% 31% 48% 65% 50% 
Video No.6 20% 18% 23% 56% 17% 
Video No.7 Fail Fail 10% 58% 10% 
Video No.8 Fail Fail Fail 53% Fail 
Video No.9 Fail Fail Fail Fail Fail 
Video No.10 10% Fail 12% 15% Fail 

 
state vector to minimize the error in feature detection. 
Moreover, to realize the automation of the tracking, 
the PF framework needs a more reliable initialization 
strategy. 
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