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Abstract: In this paper, we proposeextTrail a new robust algorithm dedicated to text tracking in uncontrolled envi-
ronments (strong motion of camera and objects, partial occlusions.ebtyr, It is based on a particle filter
framework whose correction step has been improved. First, we compare some likelihood functions and in-
troduce a new one which integrates tangent distance. We show that this likelihood has a strong influence on
the text tracking performances. Secondly, we compare our tracker with a similar one and finally an example
of application is presentedlextTrailhas been tested on real video sequences and has proven its efficiency.
In particular, it can track texts in complex situations starting from only one detection step without needing
another one to reinitialize the model.

1 INTRODUCTION the whole sequence by using inpainting algorithms.
Thus, the main goal of text tracking is to collect a list
With the increasing amount of videos, automatic text of associated text regions throughout a sequence by
extraction has become an essential topic in the com-minimizing the number of detection steps, as this step
puter vision application field. Whereas many works can be very time consuming.
have already been published on text detection and its ~ State of the art about text tracking is quite re-
extraction in single images, video context has been stricted. Pharet al. (Phan et al., 2013) used the
still little investigated. To extend detection process Stroke Width Transform to estimate a text mask in
from an image to a video sequence, a simple way is each frame. SIFT descriptors in keypoints from
to apply a detector on each frame. However, this is the mask are extracted and matched between two
not optimal. First, because the detection process mayframes. Because only text pixels are tracked, it
be very time consuming, especially for high textured is robust to background changes but, unfortunately,
frames. Secondly, because this “naive” approach doesonly handles static or linear motions. Most of re-
not provide the matching information between detec- cent approaches (Tanaka and Goto, 2008; Merino and
tions in consecutive frames. However, these associa-Mirmehdi, 2007; Minetto et al., 2011) use a particle
tions are needed for some applications.Visual tracking filter. Merino et al. (Merino and Mirmehdi, 2007)
algorithms are a solution for such purpose: they at- proposed a method for text detection and tracking
tempt to predict the position of text areas at each time of outdoor shop signs or indoor notices, that han-
step by using previous information and then provide dles both translations and rotations. Here, SIFT de-
some stability of detections or estimations with time. scriptors are computed in each component of a de-
We could cite a lot of target applications for which tected word (that is supposed to be a letter). Tamdka
text tracking is important, such as automatic text ex- al. (Tanaka and Goto, 2008) suggested two schemes
traction for indexation, text-to-speech (for example for signboard tracking: (i) a region-based matching
for visually-impaired persons) or online text transla- using RGB colors, and (ii) a block-based matching.
tion (for example for tourists). In these cases, tracking In all prior algorithms, also known asacking-by-
can improve the final transcription through redundant detection text is first detected in each frame, then
information and provides only one transcription per “tracked” between frames, by using a matching step
text area. It can also be fundamental in online text re- that associates detected text areas. However, a recent
moval: if one specifies a text to erase within a frame, a algorithm, SnoopertrackMinetto et al., 2011), de-
removal process can be automatically propagated over
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tects text every 20 frames, and tracks it between them, possible realizations of the statf calledparticles
using H_OGs as feature descriptors. _ In its basic scheme, PF first propagates the particle set
In this paper, we focus on text tracking. Our al- {Xt(gl’wt(gl} (Eg. (1)), then corrects particles’ weights

gorithm, calledTextTrail relies on the particle filter . o (i) (i) .
framework, well known to handle potential erraticand USiNg the likelihood, so thatt” O p(yt[x "), with

fast motion. Our tracker is initialized using our pre- ZiN:lvvt(i> =1 (Eq. (2)). The estimation_of the pos-
vious work on text Ioc_allzat|0n m_smgle images (Fab- terior densityp(x;|y11) is given byZiNzlwt(l)ax(i)(xt)y

rizio et al., 2013). This detector is restricted to block _ o
letters text in a Latin alphabet, but could easily be ex- where6x§i> are Dirac masses centered on partuxf@s
tended to other alphabet by adapting its learning pro- A resampling step can also be performed if necessary.
cess. Compared to the state of the art, our algorithm

TextTrail can accurately track text regions during a 2 2  Tangent Distance

long time (hundreds of frames) without needing to

reinitialize the r_noqlel(s) with new detection_s. We in- Tangent Distance (TD) allows to robustly compare
troduce a new likelihood used in the correction step of 4,0 patterns against small transformations. It was
the particle filter which uses the tangent distance be- fjrst ‘introduced by Simarcet al. (Simard et al.
tween grayscale patches. This likelihood function has 1992) and was mostly used for character recogni-
been studied and c_ompared with other ones including tion (Schwenk and Milgram, 1996), but also for face
common ones relying on Bhattacharyya distance be-getection and recognition (Mariani, 2002), speech
tween HOG descr!ptors (_Medelros etal., 2010; Tuong recognition (Macherey et al., 2001) and motion com-
et al.,, 2011; Breitenstein et al., 2009). Our tests pensation (Fabrizio et al., 2012).

show that the tangent distance is really suitable for " 14 compare two patternsandd, the Euclidean
text tracking purposes. The paper is organized as fol- gistance is not efficient as these two patterns may un-
Ipws. In Section 2 we qwckly mtroduqes the.partlcle dergo transformations. With TD, a set of potential
filter and the tangent distance. Then, in Section 3, We ransformations is modeled. As these transformations
expose different likelihoods for text tracking b_efore are not linear, we consider an approximation with lin-
proposing a new one (the one we useTextTrai). ear surfaces. Here, the Euclidean distance is not com-
We compare them in Section 4 and evalugetTrail  ted between the two patterns, but between the two
performances. We also compare our approach with ajinear surfaces. Obviously, amplitudes of these trans-
similar one. In addition we illustrate its interest by t5rmations are unknown. In our case. we model trans-
integrating it into a comp!ete schemeT of apphcatlon. formations only on one pattern (in this examgje If
Concluding remarks are finally given in Section 5. we notedeq(., ) the Euclidean distance, the TD is:

M

2 BACKGROUND min(deell, )+ 2, W) ©
) ] with V; the tangent vector ofth modeled transfor-
2.1 Particle Filter mation and\; its contribution. In this minimization

scheme] andJ are known. Tangent vectors can be
The particle filter (PF) framework (Gordon et al., computed numerically or analytically. On the con-
1993) aims at estimating a state sequepe®—1,.. T, trary, all coefficient\; are unknown: the result of the
whose evolution is given, from a set of observations minimization gives their optimal values.
{Yt}t=1.. 7. From a probabilistic point of view, it

amounts to estimate for anyp(x;|y11). This can be
computed by iteratively using Eg. (1) and (2), which 3 PROPOSED APPROACH
are respectively referred to as a prediction step and a

correction step. 31 F k
. ramewor

X 1) = Xt [Xt—1) P(Xt— _p)dxi—1 (1
POx[Y1e-1) IXH POuxt-1)P(-1lYa1-1)dxi-1 (1) We propose an algorithm which robustly tracks mul-
P(xely1t) O p(ytIx)p(Xely1t-1) (2)  tiple text areas in video sequences using a PF. For the

In this casep(x;|x;_1) is the transition ang(y:|x;) initialization step, text regions are detected in the first
frame using the detector proposed in (Fabrizio et al.,

the likelihood. PF aims at approximating the above 2013), and used as models in the rest of the sequence
distributions using weighted sampl{aq('),wt(')} of N without any update. We use one PF per model to
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track. Note that we initialize once our tracker in or- to Revisited Histogram of Oriented Gradient (RHOG)

der to see how long the algorithm can track text areas
without needing updating their models: we can then
not detect text that appears over time. The dimension
of the box surrounding each text area is supposed to
be constant: the state vectar of each PF contains
the coordinatesx,y) of its top left corner. Because
no prior knowledge on motion is taken into account,
particles are propagated within a very large search

space (circle of radius 40 pixels). Each partixj'é,
i=1,...,N (with N = 200) is here an hypothetical
state {.e. a possible position for the tracked text area
top left corner). Its weight is given twt(') = g ad?
with d a distance between the description of the par-
ticle and the one of the model, and the correction pa-
rameteio a positive value to fix (see Section 4). When
the region of a patrticle is partially outside the image,
its description is computed only into its visible part
and ditto for the model. Note that, at each iteration
of a PF, a basic multinomial resampling is performed
from the discrete distribution given by the normalized
weightsw".

One of the main challenges in tracking algorithms

is to ascertain which feature descriptors and distance

d between them best discriminate the tracked object
from the rest of the frame. The particles’ weights

should be the most relevant possible. Below, we com-
pare two distances (Bhattacharyya distance (Bhat-
tacharyya, 1943) and TD previously exposed) inte-
grating different descriptors.

3.2 Bhattacharyya Distance between
HOGs and Extension

As feature descriptors for text area(s) to track, an
HOG (Dalal and Triggs, 2005) is computed into each
text area by quantizing gradient orientations into 9
bins (8 orientations plus an extra bin for counting
the negligible gradient amplitudé®. homogeneous

by:

1){ Computing HOG in the mask provided by the seg-
mented letters of the model given by the algorithm
in (Fabrizio et al., 2013) (Fig. 1) ;

2. Dividing the text area into 8 3 blocks and com-
puting HOG in each block.

BDs are separately computed (on the 9 blocks and
on segmented letters) then averaged. If computing
BD between RHOGs permits to refine the likelihood

function, it can however not handle rotations or scale

changes for example. That is why, to be robust to
small transformations, we introduce the TD into the
PF.

aus,sﬁ |

(a) Examples of particles with the mask used to
restrict the computation of HOG (b)

(c) The model with
the deduced mask

(b) Position of particles and
model in the current frame

Figure 1: For each particle (a), HOG is computed into the
area restricted to the mask provided by the segmenteddetter
of the model (c).

3.3 Tangent Distance between Gray
Level Patches

Let J be the text area model ardthe particle area
(both corresponding to gray level image patches). We
here consideM = 3 possible transformations df

zones). A particle and the model can be compared by horizontal and vertical stretching and rotation. First,

computing the Bhattacharyya distance (BD) nalgg
between their corresponding normalized HOG.

If we consider two normalized histograrRsand Q
with pi (resp. q) the i bins of P (resp. Q), i =
1,...,B with B the number of bins in the histograms,
the BD betweer andQ is given by:

B
Ao = \/1— _Zix/ P(pi)Q(ai)

The particles’ weights are given lwf') — g ady,
One of the drawback of HOG is that it does not in-
tegrate spatial information, and then not the shape of
letters. To overcome this limitation, we extend HOG

(4)
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tangent vectory}, i = 1,...,M are computed from
each model text areas only once in the algorithm.
Then, by minimizing the difference betweénand

J (Section 2.2), we get contributior’s for each
transformation. Applying these coefficientsto the
model provides a prediction area noté€dFinally, the
TD noteddyq is the difference pixel per pixel between
predictionK and particld. The particles’ weights are

then computed so thm,(') = e 9%, The usage of TD
allows the tracker to handle small rotations and small
scale changes. We could have considered other trans-
formations such as illumination changes for example
but it would have been more time consuming.
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) PIZZ4 - HEBBAR
PIZZA - HEBBAR e = EPICERIE - Bpgsgns

S“ac\"

Figure 2: Distance surfaces (c-e€) computed between eaataarttthe model ((2) magenta) in each pixel of the search space
((b) red). Surfaces are obtained with (c) BD(RHOG), (d) T &ic) combination of BD(RHOG) and TD.

3.4 BD and TD Combination timation in any point along the bottom of this valley.
That is not satisfactory because too much imprecise.
Fig. 2.(d) shows the surface given by TD between
TD, we have generated 3D surfaces defined as fol- &Y level p_atches. It presents good properties o pre-
cisely localize the solution into a global minimum.

lows. A text model was extracted in the first frame of : . -
Unfortunately, the region around this global minimum
a sequence (magenta rectangle and contours of seg-

mented letters, Fig. 2.(a)). The search space is defined® too peaked. As this region is too narrow, only few

in frame 6 as the square of 4040 pixels centered on particles with high weight will contribute to the esti-
the previous top left corner estimation of the tracked mation (weighted sum) of the tracked text. Elsewhere

text area (red square, Fig. 2.(b)). We have chosen thisTD gives appr0>§|mat,ely t.he same high Vall_JeS which

example because some text areas are visually simj.neans that particles’ weights are low and !rrelevant.
ST L2 As (BD(RHOG)), TD seems not to be reliable be-

lar to the model in this search space (the &picerie : qi . . h | f

to track had similar color and shapekebbab pizza cause, integrated into PF, it requires that at least a few

andboissons The distances are computed in each particles are drawn near the solution. If not, PF will

. . - b . diverge and then fail.
pixel of this search space, giving surfaces shown in

Fig. 2.(c-e). These distance surfaces should have a To take advantage of both presented configura-
global minimum around the solution (close to the top lons, we propose to combine (multiply) BD(RHOG)

left corner location of the tracked text area) and a and TD. The usage of this combination (noted

_ 0 ad? BD(RHOG)xTD) in a particle filter gives a robust
slope to reach it. In such cases, = e "% should  (ayitracker. Itis our selected solution callEektTrail
have high values. . The result of the combination is shown in Fig. 2.(e).

Fig. 2.(c) shows the surface given by BD between Ths syrface has both the property of BD(RHOG) to
RHOGs: (BD(RHOG)). We can see that further par- ¢qnyerge to the solution (valley), and the precision of

tidelf ga"le ba lhigh_distanbcet butth this surfatce has”no its localization (peak of TD surface). Thus, particles’
peaked global minimum but rather presents a valley . . ) a(dhaxdhg)?
along the text direction (horizontal). Then, all parti- weights will be computed so thaf = e T

cles located in this latter have a high weight, even if
they are far from the solution. PF will provide an es-

To compare the two previous distandes BD and
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4 EXPERIMENTAL RESULTS Precision— <O%f8p_ Reca||_ Overlap

Surfacqrack Surfacet

In this section, we evaluafBextTrail our text track- Fscore— M
ing algorithm. First, we compare several likelihood recisionrReca

functions used in the framework of the PF: common This measure depends on the spatial overlap between

ones and new ones we build. We especially focus he non-rectangular areas of GT and prediction from
on the impact of the TD on tracking performances to ihe tracker. Surfacerac is the number of pixels in
validate the likelihood function we have introduced. ¢ predicted region anBur face is the number of

We have created a batch of video to prove the robust-pixe|S in the GT.Overlapis the number of pixels in

ness of our method. Secondly, we intended to com- hoth previous surfaces. Note that, because no one
pareTextTrailwith other algorithms but unfortunately o our proposed configurations handles size change

only a few are dedicated to text tracking and none \yhile GT does, it is impossible to reachFacoreof
provides source c.odes. Nevertheless, pgrformancesioo% even if, visually the tracking seems to be cor-
of SnoopertrackMinetto et al., 2011) are given, and  rgct, Dye to the stochastic nature of PF, each tracker’s
datasets are online available, so we can compare OUlgcoreis an average over 50 runs. Note that the cor-
method with thei_r. Finally, to illustrate an jnterest of rection parametex used for weight computation has
our method, we integrate our text tracker into a cOM- 4 strong influence on the performance of the tracker:

plete framework dedicated to online text removing in  j; reshapes the profile of the likelihood (Lichtenauer

video sequences. et al., 2004) (Fontmarty et al., 2009) (Brasnett and
e . Mihaylova, 2007). Therefore, for a fair comparison
4.1 Likelihood Evaluation between each configuration, we tunedditso that it

yields best tracking results.
4.1.1 Our Challenging Dataset

80

To test the robustness of several likelihood functions, 75 -

the dataset must be as challenging as possible. Our  °r

dataset contains seven 128020 pixel video se- e e
e

60

Fscore (%)

guences, captured in wild environmeet under un-
constrained conditions in natural scenes (indoor and

55 -

outdoor environments). These video and their associ- | o
ated ground truth (GT) are in the same XML format s s B3
as in ICDAR (ICDAR, 2013) and publicly availadie o = T
Note that texts in those video are affected by many Number of parcies

and varied difficulties such as: translations, rotations, Figure 3: Convergence curves.

noise, stretching, changing in point of view, partial
occlusions, cluttered backgrounds, motion blur, low 413 Likelihood Selection
contrast,etc. Moreover, same texts can be close to
each others and share visual similarities, thus perturb
trackers. Fig. 4 shows some frame examples for each
video used in our experiment part.

Fig. 3 shows evolutions ofscore values (aver-
age over 50 runs for each tracked text areas in
all test sequences) when number of partidiesn-
creases. One can note that TD needs a lot of
particles to achieve a higlirscore BD(HOG),
BD(RHOG) and BD(HOGXTD are more stable
since they quickly converge. BeBscores are pro-
vided by BD(RHOGXTD (red curve) fromN = 100
and are still slowly increasing witNl. As mostFs-
cores are stabilized frolN = 200, we have chosen to
perform our tests with this number of particles.

Table 1 present§scores (average over 50 runs
for each tracked text areas in all test sequences) with
N = 200. For eaclirscore the standard deviation over
the 50 runs is given in square bracket.

We can observe that TD often gives b&stcore

https://www.Irde.epita.frbmyriam results, combined with BD(RHOG) or not. Because

4.1.2 Comparison of Configurations

We compare the efficiency of 5 trackers relying on
different configurations: BD(HOG), BD(RHOG),
TD, BD(HOG)xTD and BD(RHOGXTD). For all

of them, the model(s) is(are) initialized in the first
frame from their corresponding GT, then tracked
during 100 to 200 frames without any update of
model(s). To evaluate and compare the different con-
figurations, we compute thiescorewhich combines
precision and recall, given by:
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Table 1:Fscores for all trackers with their optimat value and\ = 200. MaxFscoresper text are represented in bold and

max averagéscoresand min standard deviations in red.

Q &
& § & § &
Tracked texts L g? L Q‘? &
& & Q & & N
Fig.3.1. LAVERIE 76.49 [0.60] | 89.98 [L.70] | 96.45 [0.36] | 77.51 [1.02] | 95.00 [0.84] | 71
Fig.3.1. LIBRE 59.64 [1.88]| 77.12 [L.06] | 79.02 [7.71] | 67.77 [7.08] | 84.16 [7.61] | 71
Fig.3.1. SERVICE 46.42 [2.34] | 46.02 [10.29] | 52.34 [13.27] | 46.24 [265] | 4790 [92] | 71
Fig.3.1. WASH 58.85 [1.22] | 64.61 [1.36] | 73.08 [8.14] | 64.92 [2.84] | 7450 [3.90] | 71
Fig.3.1. SERVICE 31,31 [2.07]| 4493 [7.88] | 5344 [4.81] | 32.88 [L.79] | 51,74 [1059]| 71
Fig.3.2. DEFENSE 82.69 [0.90] | 86.35 [L39] | 7273 [12.29]| 82.73 [0.91] | 87,55 [4.75] | 207
Fig.3.2. FUMER 37.61 [8.46] | 78.24 [4.68] | 4851 [28.09]| 53.97 [5.21] | 84.61 [6.71] | 207
Fig.3.3. THERMOS 58.10 [2.76] | 78.29 [0.11] | 87.59 [0.04] | 62.04 [457] | 78.15 [0.34] | 134
Fig.3.4. RESTAURANT | 83.40 [0.62] | 88.93 [0.20] | 47.46 [3.98] | 61.10 [15.46]| 8175 [0.54] | 201
Fig.3.5. CONTROL 7583 [0.25] | 78.76 [0.40] | 8332 [0.19] | 7811 [0.44] | 8347 [0.11] | 131
Fig.3.6. VOYAGE 8650 [0.81] | 9534 [1.38] | 9.37 [7.97] | 84.04 [0.56] | 92.44 [L.50] | 159
Mean 63.35 75.32 63.94 64.66 78.30
Std 19.18 16.90 24.72 15.94 15.24

of the too much peaked global minimum of TD (see
Section 3), its results are not stablescores can be
either high Laverié or low (Voyage. Its standard

lies on detection steps processed every 20 frames:
model(s) of their tracked text(s) are then regularly up-
dated. On the contrary, our method only initializes

deviation is higher than other ones. Therefore, the models by detecting text areas in the first frame and

unreliability of TD makes it unusable alone. When
it low-performs, its combination with BD(RHOG) al-
lows to reach an highdfscore(see for example the
case of words-umeror Voyage.
Notice also, that the RHOG always improves re-
sults compared to HOG (except f8ervicgé when it
is used alone or combined with the TD. This confirms
that the addition of the computation of the HOG on
the boundaries of letters is a powerful improvement.
On wordsService all results are poor. In fact,
the two occurrences of worSlervice(Fig. 4.1) affect

keeps the corresponding model(s) constant during the
whole sequence. These approaches are not “fairly
comparable” buBnooperTraclseems to be the most
similar online available algorithm. The comparisonis
done on their dataset which is publicly available using
evaluation protocol described in (Lucas, 2005). Note
that our algorithm has been executed on a machine In-
tel i5-345(°, 3.1GHz, 8GB of RAM, coded in C++
with our library Olena (Levillain et al., 2010) without
optimization.

Table 2 gives for each video of the dataset, recalls,

all trackers because these words are swapped whileprecisionsfFscoresand average processing times per
tracking. This explains also the high standard devia- frame obtained byfextTrailandSnooperTrack

tion of trackers.

Over all tracked texts, our text tracker (callBekt-
Trail) with BD(RHOG)x TD combination, gives on
average the highéiscore(78.3%) on our challenging

One can see that in average on these 5 sequences,
TextTrail reaches the highefscore (0.67) and the
higher precision (OF4) rates. Moreover, it is on aver-
age more than two times faster.Z@ sec. per frame)

video sequences. These experiments have shown thathan the other method @4 sec. per frame). Note
it is efficient and outperforms a classical approach like that we do not know if computation times 8hoop-
BD(HOG). It takes advantages of both approaches, erTrackalso include detection times or just tracking.

the global coarse solution of the BD(RHOG) and the
local and precise solution of the TD.

4.2 Comparison with Another
Approach

Here, we compare oufextTrail with Snooper-
Track (Minetto et al., 2011) in terms of scores and
computation times. AlgorithmSnooperTrackre-

Apart for the video “Cambronne”, our average com-
putation times are 5.5 times fasterq@75 sec. per
frame). Note that “Cambronne” sequence is partic-
ular as it contains many text areas localized on the
frame borders: models, restricted to the visible part
of the particle, have to be recomputed. We have not
optimized this part of our algorithm, which explains
the higher computation times obtained for this video.
Our precision rates are always higher7@® vs.
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LAVERIE
LIBRE
SERVICE
WASH

1 SERVICE

Figure 4: Our challenging video sequences. 1-2: motion, BF. partial occlusion, 5: rotation, 6: cluttered backgrd.
Zoom-on-text models-to track (extracting from the first frarmed given-above each frame.

Table 2: Comparison of performances and execution timesgdaet our trackeTextTrailand the tracker with detection (every
20 frames)snooperTrackMax recall, precision anBiscoresper video in bold and minimum average computation times (in
seconds) per frame in bold.

Recall Precision Fscore T(s)
Video
SnooperTrack TextTrail SnooperTrack TextTrail SnooperTrack TextTrail SnooperTrack TextTrail
v01-Bateau 0.80  0.80 0.55  0.80 0.63  0.80 0.19 0.03
v02-Bistro 0.74 0.67 057 077 0.64 0.72 0.45 0.15
v03-Cambronne 053 051 0.60 0.67 056  0.58 0.88 0.73
v04-Navette 0.70  0.39 073 0.74 071 051 0.15  0.05
v05-Zara 070 0.71 0.60 0.73 063 0.72 0.55  0.08
| Mean | 069 062 | 061 074 | 063 067 | 044 021 |

0.61). This shows our prediction areas most of times Thanks to the TD, robust to small transformations,

isincludedin the GT. However, our recall rate is lower this is not necessary to include the corresponding

(0.62 vs. 069). As our model size is fixed over time, transformation parameters (scale, for example) into

even if TD handle small size changes, our predicted the state. The state space dimension is then reduced

text area size does not change. This is why our recalland we need fewer particles to get an efficient track-

rates are smaller. Our predictions of text areas areing.

then well localized but the scale is not well adapted to Without updating the modelTextTrail can track

the GT to get higher recall rates. during hundreds of frames, that prove its robustness.
Furthermore, “v04-Navette” sequence shows an In practice, to manage apparitions or high changes

explicit example of limitation of our approach. In inthe model (occlusions, illuminatioetc), a detec-

this video, text area sizes are hardly changing with tion step can be launched more often. But, compared

time. Our algorithm succeeds to track text up the TD to SnooperTrackwe can track during more than 20

reaches its limits.e. when it can not manage high frames without needing to restart tracking from new

scale changes. This is why we added a simple cri- detections.

terion (based on the difference of prediction scores

in successive framdse. weight(s) of predicted text

area(s)) to stop our tracker(s) in such cases.
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Figure 5: Example of application of our text tracker. Firsliuenn presents a series of frames (33, 68, 96, 136) with eddak
text. Second column gives binarized text area provided Iogcking and binarization process. Third column shows tesil
“inpainted” frames.

4.3 Application: Text Removal 5 CONCLUSIONS

This section is dedicated to an example of applica-
tion of our text tracker. Our goal is to remove text
superimposed on frames of a video sequentext-
Trail can locate the text to remove in each frame. This
text is then removed using a classical inpainting algo-
rithm (Bertalmio et al., 2001). In practice, we manu-
ally select a text area in the first frame of the video se-
guence, which is automatically tracked during the se-
guence. A binarization process then provides a mask
which precisely cutouts the text letters. The inpaint-
ing is automatically processed in each frame using
this mask.

Fig. 5 presents different frames of a video from
our dataset: frames with superimposed texts, after the
tracking and binarization process and finally results
of the inpainting procedure. One can see that the text
is correctly localized and then removed. Even if the
result is not “visually perfect”, no one can identify
that something was erased.

In this article, we have present@dxtTrail a new al-
gorithm for multiple text tracking in complex video
sequences relying on a particle filter framework. Even
if the particle filter framework is well known, the
novel idea here, is to combine the Bhattacharyya and
tangent distances in order to increase the efficiency
of the correction step which leads to a more robust
text tracker. According to our experiments, tangent
distance on gray level patches gives a good preci-
sion of the text and Bhattacharyya distance between
“revisited” HOGs adds information on the shape of
letters. High likelihood areas are well localized and
sufficiently smooth for the particle filter to keep a di-
versity of its state representatioine( position of the
tracked text areayia the particle set. Unlike clas-
sical approaches from the literature, we show that
our method can track text areas during long times in
video sequences containing complex situations (mo-
tion blur, partial occlusionetc) starting from only
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one detection step, that is less time consuming. In- challenge 3: text localization in videdt t p: / / dag.
deed, our tracker is initialized by a detection step cve. uab. es/ i cdar 2013conpet i tion/ ?ch=3.

and models are never updated, proving the efficiency Levillain, R., Geraud, T., and Najman, L. (2010). Why and
of the method. We also show our tracking can be howto design a generic and efficientimage processing

framework: The case of the milena library. I&IP,
pages 1941-1944.

Lichtenauer, J., Reinders, M., and Hendriks, E. (2004). In-

embedded into a complete framework dedicated to
text removal. If future works, we plan to overcome
the limitation of our _approach and a”OW. to manage fluence of the observation likelihood function on ob-
stronger transfqrmanons. A simple solution is to add ject tracking performance in particle filtering. FG,
frequent detections to update the model(s). Another pages 227—233.

solution is to extend the state space (add scale paramy ycas, S. M. (2005). Text locating competition results. In
eters for example). Usually, increasing the state space Proceedings of the Eighth International Conference
means increasing the number of particles to achieve on Document Analysis and Recognitid8DAR '05,
good tracking performances. But, because tangent - pages 80-85.

distance can also handle small transformations, stateMacherey, W., Keysers, D., Dahmen, J., and Ney, H. (2001).
space should be sampled more coarsely, then using Improving automatic speech recognition using tangent
fewer particles. We think that, even if we increase the _distance. IECSCTvolume lll, pages 1825-1828.
state space dimension, we probably will need fewer Mariani, R. (2002). A face location and recognition sys-
particles to achieve lower tracking errors, and then lem based on tapgeitdistance. Maltimodal inter-

b . face for human-machine communicatipages 3-31.
also reduce the computation times. World Scientific Publishing Co., Inc.

Medeiros, H., Holgun, G., Shin, P. J., and Park, J. (2010).
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