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Abstract: Spectral reflectance is inherent characteristics of an object surface and therefore useful not only for computer
vision tasks such as material classification but also compute graphics applications such as relighting. In this
study, by integrating multispectral imaging and photometric stereo, we propose a method for simultaneously
estimating the spectral reflectance and normal per pixel from a small number of images taken under multispec-
tral and multidirectional light sources. In addition, taking attached shadows observed on curved surfaces into
consideration, we derive the minimum number of images required for the simultaneous estimation and propose
a method for selecting the optimal set of light sources. Through a number of experiments using real images,
we show that our proposed method can estimate spectral reflectances without the ambiguity of per-pixel scales
due to unknown normals, and that, when the optimal set of light sources is used, our method performs as well
as the straightforward method using a large number of images. Moreover, we demonstrated that estimating
both the spectral reflectances and normals is useful for relighting under novel illumination conditions.

1 INTRODUCTION between the reflected light observed on the surface to
the incident light at each wavelength. We can measure

The appearance of an object depends not only on thethe_ spectral distribution of the reflected light by using
object itself but also on the light source illuminat- Point sensors such as spectrometers (Wellman, 1981)
ing the object and on the camera capturing its im- and area sensors such as multispectral cameras (Yam-
age. Therefore, the same object appears differently@guchi et al., 2006) and hyperspectral cameras (Gat,
under different light sources and with different cam- 2000; Schechner and Nayar, 2002). Instead of using
eras. This appearance variation often causes the perthose special sensors, RGB cameras can be used to-

formance degradation of various computer vision al- gether with multispectral light sources (Park et al.,
gorithms. 2007; Han et al., 2013).

The fraction of incident light power at each wave- Unfortunately, however, the reflected light de-
length that is reflected on an object surface is called pends not only on the spectral reflectance but also
spectral reflectance. Since the spectral reflectance ison the normal of an object surface, and the above
inherent characteristics of an object surface and inde-techniques cannot estimate surface normals because
pendent of light sources and cameras, it is useful for they assume that the direction or location of the light
computer vision tasks such as material classification source is fixed. Therefore, the estimated spectral re-
and scene segmentation as well as computer graphflectance has the ambiguity of a per-pixel unknown
ics applications such as relighting. In particular, the scale,i.e. the inner product between the light source
use of spectral reflectance can prevent the occurrencelirection and the surface normal at each pixel. In
of so-called metamerisme. a coincidental match of  other words, we cannot tell whether the reflectance is
apparent RGB colors of object surfaces with different large (small) or the normal faces in a similar (dissimi-
spectral reflectances. lar) direction to the light source. Such a per-pixel un-

When the spectral distribution of the incident light known scale could degrade the performance of mate-
to an object surface is known in advance, the spec-rial classification and scene segmentation, and more-
tral reflectance is computed by divisiare. the ratio over relighting under novel light source directions is
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tral reflectances without the ambiguity of per-pixel
unknown scales, and demonstrated that the estimated
spectral reflectances and normals enable relighting
under novel light source spectral distributions as well
as under novel light source directions.

2 REFLECTION MODEL

Assuming the Lambertian model, the pixel valz a

w0 w0 w0 7w w0 50 100 surface pointilluminated by a directional light source
Figure 1: The images of a plaster relief (left) captured by s described as
using the multispectral light stage (right). The pixel \&du

are scaled for display purpose. i— /I()\)p()\)c()\)d)\ sTn7 (1)

impossible without using normals. where) is the wavelength of incident and reflected
In this paper, we address the estimation of the Jight, andl(A), p(A), andc(\) are the spectral distri-
spectral reflectance and normal of an object surfacepution of the light source, the spectral reflectance at
by integrating multispectral imaging and photometric the point, and the spectral sensitivity of a camera re-
stereo. Specifically, we assume the Lambertian modelspectively. The direction of the light source and the
and the low-dimensional linear model of spectral re- normal at the point are denoted bandn. Our pro-
flectance (Parkkinen et al., 1989), and estimate bothposed method assumes that the directions and spec-
the coefficients of the spectral reflectance and normaltral distributions of the light sources and the spec-
per pixel from the images taken under multispectral tral sensitivities of the camera are knowre. they
and multidirectional light sources as shown in Fig- are calibrated in advance, and estimates the spec-
ure 1. It is obvious that the straightforward method, tral reflectance and normal from the pixel values ob-
i.e. photometric stereo (Woodham, 1980) followed by served under multispectral and multidirectional light
multispectral imaging (Park et al., 2007; Han et al., sources.
2013) can estimate both the normals and spectral re-  The spectral reflectance is a continuous function

flectances of matte surfaces from a large number of \yith respect to wavelength, and describes how the
images. However, there is a room for significantly re- reflectance changes depending on the wavelength of
ducing the number of images. incident and reflected light. Since the number of
Accordingly, we propose a method for simulta- unknowns is largee.g. about 80 unknowns when
neously estimating spectral reflectances and normalsestimating spectral reflectances in the visible range
from a small number of images taken under multi- every 5 nm, the estimation of spectral reflectances
spectral and multidirectional light sources on the ba- is prone to an ill-posed and/or ill-conditioned prob-
sis of the alternating least square (ALS) algorithm. In |em. Accordingly, our proposed method stably esti-
addition, taking attached shadows observed on curvedmates spectral reflectances by constraining the space
surfaces under varying light source directions into of spectral reflectances on the basis of their statisti-
consideration, we derive the minimum number of im- cal characteristics. Specifically, our method makes
ages required for estimating the spectral reflectanceyse of the low-dimensional model of spectral re-
and normal per pixel and propose a method for select- flectance (Parkkinen et al., 1989). They apply PCA
ing the optimal set of light sources in terms of noise to the dataset of spectral reflectances, and show that
from given light sources. any spectral reflectance is approximately represented
The main contribution of this study is three- by a linear combination of basis functions as
fold; (i) the simultaneous estimation of spectral re-
flectances and normals from a small number of im-
ages, (ii) the derivation of the minimum number of
images required for the simultaneous estimation, and
(iii) the light source optimization for robust estima- whereK, oy, andby(A) are the number of basis func-
tion from a small number of images. Through a tions, the coefficients of the linear combination, and
number of experiments using real images, we con- the basis functions respectively. In this study, we use
firmed that, even from a small nhumber of images, the same basis functions and et 8 according to
the proposed method can accurately estimate specParkkineret al.

K
PV = 3 ady(M). 2)
k=1
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Substituting eq.(2) into eq.(1), we obtain

: S o'y
8 H _ /
=S a / V(M cAdAs . (3) o] = | e S S ( o )’(6)
k=1 : : : :
Therefore, the estimation of the spectral reflectance i’ = S(p'n). 7

and normal at a surface point results in estimating the This means that we can estimate normals in a similar

r?o”"a' nka_n(itge C(éeffi_%ents oft;[he Ii]°nea|£ combina- manner to the classic photometric stereo (Woodham,
t'onr?k.( s ioi ).I g?umh ero unl no(\j/vg]? at  1980). In general, if the number of light sources is
each pixelis 101n total,e. 2 for the normaland 81or |41 than three, we can estimate the normal up to an

the spegtral rgflectance. Note that a normal is a 3D unknown scale by using the pseudo inverse matrix of
vector with unit length.

Sas
ph=(S'9) "SI =S 8)
Since a normal has unit length, the normal is given
3 STRAIGHTFORWARD by A = p'fi/|p’Al. Note that we remove the-th light
METHOD source direction from the equations above if a surface

point is shadowed under that light source direction.
In this section, we explain the straightforward In our experiments, we detect shadows by using a
method,i.e. photometric stereo for estimating nor- threshold on pixel values.
mals followed by multispectral imaging for estimat-
ing spectral reflectances. 3.2 Estimating Spectral Reflectance

3.1 Estimating Surface Normal Once the normal is estimated, by usiRg Q color
images, a set of liner equations with respect to the

We assume that images under multispectral and coefficients of the spectral reflectanag is derived

multidirectional light sources are captured by us- from eq.(4) as

ing a multispectral light stage similar to the existing

ones (Ajdin et al., 2012; Gu and Liu, 2012). Specif-

ically, the light stage haP clusters of light sources ipgr |=| -+ JlgbkcrdAsyn - O

at different directions, and each cluster @sight : . :

sources with different spectral distributions. We de- ' ' © /9
note the pixel value observed under theh light In theory, we can estimate the coefficients of the spec-

source direction(p = 1,2,...,P) and theg-th light tral reflectance in a similar manner to the above by
source spectral distributidig =1,2,...,Q) and by the  using the pseudo inverse matrix.
r-th channel of an RGB camefa= 1,2,3) by Unfortunately, however, it is reported that such
8 a naive estimation tends to be unstable, when the
pgr = z Gk/|q(?\)bk(?\)0r (\)dA sgn. () number of light source §peptral dlstrlbunons is small
& and/or the spectral distributions are not optimally cho-
i ) _ ) sen (Park et al., 2007; Han et al., 2013). There-
Taking summation with respect to the light source ¢q.6 “similar to those existing techniques, we incor-

spectral distributiom and the camera chann&lwe  4rate the smoothness and non-negativity constraints
obtain the gray scale into the estimation;

Q 3

P
i = Zipqr d4,...,0g} =arg min
p qZ]_r: { 150 8} g{al ag} Z Z

Q 3 8

= p'syn, (5)

8 X 2
o — 3 ak/ Iq()\)bk()\)c,()\)d)\sgn]
k=1
8 o]
> av 3o ] d)\}

8
subject to Z agbk(A) >0, (10)
e |

wherep’ is an unknown scalar independent of the in- +w/
dex of the light source directiop.

By using theP gray images, we rewrite eq.(5) in a
matrix form as
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wherew is an empirical parameter that balances the stage on the basis of a variant of the noise propagation
likelihood term and the smoothness term that tries analysis (Drbohlav and Chantler, 2005).

to minimize the second order derivatives. We wset

in eq.(10) and eq.(11) to 300 throughout our exper- 4.2 Simultaneous Estimation

iments. We used the MATLAB implementation of

the aCtiVe'Set algorithm fOI’ SOIVing the abOVe Iinear We propose a method for Simuitaneousiy estimating
|east-square prOblem with linear constraints. Once the Spectra] reflectances and normals from a small num-
coefficients of the linear combination are eStimated, ber of images_ By integrating Spectrai |mag|ng and

we can obtain the SpeCtral reflectance by Substituting photometric StereO’ our proposed method is formu-
them into eq.(2). lated as

3
{fh,a} =arg min{ > Z
4 PROPOSED METHOD na} { (parear=

2
8
4.1 Overview ipgr— 3 ak/lq()\)bk()\)cr()\)d)\sgni
k=1

The straightforward method described in Section 3 8 d%y(N) 2

uses photometric stereo and multispectral imaging +W/ Z Ok a2 dA

separately. Therefore, it requires the images taken un- =1

der multidirectional light sources with the same spec- 8

tral distributiort for estimating normals and the im- subjectto % abk(A) >0, (11)
K=1

ages taken under multispectral light sources for es-

timating spectral reflectances. Specifically, ignoring where & = (ay,02,03,---,08)7 is the coefficient

iahtf d hod e 3] K d Sector of the spectral reflectance afapecifies the
s;rallg ; orward met (;)'ff requires |ma|ges tad.en underget of images from which the spectral reflectance and
the light sources at different non-coplanar directions | J.oa) 2o astimated.

but with the same spectral distribution, and 3 color We can see that the cost function in eq.(11) has a
images taken under the light sources with different yinear form with respect to two variables; it is lin-

spectral distributiorfssince ed.(3) has 8 unknownfs ear with respect to the normalwhen the coefficient
with respect to the spectral reflectance and each IM-\ectora is fixed, and vice versa. Accordingly, we use

age yields 3 constraints (8 3 x 3). the ALS algorithm, which sets an initial value for one

On the other hand, ignoring attached shadows, We 5 jape and then iteratively updates one of the two
must be able to estimate the spectral reflectance and 5 iaples while the other is fixed in turn, for optimiz-
normal at a surface point from at least 4 color images ing eq.(11).

in theory, since the number of unknowns is 10 in to- More specifically, the norman is updated in a
tal as described after eq.(3) and each image yields 3gjnjar manner to eg.(8) when the coefficient vector

constramtsh(lg<f 4 X.3)'I This m(l)tlvatgs us to pro- a is fixed, and the coefficient vectaris updated in a
poffe ametho dor S|mu|tai1eous y est|||mat|ng spic_tra similar manner to eq.(10) when the normas fixed.
reflectances and norma’s from a small number of im- |, our experiments, we tested two initializations. One

ages by integrating multispectral imaging and photo- ;o , — (0,0,1)", i.e. the normal faces toward a cam-

metric stereo. _ , era. Another ist = (1,0,0,---,0), i.e. the spectral
In the rest of this section, we formulate the simul- efiectance is the same as the first principal compo-
taneous estimation of the spectral reflectance and nor-yant. We experimentally confirmed that both of the

mal per pixel from a small number of images. Then, jhiializations achieve similar performance, and that
taking attached shadows observed on curved surfacegpe optimization converges within a few iterations.
into consideration, we derive the minimum number ¢ ta1es about 140 msec to estimate the spectral re-

of images required for the simultaneous estimation. factance and normal at each pixel by using MATLAB
Finally, we propose a method for selecting the opti- ;,, 4 PC with Core i7.

mal light sources from those of the multispectral light

1The gray scale images defined by eq.(5) are used in 4.3 Number of ReqUIred Images

subsection 3.2. . : o
2Those spectral distributions should be chosen carefully The point on an object surface is in attached shadow

so that eq.(9) or eq.(10) can be solved. under a light source, when the angle between the light
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source directiors and the normah at the point is (C) Each point is illuminated in at least 3 images
larger thanr/2, i.e. s"n < 0. In general, attached taken under different light source directions for
shadows are inevitably observed on curved surfaces updatingnin the ALS algorithm.

such as a sphere under varying light source direc-
tions. Since the pixel intensity in attached shadow is fac
zero,i.e. the left hand side of eq.(3) is 0, we cannot
obtain any constraint about the spectral reflectance
and normal from the shadowed pixel except that the
s_urface norm$l facessin the opposi.te direction toithe Appendix A). Therefore, for satisfying the conditions
light source §' n < 0)". Therefore, in order to esti- (B), 3 images (a triplet) taken under different light
mate the spectral reflectance and normal per pixel on a

d surf d to take attached shad ; tsource directions are required for each spectral dis-
curved surface, we need {o taxe attached Shadows INtqy, vion je. 9 images (3 triplets) are required in to-

cokn5|der3t|orzj,_fz;md ust a sufficient nun;]ber -y 'r?]ag.estal. In our experiments, we capture each image by si-
@ fr? un ?r ! _er.(ﬁnt '9 isgltj)rc;ahs S0 that %ac pglnt multaneously turning on two light sources at the same
on the surface Is fiuminated by the required NUMDET ;o ction but with different spectral distributions so

of light sources. that the combination of the two spectral distributions

In this study, we derive the number of required im- a5 gverlap with the spectral sensitivities of the RGB
ages under the following two assumptions. First, We -hannels of a camera.

assume that the shape of an object of interest is arbi- By using the above 9 images, every point on

trary but convex; denoting the viewing cﬂrection BY " an arbitrary convex surface is illuminated by 3 light
we assume arbitrary noz}\rlr]aissuch thav' n>0but " g5 rces with different spectral distributions at least
do not take cast shadowsto consideration. Note - 4,6 Therefore, the condition (C) is satisfied, when
that the number of required images could be arbitrar- y,q jight source directions for the triplets are different
ily large, if we assume arbitrary complex shapes such ¢.q 1 'each otheii,e. when a set of 9 images (a nonu-
as a tree with a large number of branches and leaves o) is taken under different light source directions.
Second, in the numerical analysis below, we assumep;oregver, we can numerically show that some of the
that a point on an object surface is illuminated by a qnpjets satisfying the conditions (B) and (C) also
light source, .|f the inner produc_t between the light satisfy the condition (A) (see Appendix B). Hence,
source d|r§ct|on and the normal is larger than a small \ e can estimate the spectral reflectance and normal at
thresholck; every point on an arbitrary convex surface from 9 im-
s'n>e. (12) ages. In our experiments, we confirmed that our light

. ) stage has a number of nonuplet candidates which sat-
This is because we detect shadows by using a thresh-lsfy the conditions (A), (B), and (C).

old on pixel values and dark pixels are more likely to
be affected by noise.

Thus, in order to estimate the spectral reflectance
and normal at every point on an arbitrary convex sur-
face, the set of color images taken under multispec-
tral and multidirectional light sources has to satisfy
the following conditions.

Based on the assumption about illuminated sur-
e points by using a threshold in eq.(12), it is triv-
ial that at least 3 images taken under different light
source directions are required for illuminating every
point on an arbitrary convex surface at least once (see

4.4 Optimizing Light Sources

In the previous subsection, we show that a set of 9 im-
ages (a nonuplet) is required for estimating the spec-
tral reflectance and normal at every point on an ar-
bitrary convex surface, and that our light stage has a
(A) Each pointis illuminated in at least 4 images be- number of nonuplet candidates. Since the accuracy of
cause eg.(11) has 10 unknowns in total and eachthe estimated spectral reflectances and normals could
image yields 3 constraints (k04 x 3). depend on the nonuplet used for the estimation, we
propose a method for selecting the optimal nonuplet,
in other words, selecting the optimal light sources un-
der which the optimal nonuplet is taken. In particu-
lar, we focus on the optimization of light source di-
rections, since our light sources have only 6 different
spectral distributions in visible range and we have al-

(B) Each point is illuminated in at least 3 images
taken under different light source spectral dis-
tributions for updatinga in the ALS algorithm
(8<3x3).

3|t is reported that rjormals can be recove.red from at- ready used all of them.
tached shadows by using a large number of images taken L . . . .
under varying light source directions (Okabe et al., 2009). 1 he optimization of light source directions is

4The cast shadows are observed on concave surfacesdiscussed in the context of the classic photometric
whens' n > 0 but the light source is occluded by the other Stereo (Drbohlav and Chantler, 2005). They study
surface or the other part of the same surface. how the zero-mean Gaussian noises in pixel intensi-
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ties propagate to the normals estimated by using the
pseudo inverse matrix, and show that the noises are
amplified by

o2Tr (sT s) - (13)

through the propagation, wheeeis the standard de-
viation of the Gaussian noises a8ds a light source
matrix defined in eq.(6) and eq.(7). By minimizing
eq.(13), they find the optimal light source configura-
tions in terms of noisee.g. 3 orthogonal directions
when the number of light sources is 3. Unfortunately,
however, they ignore attached shadows which are in-
evitably observed on curved surfaces under varying
light source directions. Actually, on curved surfaces, (d) (e)
surface points with different normals could be illumi-  Figure 2: The estimated spectral reflectances (b) at four
nated by different sets of light sources. points on the plaster relief (a). The red-lines stand for the
Accordingly, we extend Drbohlavand Chantler by straightforward method using 120 images and the green-
taking attached shadows into account, and select thedotted lines stand for our proposed method using 9 images.

i ] ] : i (c), (d), and (e) show the normals estimated by using the

?hpem:n?rlﬂif;:ug:::s?ursce:(f'rf?czults Caeng\lg?i?; the straightforward method and our method and their difference

. — Yy, W respectively. Those results demonstrates that our method
maximum error of the estimated surface normal for performs as well as the straightforward method.

each candidat® = {s;, S, Ss; - , So} with respect to
arbitrary normal# such thaw"n > 0, and then select
the candidate that minimizes the maximum error from
the candidates;

Figure 1 shows the 120 images of a plaster re-
lief. Here, all the LEDs are calibrated so that they
have the same intensity. The first two columns show
the images under purple light, followed by those un-
der blue, green, yellow-green, orange, and red lights.
We can see that the color observed on the surface
changes according to the light source spectral dis-
tribution. Moreover, when we focus on the 20 im-
T ages under the same light source spectral distribution,

S (n)=(-.8p,-), (15) we can see that the intensity observed on the sur-
where{s, € S|sgn > e} face changes according to the light source direction.
Our proposed method estimates both the spectral re-
flectances and normals from the color and shading ob-
5 EXPERIMENTS served under multispectral and multidirectional light
sources.
) ) In the rest of this section, we first confirmed that
5.1 Multispectral Light Stage our proposed method using a small number of images
performs as well as the straightforward method using
We implemented a multispectral light stage similar a large number of images. Second, we confirmed that
to the existing ones (Ajdin et al., 2012; Gu and Liu, the use of the optimal set of light sources is effective
2012), and captured images under multispectral andfor robust estimation. Finally, we evaluated the accu-
multidirectional light sources on the basis of multi- racy of our method by comparing the estimated spec-
plexed sensing (Schechner et al., 2003), which is atral reflectances and normals with their ground truth
well-known technique for increasing signal-to-noise values.
ratio without increasing measurement time. In this
study, we used 120 images in tote. the numberof 5.2 Number of Images
light source directions is 20P(= 20) and the number

of light source spectral distributions is @ & 6)°. Figure 2 (b) shows the estimated spectral reflectances

5We removed a few images from the 120 images and at four points on the plaster rell_ef (@). We can see
used the remaining images for the following analysis and that the spectral reflectances estimated from 9 images

estimation, because the corresponding light sources did no Py using our proposed method (green-dotted lines)
work well when those images were captured. are consistent with those estimated from 120 images

. -1
S= arg minmaxTr [ST(n)S(n)} . (14)

Here,S(n) consists of light sources included in a can-
didate and illuminating a surface point with normal
n;
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by using the straightforward method (red-solid lines).
In addition, this result qualitatively demonstrates that
our method can estimate spectral reflectances accu-
rately because the plaster relief is made of a uniform
material, and the estimated spectral reflectances look
almost the same.

Figure 2 (c), (d), and (e) show the normals esti-
mated from 120 images by using the straightforward
method, those estimated from 9 images by using our
proposed method, and their difference in which the
angle from 0 tort/2 is linearly mapped to 8 bit gray
scale. Here, normals are represented by using a color
map. Specifically, thg, y, andz elements of a normal
is linearly mapped to R, G, and B channels (see a ref-
erence sphere attached to the normal map). This result
qualitatively demonstrates that our method can esti-
mate normals accuratelg;g. a surface point toward
a camera is bluish and a surface point toward right
is greenish, and that (d) is consistent with (c) except
for concave areas. Note that both the straightforward
method and our method do not necessarily work well
in those areas because they do not take interreflection
into consideration.

Table 1 shows the average difference between

the normals estlmated_ by using th? straightforward Figure 3: (b) and (d) show the images of the wooden bread
method and those estimated by using our proposediaken under the best (a) and the worst (c) sets of light
method for four different objects; relief, bread, sources represented in cyan respectively. The best set of
checker, and ball (see “best” row). This result quan- light sources distributes at wider angles than the worst one
titatively demonstrates that our method using a small
number of images performs as well as the straightfor-
ward method using a large number of images becaus
the differences are small enough.

eflectances at four points on the wooden bread (a). (c),
(d), and (f) show the normals estimated from 120 im-
ages, those estimated from the 9 images taken un-

) o der the best and the worst sets of light sources. (e)

5.3 Light Source Optimization and (g) show the difference between (c) and (d) and

the difference between (c) and (f) respectively. Note

As described in subsection 4.4, in general, there are athat some artifacts due to specular reflection com-

number of sets of images (and corresponding sets ofponents are visible since we assume the Lambertian

light sources) from which we can estimate spectral re- model. We can see that spectral reflectances and nor-
flectances and normals of an arbitrary convex surface,mals can be estimated from both of the best and the
but the accuracy of the estimated spectral reflectancegvorst sets of light sources, but that the estimated spec-
and normals could depend on the set of light sourcestral reflectances and normals depend on the set of light
used for the estimation. In Figure 3, (b) and (d) show sources used for the estimation. In particular, () and
the images of a wooden bread taken under the opti- (9) clearly demonstrate that our proposed method per-
mal, i.e. the best (a) and the worst (c) sets of light forms as well as the straightforward method when the
sources derived from eq.(14). Here, we show the light best set of light sources is used, but does not perform
source directions in the 3Dxy2 space by project- well when the worst set of light sources is used. This
ing them on the 2Dxy) plane. The inner and outer means that the optimization of light sources is criti-
circles correspond to the zenith angle= /4 and cally important for robust estimation when the num-

8 = 11/2 respectively. The selected light sources are ber of images is small.

represented by symbols in cyan, and the light sources  Table 1 also shows the difference between the nor-

represented by the same symbol have the same speamals estimated by using the straightforward method

tral distribution. We can see that the best set of light and those estimated by using our proposed method
sources distributes at wider angles than the worst one.with the best or the worst set of light sources for the
Figure 4 (b) shows the estimated spectral re- four objects. This result quantitatively demonstrates

309



VISAPP 2015 - International Conference on Computer Vision Theory and Applications

0 ol — 0 - 0
400 500 600 700 400 500 600 700 400 500 600 700 400 500 600 700

(b)
(d)

-

S

ol 0 0
500 600 700 400 500 600 700 400 500 600 700 400 500 600 700

o
8
8

(a)
(c)
.5 05 /‘ 05
0 (@ - I S

Figure 4: The estimated spectral reflectances (b) at four ‘o o o0 7w'm o0 en 7w w0 a0 o w0 w0 o
points on the wooden bread (a). The red-solid lines, green-
dotted lines, and blue-dotted lines stand for the straight-
forward method and our proposed method with the best
and the worst set of light sources. (c), (d), and (f) show
the normals estimated by using the straightforward method ‘o w0 w0 0% w0 a0 wm s mwo s w o
and our method with the best and the worst sets of light
sources. (e) and (g) show the difference between (c) and (d)
and the difference between (c) and (f), and demonstrate that
our method performs as well as the straightforward method
When the best set Of |Ight sources iS Used. %40 500 600 700 400 500 600 700 400 500 600 700 400 500 60 700

Table 1: The difference between the normals estimated by
using the straightforward method and our proposed method

with the best or the worst set of light sources. OM 2 , ,
Object | relief bread Checker ba” 400 500 600 700 400 500 600 EUE))M)D 500 600 700 400 500 600 700
best | 1.68 317 1.05° 1.9® . i
worst | 3.07° 542 219 4.03° Figure 5: The measured/estimated spectral reflectances (b)

at each patch of th_e color checker (_a). The red-solid
that the optimization of light sources works well be- lines, green-dotted lines, blue-dotted lines, and magenta

cause the difference of the best case is smaller thandotted lines stand for the measurement, the straightfarwar
that of the worst case method, and our proposed method with the best and the

worst sets of light sources. The estimated spectral re-

. . flectances are consistent with the measured ones. (c), (d),

5.4 Comparison with Ground Truth and (e) are the normals estimated by using the straightfor-
ward method, and our proposed method with the best and

First, we compared the spectral reflectances of athe worstsets of light sources.

color checker estimated by using the straightforward . ) i

method and our proposed method with those mea- normals at black areas including the top-right color

sured by using a spectrometer. Figure 5 shows thePatch because they were too dark and treated as shad-

image (a) and the estimated spectral reflectances (b)PWS: Table 2 shows the RMS errors of the spec-

and normals (c)(d)(e) of the color checker. In (b), the tral reflectances from 400 nm to 700 rfhestimated

red-solid lines, green-dotted lines, blue-dotted lines, What the basis functions of spectral reflectances

and ma_genta—dotted lines stand for the measurememare not necessarily accurate at short-wavelength rangkk{Pa

the straightforward method, and our proposed method nen et al., 1989). In addition, the measured spectral rafiees

with the best and the worst sets of light sources. Here, are also not accurate in that range because the halogen bulb

we could not estimate the spectral reflectances andused for our experiment is not bright enough.
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Table 2: The RMS errors of the estimated spectral re-
flectances of the color checker; the straightforward method
our proposed method with the best set of light source, and
that with the worst set of light sources from top to bottom
in each field.

row\col. 1 2 3 4
0.054 0.080 0.044 N/A
1 0.059 0.078 0.043 N/A

0.060 0.078 0.044 N/A

0.051 0.075 0.060 0.015
2 0.072 0.070 0.107 0.016
0.070 0.070 0.101 0.015
0.040 0.049 0.123 0.025
3 0.039 0.057 0.109 0.025
0.039 0.055 0.110 0.024
0.044 0.060 0.088 0.059
4 0.041 0.065 0.080 0.057
0.039 0.063 0.081 0.059
0.068 0.061 0.048 0.063
5 0.081 0.058 0.042 0.070
0.081 0.058 0.041 0.069
0.025  0.068 0.037 ~ 0.038
6 0.030 0.067 0.027 0.052
0.030 0.067 0.027  0.050

by using the straightforward method and by using
our method with the best an_d the WO,rSt sets of light Figure 6: The estimated spectral reflectances (b) at four
sources from top to bottom in each field. The aver- points on the wooden ball (a). The red-solid lines, green-
ages of the RMS errors are 0.056, 0.058, and 0.058dotted lines, and blue-dotted lines stand for the straightf

respectively. This result quantitatively demonstrates ward method and our proposed method with the best and
that our method can accurately estimate spectral re-the worst set of light sources. (d), (f), and (h) are the nor-
flectances even from a small number of images. mals estimated by using the straightforward method and our

. method with the best and the worst sets of light sources. (e),
Second, we evaluated the estimated surface nor'(g), and (i) show the differences between the ground truth

mals. Figure 6 shows the image (a) and the €s- ¢y ang the estimated ones (d)(f)(h), and demonstrates that
timated spectral reflectances (b) and normals of a our method performs as well as the straightforward method
wooden ball. (d), (f), and (h) are the normals esti- when the best set of light sources is used.

mated by using the straightforward method and our

proposed method with the best and the worst sets of

light sources. (e), (g), and (i) show the differences

between the ground truth (¢) and the estimated ones6 APPLICATION

(d)()(h). We assume that the shape of the ball is a

perfect sphere although it looks a little distorted both To demonstrate the effectiveness of estimating both
locally and globally to some extent. Therefore, a part the spectral reflectances and normals by using our
of the errors common to the estimated surface normalsproposed method, we synthesized images under novel
by using the straightforward method and our method illumination conditions. Figure 7 shows the synthe-
would be due to those distortions. In addition, we sized images of the plaster relief and wooden ball un-
can observe white spots caused by specular reflectionder 9 different illumination conditions; three spectral
components. The average errors of normals estimateddistributions times three light source directions. The
by using the straightforward method and our method spectral reflectances and normals estimated by using
with the best and the worst sets of light sources are the straightforward method (top) and our proposed
5.11°, 5.52°, and 743 respectively including the de- method (bottom) are used. We can see that the syn-
viation of the ball from a perfect sphere and the errors thesized images look quite natural, and that the bot-
due to specular reflection components. Thus, we cantom images are consistent with the top images. This
see quantitatively that our method can accurately es-result demonstrates that our proposed method extends
timate normals even from a small number of images. the capability of spectral relighting (Park et al., 2007;
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non-Lambertian surfaces. As mentioned in Section 5
and Section 6, the estimated spectral reflectances and
normals are sometimes contaminated by specular re-
flection components since we assume the Lambertian
model. We will use the robust estimation for remov-
ing those components as outliers or model them by
using parametric or non-parametric representation in
the future.
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APPENDIX A

We give a counterexample and prove that 2 images (or
2 light sources) are insufficient for illuminating every
point on an arbitrary convex surface at least once. Let
us consider a unit sphere illuminated by a single direc-
tional light source. The single light source illuminates
at most almost the half of the occluding boundary of
the sphere according to the assumption of illuminated
pixels in eq.(12). Then, the length of illuminated oc-
cluding boundary igmt— 6), whered is a small num-
ber. Since the length of the entire occluding bound-
ary is 2tand(m—9) x 2 < 21, we cannot illuminate
the entire occluding boundary at least once by using
2 light sources.

APPENDIX B

In a similar manner to Appendix A, we give a
counterexample and prove that 8 images (or 8 light
sources) are insufficient for illuminating every point
on an arbitrary convex surface at least 4 times for
satisfying the condition (A) in subsection 4.3. Con-
sidering a unit sphere illuminated by a single direc-
tional light source, the length of illuminated occlud-
ing boundary iT1— 8). Since(Tt— 8) x 8 < 4 x 2m, it

is clear that we cannot illuminate the entire occluding
boundary at least 4 times by using 8 light sources.
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