
Defining and using Collaboration Patterns for Software Process
Development

Tan Thuan Vo, Bernard Coulette, Hanh Nhi Tran and Redouane Lbath
Institut de Recherche en Informatique de Toulouse, Toulouse, France

Keywords: Model Driven Engineering, Software Development Process, Collaboration, Collaboration Pattern.

Abstract: Collaboration patterns are an efficient way to define, reuse and enact collaborative software development
processes. We propose an approach to define and apply collaboration patterns at modelling, instantiation or
execution time. Our patterns, inspired from workflow patterns, are described in CMSPEM, a Process
Modelling Language developed in our team. In this paper, we briefly describe the CMSPEM metamodel and
focus our presentation on two collaboration patterns: Duplicate in Sequence with Multiple Actors, Duplicate
in Parallel with Multiple Actors and Merge. The approach is illustrated by a case study concerning the
collaborative process “Review a deliverable”.

1 INTRODUCTION

Nowadays, software systems are more and more
complex, and development processes are usually
collaborative. Indeed, these processes are enacted by
several actors, possibly on several sites, that work
together on collaborative tasks with shared artifacts to
achieve a common goal. To facilitate project
management and improve the coherence during
software process execution, collaboration should be
identified, modeled and assisted. Once defined and
approved, generic collaboration situations can be
reused for further projects.

An efficient way to put reuse in action is to define
and apply collaboration patterns. Some research
works can be found in the literature about
collaboration patterns (Verginadis et al., 2010;
Herrmann T., et al. 2003; Erickson, 2000), but very
limited work has been done about their automatic
application during software development.

In this paper, we describe a set of generic
collaboration software patterns and propose a way to
apply them automatically. This work is a continuation
of our previous works on process patterns (Tran et al.,
2011) and on collaborative software processes (Kedji
et al., 2011, 2013). In the first work we proposed a
language to represent process patterns and a
mechanism to apply patterns at modeling time. In the
second work, we defined the meta-model CMSPEM
as an extension of the OMG standard SPEM for
describing collaborative software processes. The
work described in this paper uses CMSPEM to

represent collaboration patterns which are inspired
from workflow patterns (Van der Aalst, website), and
proposes mechanisms to apply collaborative patterns
not only at modeling but also at instantiation or
enactment time.

This paper is structured as follows. Section 2
presents the essential concepts of collaborative
software process modeling. Section 3 presents a way
to represent collaboration patterns. Section 4 shows
how collaboration patterns can be applied at
modeling, instantiation or enactment time. Section 5
presents a case study and a brief overview of the
supporting tool prototype. Section 6 concludes this
paper and proposes some perspectives.

2 MODELLING
COLLABORATIVE PROCESS

Several studies can be found in the literature about
notions of process modeling and collaboration. In this
section, we put the emphasis on Software process
modeling languages, the notion of collaboration in
process enactment, the CMSPEM meta-model that
was elaborated in our team, and workflow patterns
which are reference solutions mainly used in business
process modeling.

2.1 Software Process Modeling

A software process is defined as a set of activities for

557Thuan Vo T., Coulette B., Tran H. and Lbath R..
Defining and using Collaboration Patterns for Software Process Development.
DOI: 10.5220/0005338705570564
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (CMDD-2015), pages 557-564
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

developing, administrating and maintaining a
software product (Feiler et al, 1992). A software
process model describes process elements and
relationships among them. ¨Process elements can be
classified in two categories: primary elements are
activities, roles, work products; secondary elements
provide additional information on organizational and
qualitative aspects of a process.

Figure 1a shows the primary process elements and
basic relations among them.

(1a) Conceptual model of a process

(1b) The two views of SPEM 2.0

Figure 1: Key concepts of SPEM 2.0.

Among existing software process modeling
languages, we decided to put the focus on the OMG
standard SPEM 2.0 which is probably the richest
modeling language for software process designers, in
the sense where it favors reusability and is open for
execution expression. Main primary concepts of
SPEM 2.0 are Role, Task and WorkProduct which
may have two views: definition and use (Figure 1b).
In the definition view, we will find process elements
(Method Content) which are intended to be reused in
several processes; in the use view (Process), we will
find instances of real processes. For example, a
TaskDefinition describes a reusable task whereas a
TaskUse represents an instance of TaskDefinition in a
given process.

2.2 Collaboration in Software Process
Modeling

A process is said to be collaborative when it contains
at least one collaborative activity, each collaborative

activity being performed by two or more human
actors targeting the same goal. A collaborative
activity is defined as a coordinated and synchronous
task whose goal is to build and maintain a shared
design of a problem (Roschell et al., 1994).
Collaboration has been largely studied in the
literature as shows the review provided by
(Verginadis et al., 2010). In (Potrock et al., 2009), the
authors propose a classification of collaboration
approaches based on prescriptive and descriptive
formalisms.

CMSPEM meta-model is a prescriptive Process
Modeling Language that was defined by our team in
the context of the GALAXY ANR project (Kedji et
al., 2014) and whose objective was to propose a
framework for supporting collaborative model driven
developments. CMSPEM is an extension of SPEM
which allows defining collaborative software
processes.

CMSPEM supports both dynamic and static
aspects of a process, allowing to enact process
models. In the following of this section, we briefly
present the structural and behavioral views of
CMSPEM.

2.2.1 CMSPEM: Structural View

From a structural view, we added in CMSPEM a new
package, called CollaborationStructure, that
introduces the following concepts – Actor,
ActorSpecificWork and ActorSpecificArtifact – and a
set of related relationships. An Actor is a human
participant who plays one or several roles in a
process. An ActorSpecificWork represents the
contribution of an Actor into a given TaskUse. An
ActorSpecificArtifact represents a copy of a
WorkProductUse for a given Actor.

Figure 2 below shows an extract of the CMSPEM
metamodel concerning the ActorSpecificWork
concept which represents the work performed by a
given actor in a collaborative activity. As shown in
the figure, a TaskAssignment relates an
ActorSpecificWork to an Actor; an ArtifactUse relates
an ActorSpecificArtifact to an ActorSpecificWork; an
ActorSpecificWorkRelationship relates two
ActorSpecificWork. This latter can be used to
represent a precedence order between two
ActorSpecificWork.

2.2.2 CMSPEM: Behavioral View

The behavior of a process must also be modeled to
rigorously specify the process enactment (that may be
also called execution).

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

558

Figure 2: Concepts and relationships related to
ActorSpecificWork: extract of CMSPEM metamodel.

In CMSPEM, we have chosen the state-machine
formalism to express this behavior. A state-machine
describes the states of a given process element
(activity or product), and transitions between them.
We distinguish two types of transition: manual,
automatic. A manual transition – called
OperatorEvent – is triggered by an actor. An
automatic transition is either a
ProcessStateChangeEvent or a ConditionalEvent.

Figure 3 shows the kernel of the behavioral part of
CMSPEM. Each enactable process element is
associated a lifecycle represented by a state-machine
that is composed of states and transitions.

Figure 3: Behavioral part of CMSPEM meta-model.

Figure 4 illustrates, in a concrete syntax
associated to CMSPEM, a simple example of
“Design” activity with “Requirements” as input, and
“Design Model” as output. This activity is a
collaborative one (represented by a double rectangle)
in the usual case where several designers work
together to produce the “Design model”.

Figure 4: Collaborative “Design” activity expressed in a
concrete syntax conform to CMSPEM.

Design activity’s behavior is described as the state
machine shown in Figure 5. The states through which
the activity passes are Activatable, Started, Ongoing
and Finished. These states are reached by means of
«OperateurEvent» transitions − launch, work or
finish − triggered by a designer. From Finished state,
depending on the current state of DesignModel, a
«ConditionnalEvent» transition determines whether
the next state will be the terminal state (corresponding
to DesignModel is validated) or the Invalidated state
which means that the design is not validated and thus
should be reworked.

Figure 5: Behaviour of the “Design” activity.

Defining�and�using�Collaboration�Patterns�for�Software�Process�Development

559

Figure 6: Synchronization workflow pattern.

2.3 Workflow Patterns

Workflow patterns are reusable generic process
fragments which are of high interest for describing
collaborative processes. Thus, we studied the
workflow patterns proposed in (Van der Aalst,
website) which are reference patterns. It is a set of 42
generic patterns grouped into 8 parts: Basic Control
Flow Patterns, Multiple Instance Patterns, State-
based Patterns, Cancellation and Force Completion
Patterns, Iteration Patterns, Termination Patterns,
Trigger Patterns. Figure 6 illustrates the
Synchonization pattern which is a basic control flow
pattern.

3 AN APPROACH TO
COLLABORATION PATTERNS

Collaboration process patterns are development
strategies that can be applied either at modeling time
or later at instantiation or enactment time. As any
pattern, a collaboration pattern can be defined by a
recurrent problem, a solution and an application
context. We decided to derive a set of collaboration
patterns from workflow patterns that have proven to
be efficient in process modeling. Indeed, most of
collaboration strategies can be described by means of
control flows such as sequence, parallelism, merging,
concatenation, etc.

We have defined a set of collaboration patterns
that can be found in (Vo Tan T., 2013). In the
following of this section, we illustrate two of them
that we consider as representative of collaboration
strategies: DuplicateInSequenceWithMultipleActors,
DuplicateInSequenceWithMultipleActorsAndMerge.

They are described in a graphical syntax
associated to CMSPEM. For each pattern, we briefly
present below the recurring problem, the application
context, and a solution described as an activity
diagram.

Pattern “Duplicate in Sequence with
Multiple Actors” (DSMA)

Problem and Context: This pattern represents a
collaboration in sequence among actors playing the
same role in a given activity. The recurring problem
is the one where human resource is limited in a given
enterprise, but constraint time is not too strong. So in
this context, it is possible to apply a sequence-based
pattern.

Solution: The same activity (cloned) is done by
different actors playing a given role. They work in
sequence on a product elaborated by another actor.
The resulting product becomes the input for the next
actor. Figure 7 shows this pattern as an activity
diagram in CMSPEM for two abstract actors called
Actor1 and Actor2. It contains abstract cloned
activities having one input product and one output
product. Each activity is enacted in sequence by
different actors playing the same role. For example,
this pattern could be used for enacting activities such
as Design a software, Review a document, Test a
program, etc.

Figure 7: Pattern Duplicate in Sequence with Multiple
Actors (DSMA): activity diagram in CMSPEM.

Pattern “Duplicate In Parallel with Multiple
Actors and Merge” (DPMAM)

Problem and Context: This pattern represents a
collaborative situation where actors work on the same
cloned activity with the same role. The problem
occurs whenever outputs are specific of each actor. In
other words, each actor has his own point of view on
the activity. This pattern is suitable when several
actors are available at the same time, meaning that
activities can be enacted in parallel. One of the actors

Activity-clone 1

Actor 1

Actor 2

Role 1

Activity-clone 2

Product 1

Product 2

Product 3

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

560

is in charge of merging the output products into a
unique one.

Solution: Cloned activities are enacted in parallel
with the same product (cloned) as input. Their
termination is synchronized and then followed by a
merging activity performed by one of the actors.
Figure 8 shows this pattern with two actors working
on the same cloned activity, with abstract names.
Figure 8 shows this pattern in CMSPEM for two
actors.

Figure 8: Pattern Duplicate in Parallel with Multiple Actors
and Merge (DPMAM): activity diagram in CMSPEM.

This pattern could be used for enacting activities such
as: Test a software component, Review a deliverable,
Evaluate a submission, etc.

This pattern has a specific variant where the
Merge activity is replaced by a Concatenate one.
Indeed, the concatenation can be seen as a particular
case of merging. This variant may be used whenever
Product1 and Product2 are disjoint.

4 APPLICATION OF
COLLABORATION PATTERNS

Whenever a collaborative activity is identified, one
can search for patterns to apply. These patterns are
supposed to be stored into a repository. One can note
that pattern application can be done at modeling time.

At modeling time, the application of a
collaboration pattern consists in identifying a
collaborative activity, choosing a collaboration
pattern without instantiating it, and refining the
activity diagram by unfolding the activity. Unfolding
is based on the structural solution (activity diagram)
of the pattern which serves as a template. The result

of the application of patterns is a refined process
model. The choice of the best collaboration pattern to
apply is an important issue but it is out of the scope
of this paper. To apply such patterns at modeling
time, one must know in advance that an activity will
be enacted as a collaborative one. It is not always the
case since this information may be known later.

At instantiation time, the goal is to take into
consideration the real resources that will be used in a
given project, that is to say products in input and
output, actors playing a given role on a given activity,
etc. For each collaborative activity, one must choose
a collaboration pattern to apply, thus identify and
instantiate the actors (real persons) that will
collaborate, define the products to clone, and unfold
the activity as explained above.

At enacting time, the goal is to enact (execute) the
process which can be seen as its root activity.
Execution of the process must respect the behavioral
description of the process (as explained in section
2.1.2), and in particular the lifecycles that are
assigned to process elements. Actors participate in the
execution of some manual tasks. It is possible and
even necessary to differ the application of
collaboration patterns until this enacting time. Indeed,
some decisions depend on dynamic information
(availability of actors, time constraints, etc.). The
principle of the pattern application is the same as for
the two previous cases.

In the next section, we describe the case study that
we performed and the tool prototype developed as a
proof of concept.

5 REALIZATION AND CASE
STUDY

5.1 Case Study

We have applied our approach to the process “Review
a Deliverable” performed during the ANR Galaxy
project (see Figure 9). Though it is a quite simple
process, it is a real one and it is representative of
collaborative processes.

This process is made of 3 activities: Organize the
review, Review the deliverable, Submit the reviewed
deliverable. The second one, Review, is collaborative,
and thus done by several reviewers. The reviewing
process is organized by a coordinator who specifies
requirements to be satisfied by the reviewers.

Let us suppose that the collaborative activity
Review a deliverable is done by 3 reviewers: Peter,
Paul and Tracy. In the following, we present 2
strategies of collaboration corresponding to the

Defining�and�using�Collaboration�Patterns�for�Software�Process�Development

561

application of the 2 collaboration patterns presented
in section 3: DSMA, DPMAM. We address the
modeling phase, and only consider here the structural
solution proposed by collaboration patterns.

Figure 9: Process model “Review a deliverable” of the case
study.

Application of Pattern DSMA (Duplicate in
Sequence with Multiple Actors)

This pattern is applicable in the case where the 3
reviewers can work in sequence one after the other,
and whenever there is enough time to achieve the
reviewing activity (Figure 10). It was the case during
the Galaxy project.

The order in which the reviewers must work is
important because the last one finishes the reviewing
work. We suppose here that the same input
deliverable is in entry of the 3 cloned activities, which
means that a reviewer does not update the deliverable.
Peter produces comments on the deliverable. Paul
adds his own comments to those of Peter. Tracy
produces the reviewed deliverable by analyzing
Paul’s comments.

Application of Pattern DPMAM (Duplicate in
Parallel with Multiple Actors and Merge)

This pattern is applicable in the case where the
reviewers are available at the same time and thus can
work in parallel. Figure 11 shows the activity diagram
of the pattern’s solution. The same deliverable (clone)
is in input of each review (cloned activity). Each
reviewer – that is Peter, Paul or Tracy – produces his
proper review by updating the deliverable. Peter, who
plays the reviewer role, as the two others, is also in
charge of the merging activity, whose goal is to merge
the results of the 3 reviews included his own.

A variant of this pattern is the following one: each
reviewer produces a document containing his
comments without modifying the deliverable. In this

case, the merger (Peter) would have to analyze the 3
documents produced by the reviewers and to update
the deliverable accordingly.

Figure 10: Activity diagram resulting of DSMA
application.

Figure 11: Activity diagram resulting from DPMAM
application.

5.2 Supporting Tool Prototype

We have developed a tool prototype for supporting
collaborative processes enactment. It is written in
Java JEE. To represent a process, we first developed
a textual Process Modeling Language (PML). A
process model – described with this PML – is then
represented as a tree.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

562

So far, we have implemented the Duplicate in
Sequence with Multiple Actors pattern (DSMA)
described above. Other patterns are being
implemented. To illustrate the tool, we have chosen a
very simple software process composed of 2 classical
activities: Design and Coding. The process model is
shown (tree representation) on Figure 12.

Figure 12: Example of collaborative simple process.

Enactment of this process is based on the state
machines associated to its process elements,
including the Design activity. At any time of the
process enactment, a set of actions is proposed to the
current actor depending on the current state.

In the following, we consider the Design activity
which may be seen as a collaborative one. Let us
suppose that this activity is performed in an iterative
way by a set of 3 designers. Figures 13 shows the
actions proposed to each designer at the beginning of
the process; one can notice that only the launch action
is executable.

Figure 13: Interface of the tool: manual action triggering.

To perform the collaborative Design activity, one
can choose one collaboration pattern in an existing
repository, for instance the DSMA pattern. As shown
in Figure 14, three Design activities are performed in
sequence in conformity with DSMA’s solution. The
first one, Design 1, done by Bob, takes Requirements
as input and produces DesignModelBob as output.
This latter product becomes the entry of the second
activity, done by Marc, and so one.

It is obvious that this simple process is not a
significant case study that would demonstrate the
scalability of our approach. However we do not really
have any scalability issue with our approach because
the number of collaborative activities is always
limited in a given process. So the size of the process
model is not a significant criterion for the proof of
concept.

Figure 14: Process model resulting from DSMA pattern
application.

6 CONCLUSION

Our work mainly addresses collaborative software
process modeling and enactment. For that sake, we
decided to define and apply collaboration patterns
inspired from workflow patterns whose efficiency has
been largely proven.

In this paper, we have proposed an approach to
firstly (1) model collaboration patterns in CMSPEM,
and secondly (2) apply them during software
development. Our proposition has been validated (as
a proof of concept) on a simple but realistic case
study. A prototype supporting the approach has been
also developed. The tool is operational, but other
collaboration patterns should be implemented in the
prototype.

As main perspectives of this research work, we
are considering several topics at short and longer
terms. First we intend to enrich the base of
collaboration patterns, and to manage them thanks to

Defining�and�using�Collaboration�Patterns�for�Software�Process�Development

563

a repository. It will be also necessary to improve the
tool prototype, and to apply our approach to larger
collaborative software development processes.

REFERENCES

Beck, K., Cunnimgham, W.,. "Using pattern languages for
object-oriented programs". s.l.: Proceedings of
OOPSLA87, 1987.

Benali, K., Derniame J. C. Proceedings of the European
Workshop on Software Process Technology. 1992,
Norway.

Buschmann F., Meunier R., Rohnert. 1996. Pattern-
Oriented Software Architecture - A System of Patterns.
John Wiley.

Coad P., North D. et Mayfield M. 1995. "Object Models –
Strategies, Patterns and Application". Yourdon Press
Computing Series.

Diaw S., Lbath R., Coulette B. 2011. Specification and
Implementation of SPEM4MDE, a metamodel for
MDE software processes. In SEKE, Miami - USA
Knowledge Systems Institute , p. 646-653.

Erikson. T. Lingua Francas for Design: Sacred Places and
Pattern Languages. NewYork : ACM Press, 2000.

Feiler P., Humphrey W. Software Process Development
and Enactment: Concepts and Definitions, 1992.

Finkelstein, A., Kramer, J., Nuseibeh, B. Software Process
Modelling and Technology, 1994.

Fowler, M. 1997. Analysis Patterns, Reusable Object
Models. Addison-Wesley, 1997.

Fuggetta A., Woft A. Software Process.1996. John Wiley
& Sons.

Gamma E., Helm R., Johnson R., et al. 1994. Design
Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley.

Herrmann T., et al. Concepts for Usable Patterns of
Groupware Applications. 2003.

Kedji K.A., Coulette B., Nassar M., Lbath R., Tran H. N.,
Ton That M. T. 2011 Collaborative Processes in the
Real World: Embracing their Essential Nature (regular
paper)". In International Symposium on Model Driven
Engineering: Software & Data Integration. Process
Based Approaches and Tools - colocated with ECMFA
2011, Birmingham.

Kedji K. A., Ton That M. T., Coulette B. Lbath R., Tran H.
N., Nassar M. A tool-supported approach for process
modeling: application to collaborative processes. In
18th Asia Pacific Software Engineering Conference
(APSEC), Hochiming City, 2011.

Kedji, K. A., Lbath R., Coulette B., NASSAR, M., Barrese
L., Racaru F. 2014. Supporting collaborative
development using process models: a Tooled
Integration-focused Approach. Journal of Software :
Evolution and Process (JSEP). February 2014, Wiley
online library. DOI: 10.1002/smr.1640.

Mehra A., Grundy J., and Hosking J. 2005. A generic
approach to supporting diagram differencing and
merging for collaborative design. ACM.

Poltrock, S., Handel, M. 2009. Modeling collaborative
behavior: Foundations for collaboration technologies.
In 42nd Hawaii International Conference in System
Sciences.

Tran H. N., Coulette B., Tran D. T., Vu M. H. Automatic
Reuse of Process Patterns in Process Modeling. In
ACM Symposium on Applied Computing (SAC 2011),
Taiwan 2011.

Van der Aalst W. Workflow Patterns. http://
workflowpatterns.com/

Verginadis Y., Papageorgio N., Apostolou D., Mentzas G.
2010. A review of patterns in collaborative
work. GROUP 2010: 283-292.

Vo Tan T. 2013. Application de patrons de collaboration
lors de la mise en œuvre de procédés collaboratifs.
Master thesis, Toulouse, June, 2013.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

564

