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Abstract: The Optimal Power Flow problem (OPF) plays a crucial role in the successful energy management of 
modern smart grids. The diffusion of renewable energy sources poses new challenges to the power grid in 
which integrated energy storage combined with green generation solutions can help to address challenges 
associated with both power supply and demand variability. This work refers to a smart grid context and 
proposes a time indexed OPF model considering storage dynamics, adopting a preference-based 
optimization method with chance constraints to provide a suitable service level. 

1 INTRODUCTION 

Optimal Power Flow problem (OPF) plays a crucial 
role in the successful management of modern power 
grids.  

The diffusion of renewable energy sources (even 
in the demand side) poses new challenges to the 
power grid in which integrated energy storage 
combined with green generation solutions can help 
to address challenges associated with both power 
supply and demand variability (Chandy et al., 2010, 
Koutsopoulos et al., 2011).  

This paper reports on some optimization 
modeling results of a research work which refers to a 
smart grid context and proposes a time indexed 
Optimal Power Flow (OPF) model which considers  
storage dynamics and adopts a preference-based 
optimization method (on the generation side)  joined 
with a chance constrained approach (on the demand 
side) to provide a suitable level of service.  

2 PROBLEM DESCRIPTION 

The OPF is a class of constrained optimization 
problems over a set of power/flow network variables 
(Carpentier, 1962). In general the variables may 
include active and reactive power outputs, generator 
or bus voltages and phases; while the objective may 
be the minimization of generation costs or the 

maximization of user utilities or level of service; and 
the constraints may be bounds on voltages or power 
levels, or that the line loading not exceeding thermal 
or stability limits. The OPF has been deeply studied 
during the last decades and several optimization 
techniques have been applied to both model and 
solve it (Dommel and Tinney, 1968, Kallrath et al., 
2009). 
In this paper, we develop a simple and general OPF 
model with energy storage and study how storage 
allows optimization of power generation across a 
given time horizon considering an uncertain demand 
and a system of preferences on the amount of 
generated power. 
The proposed OPF approach belongs to the family 
of energy planning models (Huang et al., 2012, 
Khalid and Savkin, 2010) and aims to find a one-
day-ahead energy production and distribution plan 
determining:  
a) how much load (i.e. demand) to satisfy;   
b) when and how much power to draw from the grid; 
c) when and how to charge the energy storage 
system;  
d) how to sell power back to the grid; while the goal 
is to minimize the overall costs including energy, 
devices and operations. 
Besides OPF, which aims to search for the 
conditions which give the lowest cost for energy 
generation, storage and delivery, the implementation 
of the planning results may be based on different 

224 Dellino G., Meloni C. and Mascolo S..
A Linear Physical Programming Approach to Power Flow and Energy Storage Optimization in Smart Grids Models.
DOI: 10.5220/0005293602240231
In Proceedings of the International Conference on Operations Research and Enterprise Systems (ICORES-2015), pages 224-231
ISBN: 978-989-758-075-8
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



actuation strategies  including Demand Shaping 
(DS) and Energy Storage (ES). 
The first is based on the (tentative) consumer 
demand shaping through financial incentives; 
encourages the consumer to: use less energy during 
peak hours and/or shift the time of energy use to off-
peak times (i.e. night time, weekends). In the 
approach based on Energy storage (ES) ad-hoc units 
are required to store energy during off-peak hours 
and to discharge (i.e., supply energy) during peak 
hours (power leveling).  

3 OPTIMAL POWER FLOW 
INCREMENTAL MODELING 

Developing the Optimal Power Flow model we 
adopt an incremental approach interactively 
involving decision-makers (e.g., as suggested by 
Sierhuis and Selvin (1996)). 
We start from a Conceptual Model (proposed by 
Chandy et al., 2010) as the basis to develop more 
complex and detailed models according to the needs 
and the practice of the context.   

3.1 Conceptual Model 

The Conceptual Model refers to a Single-Bus and 
Single-Generator case, but it can be extended to a 
network, i.e., Multi-Bus and Multi-Generator cases. 

 

Figure 1: Reference scheme for the Conceptual Model 
with respect to a single node i of the grid. 

The OPF Conceptual Model refers to the scheme 
depicted in Figure 1. It is a simple and general OPF 
model with energy storage and time-varying 
generation costs and power demand. It considers a 
single generator connected to a single load; the so 
called electric “per unit” DC model is assumed 
leading to a simplified structure of the network in 
which no reactive power is considered (Chandy et 
al., 2010). The main difference from the classical 
OPF is that storage allows optimization across time, 
e.g. charge when the cost of generation is low and 
discharge when it is high. 

For each node i of the grid, the considered 
Conceptual Model is a time-indexed optimization 
problem characterized by a planning horizon 
containing T time slots t (i.e. t	ൌ	1,…,T) of the same 
length.  
For each time slot t is known a value dt for the 
power demand. The variables of the problem are the 
power gt to be generate in time slot t, and the level 
of charge bt of the storage system in the time slot t, 
which has a limited capacity of B. The energy flow 
to and from the storage system is indicated as rt, i.e., 
assuming positive values while batteries are 
supplying energy and negative otherwise. 
The considered optimization model includes a first 
set of demand satisfaction constraints, and set of 
constraints dealing with the level of charge of the 
batteries, while all variables are required to be non-
negative.  
The objective function is a cost to be minimized 
containing a generation and a storage component. 
The generation cost  ܿሺ݃௧ሻ can be assumed to be 
quadratic and (possibly) time-varying. The 
convexity of the cost function reflects a possible 
decreased efficiency when producing very high 
amounts of  power (Chandy et al. 2010).  
The storage cost hሺbtሻ is assumed to be dependent 
only on the state of charge bt (and not on the charge 
or discharge rate); it can be formulated as a linear 
penalty term for deviation from the desired target. 
An additional component kሺbTሻ could be included to 
represent an optional penalty for the deviation from 
a final target value bT  (i.e., bt	 with tൌT) of the state 
of charge. 
The overall formulation leads to the following 
mathematical program: 

݉݅݊	ܼ ൌ ∑ ሾܿሺ݃௧ሻ ൅ ݄ሺܾ௧ሻ ൅ 	݇ሺ்ܾ	ሻሿ்
௧ୀଵ             (1) 

subject to (for all t = 1,…, T): 

݃௧ ൅ ௧ݎ ൌ ݀௧      (2) 

ܾ௧ାଵ ൌ ܾ௧ െ  ௧     (3)ݎ

ܤ െ ܾ௧ ൒ 0		 	 	 	 	 (4)	

݃௧ ൒ 0		 	 	 	 	 (5)	

ܾ௧ ൒ 0		 	 	 	 	 (6)	

3.2 Case Study: Problem Setting and 
Preliminary Results 

We consider, as “basic” case study, a problem 
introduced by Chandy et al. (2010) to illustrate the 
characteristics of the Conceptual Model reported in 
Section 3.1. This problem refers to a single-bus and 
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single-generator case under the assumption of an 
electrical “per unit” DC model. 
The considered planning horizon is T	 ൌ	 24 hours 
and each time step t has a duration of 1 hour. 
According to the original model, the demand (in GJ 
units) profile in the planning horizon is represented 
by: 

݀௧ ൌ 50 ൅ 10 sin ቀ
ସగ	ሺ௧ିଵሻ

்ିଵ
ቁ   (7) 

The energy storage system is characterized by a 
battery capacity B	ൌ	25 GJ,  and an initial level of 
charge b0	ൌ	12.5 GJ. 
The additive components to the cost function Z −to 
be minimized− are: 

ܿሺ݃௧ሻ ൌ  ௧݃௧ଶ     (8)ߛ	0.5

݄ሺܾ௧ሻ ൌ 	ܽሺܤ െ ܾ௧ሻ     (9) 

As proposed by Chandy et al. (2010), in our “basic” 
case study some simplifications are included: i) the 
last component, related to the final level of charge of 
the batteries, is obmitted; ii) the cost coefficient is 
constant in the planning horizon and fixed to γt	ൌ	1 
for all t  (invariant case) While the value of the 
coefficient a was set  to 2. 

 

Figure 2: Conceptual Model Results for the basic case 
study. The x-axis reports the time slots, y-axis indicates 
power levels. 

As depicted in Figure 2, according to Chandy et al. 
(2010), the optimal generation gt is linear when the 
batteries charge and discharge, and follows the 
demand when the storage system is at the maximum 
level of charge. In the particular illustrative problem 
setting, the storage system is hardly used at all and 
appears quite oversized. In fact, it is mainly due to 
the relative values of generation and storage costs 
and their invariance in the planning horizon.  
The energy storage system clearly needs a better 
modeling to deal with the level of charge at the end 

of the period. The decision-makers needs to consider 
in the planning activities also the preference and 
limitations on the generation-side and the possible 
uncertainties on the demand-side. 

3.3 OPF: Enhanced Models 

Starting from the Conceptual Model, and on the 
basis of the requirements defined in the application 
context, we are working, together with the decision-
makers, on several modeling extensions mainly 
devoted to address the following issues, which 
compose our current research agenda: 

1. Limitations on the flows to/from the storage 
system in each time slot; 

2. Generated flow possibly assumes negative values 
(i.e., the Distribution System Operator (DSO) 
should receive energy from the node); 

3. Demand predictions possibly assume negative 
values (i.e., customers should produce energy); 

4. (Upper/Lower) Bounds on the amount of 
generated energy (possibly negative), e.g.,  
a) constant bounds;  
b) time-dependent (yet known) bounds;  
c) preferences (penalty based) on the level of 
power generation; 

5. Uncertainties affecting the demand forecasts dt; 
6. Storage system inefficiencies with respect to 

holding, discharging and recharging phases; 
7. Possible different energy sources; 
8. More specific constraints related to the discharge 

and recharge phases of specific classes of energy 
storage systems; 

9. Extension to a multi-generator and multi-bus 
context. 

In particular, in this work we address the modeling 
issues related to points 4 and 5. 

3.3.1 Uncertain Demand Forecasts 

In general, uncertainties affecting the demand 
forecasts dt	 are described as prediction intervals and 
error distributions (Box et al., 2008, Pflug and 
Römisch, 2007, Narayanaswamy et al., 2012, 
Conejo et al.,  2010). On the basis of a demand 
forecast, the planner receives, for each time slot, the 
predicted value (i.e., dt), the prediction interval, and 
the distribution of the values inside that interval.  
On the basis of the forecasting values distribution 
within the prediction interval (e.g., from 
Autoregressive Integrated Moving Average 
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(ARIMA) or Support Vector Machines (SVM) time 
series models) we adopt a chance constrained 
approach (Charnes and Cooper, 1959) introducing a 
new set of constraints −to replace constraints (2) in 
the Conceptual Model (1)-(6)− in order to guarantee 
a given probability of demand satisfaction:  

Prሾgt൅	rt	൒	dtሿ	൒	1‐α		for		tൌ1,...,T          (10) 

They represent a set of Level-of-Service (LOS) 
constraints and –noting that the uncertainty affects 
only the r.h.s of each constraint– can be linearized 
(Vanderbei,  2001) using the critical value d’t	
associated to α (i.e., the specific required level of 
probability) through the probability density function 
of the demand: 

gt	൅	rt	൒	d't		for		tൌ1,...,T		            (11) 

Using these set of constraints instead of  (2) leads to 
a first enhanced model, hereinafter indicated as 
EM1. 

3.3.2 EM1: Additional Problem Settings and 
Results 

To test the enhanced model EM1, the basic case 
study has been modified to consider the demand 
uncertainties. The forecasted demand value (i.e., the 
expected value) is assumed to be given by equation 
(7) for each time slot t.  
The effect of prediction uncertainties has been 
modelled as a demand characterized in each time 
slot by a normal distribution (other distributions can 
be used instead) with mean given by the expected 
value dt (i.e., through equation (7)). Two different 
scenarios has been considered. The first is 
characterized, in each time slot, by a standard 
deviation σ5%ൌ0.05dt, while the second by 
σ10%ൌ0.1dt . The probability of demand satisfaction 
is set to obtain 3 scenarios for the level of service 
(LOS): 70%;	 80% and 90%, respectively 
(according to equation (10)). 
As an example, Figure 3 reports the results obtained 
by EM1 in the scenario characterized by a LOS of 
90%  and the higher demand variability.  
Due to more severe demand requirements, the use of 
the storage system increases in the optimal plan. The 
optimal generation gt holds an almost linear 
behavior when the storage charges and discharges, 
and still matches the demand when the storage 
system is saturated.  The storage system still calls 
for a better consideration of the behavior at end of 
the period.  

 

Figure 3: EM1 Results for the case study with LOS	ൌ	90% 
and σ10%. The x-axis reports the time slots, y-axis indicates 
power levels. 

 

Figure 4: EM1 results for all scenarios: costs Z and the 
maximum generated power g_max.  

Decision-makers acknowledge the practical 
relevance of this approach on the demand-side but 
they need to improve the model on the generation-
side to allow a better management of  the amount of 
generated energy.  
More specifically, decision-makers find this models 
not comfortable as the g_max is close (or even over) 
the generation capacity of the node, and they are 
called to negotiate additional power to/from other 
nodes of the grid.  
Figure 4 shows the results for all the scenarios in 
terms of the total cost Z and the maximum generated 
power g_max in the time slots within the planning 
period. In this figure, the scenario indicated as “avg” 
represents the base original scenario in which the 
expected values of the demand dt			are considered for 
each time slot (i.e., without demand variability). 
Other different scenarios are indicated in the x-axis 
with a label XX_Y, where XX represents the 
required LOS, and Y the amount of demand 
variability (i.e., σ5%		or σ10%). 
 

A�Linear�Physical�Programming�Approach�to�Power�Flow�and�Energy�Storage�Optimization�in�Smart�Grids�Models

227



3.3.3 A Preference-based Generation 
Management 

In their planning activity, decision makers are 
subject to limitations in the amount of power that 
can be generated. Clearly, this issue can be easily 
addressed introducing a direct  (and constant) bound 
on all the gt variables.  
More in general, we can consider the case with time-
dependent (yet known) bounds in which, for each 
node of the grid, we introduce  a capacity GtMAX that 
bounds the value of gt. Nevertheless, decision 
makers are used to reason in terms of operative 
ranges, an approach which is only partially 
supported by a quadratic model for the generation 
costs as considered in the conceptual model and in 
EM1.   
The need expressed by decision makers suggest us 
to setup a new enhanced model EM2 including the 
generation management with preferences on the 
different possible operative ranges.  
In this modeling extension, these preferences are 
taken into account by a (linear) progressive penalty 
system. 
The operative ranges in the feasible range ሾ0,GtMAXሿ 
indicated by the decision makers are represented in 
Figure 5 and are characterized as follows: 

 

Figure 5: the generation cost ct	with a progressive linear 
penalty system based on different operative ranges. 

OPERATIVE_RANGE 1 (OR1): ሾ0,	 G1tሿ this 
operational region is “preferred” or 
“desirable” and has an associated NULL 
penalty (in Figure 5 it is indicated in green) 
assuming φ1t	ൌ	0; 

OPERATIVE_RANGE 2 (OR2): ሾG1t,	 G2tሿ this 
region is considered “tolerable” (indicated in 
yellow in Figure 5), and has a penalty 
described by a slope 	φ2t	൒0; 

OPERATIVE_RANGE 3 (OR3): ሾG2t,	 G3tሿ these 
values are “undesirable” (yet feasible, they 
are marked in red in Figure 5) and have a 
penalty represented by the slope φ3t	 , with 
φ3t	൒0. 

The level G3t		coincides with GtMAX  which indicates 
the production capacity of the system, i.e., any 
generation level gt	൐	GtMAX  is not feasible (in Figure 
5 it is indicated in black). 
For any feasible value gt of energy generated in the 
time slot t, the cost  is composed by a base-cost 
given by ctgt  and  the additional penalty components 
depending on the region belonging gt.  
The system of penalties is formulated introducing a 
new set of constraints in the OPF model. 
The first group of constraints takes into account the 
generation capacity in each time slot: 

݃௧ ൑ ݐ	ݎ݋݂				௧ெ஺௑ܩ ൌ 1,… , ܶ  (12) 

For each ORi and for each time slot t, we introduce a 
new set of variables it	 ൒	 0 representing the 
displacement in that operative range of the power 
generated during the time slot t. These displacement 
variables are required to satisfy, for each operative 
region ORi with i	൒	2, the following constraints:  

݃௧ െ ௜௧ߜ ൑ ௧ܩ
௜ିଵ			݂ݎ݋	ݐ ൌ 1,… , ܶ   (13) 

The additional (linear) contribute to the cost function 
for each time slot t is given by: 

∑ ௜ܹ௧ߜ௜௧௜ஹଶ       (14) 

with ௜ܹ௧ ൌ ߮௜௧ െ ߮௜ିଵ,௧ , and ߮ଵ௧ ൌ 0. 

All these elements, in addition to the extensions 
already considered in EM1 lead to a new enhanced 
model we indicate hereinafter as EM2.   
The weights Wit (and so slopes φit) are determined 
on the basis of additional indications provided by the 
decision makers.  
More specifically, as the range limits define the 
preference internally to each single time slot (i.e., 
intra-period), they suggest a particular One-Versus-
Other  (OVO)  rule to describe their inter-period 
preferences. 
In fact, they prefer to minimize “as a priority” the 
number of “red” time-slots (i.e., those showing a 
positive displacement in OR3) and the amount of 
energy belonging in that region, and then those in 
“yellow” (i.e., the time slots limiting the power 
generation, at most, to OR2).  
Overall, the preference based system 
proposed/shared with the decision makers belongs to 
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the family of the so called Linear Physical 
Programming (LPP) Models (e.g., see Messac, 
1996). 

3.3.4 EM2: Additional Problem Setting and 
Results 

To test the enhanced model EM2, the previous case 
study has been enriched.  Besides the consideration 
of the demand uncertainties, the model of the energy 
storage system has been modified considering a 
battery capacity B	ൌ	25 GJ, a battery initial level of 
charge b0	 ൌ	 0.8B, and the following additional 
constraint on the final level of charge:  

்ܤ ൒ ܾ଴    (15) 

and a new set of bounds on the minimum operative 
level of charge, required to be at least  bmin	ൌ	0.05B: 

ܾ௧ ൒ ܾ௠௜௡				݂ݎ݋	ݐ ൌ 1,… , ܶ    (16) 

The component of the cost function related to the 
energy storage system is the same considered in 
EM1, while the base-component of the power 
generation cost is linear with a unitary cost given by 
ct	ൌ	0.5, considered as constant in all the time slots. 
The components of the generation cost, related to the 
preference system and the OVO rule, are determined 
on the basis of the following ORi: 

OR1:	ሾ0,	50ሿ,		

OR2:	ሾ50,	57.5ሿ,		

OR3:	ሾ57.5,	60ሿ,	

giving the weights W2	ൌ	0.013, and W3	ൌ	1. 

The modeling of the demand behavior and its 
variability are the same considered in the setting of 
the previous case study, as well as the three LOS 
scenarios. 
In general, due to the more challenge context, the 
use of the energy storage system has increased in all 
the considered scenarios playing an important role to 
cope with periods characterized by higher demand 
levels taking into account the generation constraints. 
It is worth to note that the linearity of the generated 
power when batteries are charging/discharging does 
not hold for EM2. Moreover, the storage system 
shows a satisfactory behaviour also in the terminal 
phase of the considered planning period.  
Figure 6 reports a representative sample of the 
results obtained by EM2. In particular, the figure 
refers to the scenario characterized by a LOS of 80%  
and the higher demand variability and clearly shows 

the power leveling effect of the energy storage 
system which charges during off-peak hours and 
discharges during peak hours.  
Figure 7 shows the results for all the scenarios in 
terms of the total cost Z and the maximum generated 
power g_max in the time slots within the planning 
period. Again, as in Figure 4, the scenario indicated 
as “avg” represents the base original scenario 
without the superimposed demand variability, while 
other different scenarios are indicated with the same 
XX_Y notation. In this case, all the results are 
normalized w.r.t. the “avg” scenario and it is clear 
how EM2 is able to give an almost constant g_max 
among the different scenarios. As expected, these 
results show costs increasing as the LOS and the 
demand variability increase.  
The decision makers, on the basis of the results 
obtained by the enhanced model EM2, often 
consider also different corrective actions including 
demand shaping (on the demand-side),  negotiation 
to sell or buy energy (on the grid-side). EM2 gives 
useful information to support these management 
activities. 

 

Figure 6: EM2 Results for the case study with LOS	ൌ	80% 
and σ10%. The x-axis reports the time slots, y-axis 
indicates power levels. 

 

Figure 7: EM2 results (normalized w.r.t. the “avg” 
scenario) for all scenarios: costs Z and the maximum 
generated power g_max. 
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Figure 8: EM2 Results for the case study with LOS = 80% and σ10%. Displacements variables in OR2 and OR3, and 
energy shadow prices in each time slot. 

Firstly, these information are represented by the 
displacement variables in the different operative 
regions which indicate the level of production and 
its severity in each time slot.  
Secondly, this information can be easily 
incorporated in a managerial dashboard joined with 
an estimation of the marginal value of a power unit 
(to sell or buy) in each time slot in the planning 
horizon.  
EM2 provides this kind of estimation in terms of 
shadow prices associated to the demand (LOS) 
satisfaction constraints. Figure 8 reports −for the 
scenario with higher demand variability and a LOS 
of 80%− an example of these useful information in 
numerical as well as graphical forms.  

4 CONCLUSIONS 

In this paper we develop an Optimal Power Flow 
model adopting an incremental approach 
interactively involving decision-makers.  
We start from a simple conceptual model as the 
basis to develop more complex and detailed models 
according to the needs of the decision-makers trying 
to bridging the gap between modeling and the 
practice.  
The interactive modeling development allows us to 
individuate several directions to develop enhanced 
models including the extension to networks (i.e., 
Multi-Bus and Multi-Generator cases); the 
representation of relevant storage system 
inefficiencies and more specific constraints related 

to the discharge and recharge phases of specific 
classes of energy storage systems. 
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