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Abstract: The complex geometrical optics (CGO) was applied for the spatiotemporal evolution of arbitrary number of 
3D mutually incoherent (with different carrier frequencies) Gaussian wave packets (GWPs) interacting and 
propagating in a nonlinear medium of Kerr type. The CGO reduced description of the propagation of the 
beam, the pulse and the wave packet to complex ordinary differential equations (ODE) This leads to 
exceptionally fast numerical algorithms. We observed high efficiency of the CGO method to compute 
interactions of arbitrary number of 3D Gaussian wave packets propagating in a nonlinear (anomalous) 
dispersive medium of the Kerr type. The derived CGO equations were compared with equations obtained by 
the variational method. CGO described the Gaussian beam propagation in free space as well as the Gaussian 
pulse spreading in the linear anomalous dispersive medium more illustratively than both the Fourier transform 
method and the Fresnel diffraction integral method. The spatiotemporal CGO has been proven to be a method 
more practical than the spectral analysis, the variational method, the method of moments and the method of 
the generalized eikonal approximation. Complementary to the presented results, an on-line CGO solver, 
implemented in Javascript, is freely available at the authors’ website: http://slawek.ps.pl/odelia.html. 

1 INTRODUCTION 

In traditional understanding, the geometrical optics 
(GO) is the method to create pictures based on 
geometrical evolutions of light rays. However, in a 
wider recognition GO can be classified to be an 
approximated method to describe the wave motion of 
wave fields such as beams, pulses and wave packets. 
Such wider recognition was first established by 
papers and books of Debye, Sommerfeld, Runge and 
Luneburg (Sommerfeld, 1964; Luneburg, 1964; 
Kline and Kay, 1965; Born and Wolf, 1959), who 
proposed the geometrical form of the wave field 
representation and who derived from the wave 
equation two geometrical optics equations: the 
transport equation describing the amplitude and the 
eikonal equations, which determine the phase of the 
signal. Operation of the first laser in 1960 emphasized 
the importance of concepts of Sommerfeld, Runge, 

Born, Wolf and Luneburg to describe the evolution of 
the laser fundamental mode in the form of Gaussian 
beam (GB). At the beginning of the 1960’s, Kravtsov 
proposed the method of geometrical optics based on 
the concepts of complex rays (Kravtsov, 1967), the 
bundle of which can represent the Gaussian wave 
field (Deschamps, 1971) and which enables to 
include the effect of a spatially limited beam 
diffraction in the free space into the scope of the 
classical geometrical ray description. 
Contemporaneously, Kogelnik (Kogelnik, 1965) 
proposed the representation of a collimated beam by 
introduction of the quasi-optical complex parameter 
1/q, which describes the evolution of two beam 
parameters: the GB width and the radius of the 
curvature in the one single complex quantity, which 
can be transformed through lens-like media, 
including resonators and even more advanced optical 
systems. Nowadays, the Kogelnik transformation 
laws are expressed in a more general convenient form 
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referred to as the ABCD matrix method, or the the 
generalized beam matrix method (for instance 
generalized to ABCDGH matrix).  Another quasi-
optical method is the nonlinear geometrical optics 
(NGO) proposed by (Akhmanov, Sukhorukov and 
Khokhlov, 1968), which uses the parabolic equation 
to describe self-focusing of a GB in a nonlinear 
medium of Kerr type. Nowadays, the NGO formalism 
is often recognized as a generalized eikonal 
approximation (Yap, Quek and Low, 1998), which 
was used at the end of the 1990’s to describe the 
propagation of stationary electromagnetic waves in 
linear and nonlinear media and the evolution of 
electromagnetic pulse in a linear dispersive medium. 
During the 1960’s/70’s, at least four other methods 
were proposed to describe optical beams: the dynamic 
ray tracing (Luneburg, 1964; Deschamps and Mast, 
1964; Arnaud 1976), which describes geometrical 
spreading of the rays using Hamilton equations; the 
method of inhomogeneous wave tracking 
(Choudhary and Felsen, 1974; Felsen, 1976), which 
bases on some specific regularities concerning 
evolution of the family of phase paths and wave 
fronts. Finally, evolution of the phase paths and wave 
fronts enables to construct the wave field of the beam; 
the method of moments (MM) (Vlasov, Petrischev 
and Talanov, 1971), which deals with intensity 
moments satisfying the parabolic equation and 
allowing to determine the power of the wave beam, 
the centre of the beam intensity, the beam divergence 
and the evolution of the effective beam radius; the 
variational method (Anderson, 1983), called also the 
Ritz method, which bases on semi-analytical 
approach to the pulse and the beam propagation by 
means of the standard variational principle. In 2004, 
the CGO method dealing with the complex eikonal 
and the complex amplitude was proposed to describe 
the first GB diffraction in homogeneous and 
inhomogeneous media (Berczynski and Kravtsov, 
2004). The CGO method enables to reduce 
immediately the complicated spatial and temporal 
description based on partial differential equations to 
solving ordinary differential equations contrary to 
other methods detailed above. The CGO method was 
next applied to describe the self-focusing of GBs in 
nonlinear inhomogeneous fibres (Berczynski, 2011) 
and in nonlinear saturable media with absorption 
(Berczynski, 2013). First of all, we demonstrate in 
this paper that CGO method enables to perform fast 
and effective numerical calculations based on ODEs. 
In this way, the complexity and problems related to 
nonlinear optics can be solved and analysed in more 
illustrative and transparent way.  

2 FIRST-ORDER COMPLEX 
EQUATIONS OF CGO 
METHOD 

CGO method deals with eikonal equation, which, for 
spatiotemporal evolution of a 3D wave packet in a 
medium with relative permittivity ε  and anomalous 
dispersion, can be presented in a convenient form  
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In Eq. (1) ( ) ωωτ kkzkt ′′′−=′ /0  denotes scaled time, 

101 ηη k=′ , 202 ηη k=′  are dimensionless transverse 

coordinates, zkz 0=′  denotes dimensionless 

propagation direction and ψψ 0k=′  is dimensionless 

eikonal, where 00 /2 λπ=k  ( 0λ  is the wavelength in 

vacuum). Within the spatiotemporal CGO method, 
eikonal ψ ′  is complex-valued and takes the form 
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)(zBB ii =  denotes complex functions with 

introduced convenient notation including temporal 
coordinate τη ′=′3 . The real parts of iB  embrace 

spatial and temporal chirps iκ  whereas imaginary 

parts include widths iw . Thus, the form of the 

complex parameters )(zBB ii =  is as follows: 
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Expanding subsequently relative permittivity 
( )τηηεε ′′′′= ,,, 21z  in Eq. (1) in Taylor series in 

τηη ′′′ ,, 21 and substituting Eq. (3) into Eq. (1) we 

obtain first-order Riccati type equations in the form 
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Equations in Eq. (4) can expressed by real and 

imaginary parts of iB  in the form 










=+
′

=−+
′

02

22

IiRi
Ii

iIiRi
Ri

BB
zd

dB

BB
zd

dB α
 

(6)

The above equations in Eq. (6) lead to the known 
relations between the packet widths iw  and chirps  

iκ  together with ordinary differential equation: 
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Transport equation: 

0)( 2 =′∇ψAdiv  (8)

for CGO representation of eikonal in Eq. (2) together 
with paraxial approximation leads immediately to a 
first-order ordinary differential equation for complex 
amplitude in the form 
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By integrating the above equation, we obtain the 
complex amplitude of Gaussian wave packet in the 
form 
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where ( )00 AA =  is the initial amplitude. The 

modulus of complex amplitude has the form 
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where iRi BB Re= . The first integral of the second 

equation in Eq. (6) leads to the dependences 

( ) ′−= zdBBB RiIiIi 2exp)0(/  (12)

Using Eq. (3), we obtain spatiotemporal energy flux 
conservation principle  

2
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3 CGO, GEA, FOURIER 
TRANSFORM, FRESNEL 
DIFFRACTION INTEGRAL. 
COMPARATIVE ANALYSIS 

For the readers’ convenience, let us now compare the 
efficiency of the CGO method with GEA formalism 
on the example of a quite fundamental evolution of 
wave packet in a linear dispersive medium. The two 
methods mentioned above are based on the analogous 
starting equations but CGO method which uses 
complex quantities (eikonal and amplitude) reduces 
automatically the description based on partial 
differential equations to solving ordinary differential 
equations for the packet parameters, which is 
demonstrated below.   

Following (Yap, Quek and Low, 1998), let us define 
first using GEA approach real valued phase L and 
real valued envelope φ  of the optical signal. The 

fundamental disadvantage of the GEA approach lies 
in the fact that both the amplitude and the phase 

depend on all spatial and temporal parameters ( 1η , 

2η , τ , z),  which  leads to coupled partial differential 

equations (generalized eikonal equation and transport 
equation), which require a lot of efforts to be solved.  
GEA utilizes a representation of the wave packet in 
the form 

( ) ( ) ( )),(exp,, 0 ττφ rrr Liktu =  (14)

where zyx zyx eeer ++= . Substituting Eq. 14 into the 

wave equation [Born and Wolf, 1959], the set of 
partial differential equations is obtained in the 
complicated form 
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It is notable that the above equations are always 
coupled even in the simplest case of a homogeneous 
medium, where relative permittivityε is constant. 
Finally, in the paper (Yap, Quek and Low, 1998) we 
notice the need to apply difficult mathematical 
formalism of Hamilton optics to solve the above 
equations to obtain the well known formulas for GB 
propagation in free space and Gaussian pulse 
evolution in linear dispersive medium. Let us now 
explain, why the CGO method has an advantage over 
GEA and enables essential simplification of the 
starting equations (eikonal equation in standard form 
and transport equation) to solve quickly ordinary 
differential equations. First of all, this CGO 
simplifications is possible only when we introduce 
complex amplitude A and complex eikonal ψ  instead 

of real envelope φ  and real phase L  used within 

GEA approach. It can be noticed that complex form 
of any parameter, which includes “space” for both 
real and imaginary parts let us “pack” more 
information in formally the same quantity. Moreover, 
this obvious conclusion enables us in some sense to 
control the dependence of pair of complex functions 
on spatial and temporal parameters z, 1η , 2η , τ . As 

it is presented below, this complex generalization 
enables us to simplify mathematical description 
substantially. Furthermore, this complex 
generalization leads to the same results as obtained by 
GEA. It is noteworthy that Eq. (14) describing a 3D 
Gaussian wave packet can be presented in the form  
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Next, let us present the same wave field to separate 
two functions: one depending only on propagation 
distance z and the second including all the possible 
longitudinal and transverse coordinates with time. 
Thus, we have 
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This way, Eq. (20) let us define complex amplitude, 
which depends only on propagation distance z 

( ))(exp)( 0 zizAA ϕφ==  (21)

and complex eikonal 
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which depends on all possible spatial and temporal 
parameters . The dependence in the form )(zAA =  

can be justified by geometrical optics assumption in 
which the wave packet should be localized (paraxial) 
in the vicinity of propagation direction z. But, 

complex eikonal ),,,( 21 ηητψψ z=  in Eq. (22) 

receives more general interpretation, where the 

constant real part of eikonal 
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describes evolution of wave fronts in space and time, 

whereas imaginary part 
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ii wη  represents 

evolution of phase-paths described by spatiotemporal 
rays normal to wave fronts, determining finally the 
power flow direction in space and time. Thus, CGO 
representation of spatiotemporal wave object has the 
form  
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When we substitute CGO representation in Eq. (23) 

into wave equation [Born and Wolf, 1959] we obtain 
a set of two equations of geometrical optics: 

( ) 0)(, 22 =∇=∇ ψεψ Adiv  (24)

which are never coupled in a linear medium. In Eq. 
(24) the differential operator ∇  is 4-vector which 
lades to spatiotemporal eikonal equation in the form 
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The complex eikonal equation in Eq. (25) for the case 
of anomalous dispersion of group velocity 0<′′ωk  and 

after performing scaling procedures (discussed at the 
beginning of Sec. 1) can be transformed into the 
eikonal equation in dimensionless form presented in 
Eq. (1). In this way CGO method uses eikonal 
equation in the standard form [Born and Wolf, 1959] 
and does not to require to the generalized eikonal to 
be defined as opposed to GEA approach. Moreover, 
it is notable that when the complex amplitude of 3D 
wave packet depends only on the propagation 
distance )(zAA =  a number of terms containing 

transverse derivatives 1/ η∂∂A , 2/ η∂∂A  and τ∂∂ /A  

automatically vanishes in the transport equation. This 
fact allow us to reduce immediately the partial 
differential in Eq. (8) to solving the ordinary 
differential equation in Eq. (9) taking into account 
paraxial approximation to describe the localized wave 
packet in CGO language. For comparative analysis, 
let us apply now the CGO method to describe a 3D 
wave packet evolution in a linear (anomalous) 
dispersive medium. Thus, following CGO procedure 
we reduce immediately the eikonal equation to 
solving a first-order differential equation, which for 
the case of a homogeneous medium has the form 
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The solution of Eq. (26) has the form 
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For the packet with zero initial chirps and initial 
spatial widths )0(iw , the initial value of complex 

CGO parameter iB  has the form 
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The real and imaginary parts of the above solution are 
equal to 
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As a result, the spatial packet widths and spatial 
packet chirps turn out to be  
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where )0(2
iDi wL =′  denotes dimensionless diffraction 

distance for dimensionless spatial packet widths 
)0(1w  and )0(2w . We would like to emphasize that the 

solutions in Eq. (30) are identical with that obtain 
using Fresnel diffraction integral (Berczynski, 
Marczynski, 2014). CGO solutions for temporal 
width and chirp have the form 
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where )0(/)0( 22
0 σω =′′=′ kTkLDS  denotes dimensionless 

dispersion distance for dimensionless temporal width 
of the packet )0(σ . It is worth emphasizing that the 

solutions in Eq. (31) are also identical with results 
obtained using Fourier transform for Gaussian pulses, 
when the initial temporal chirp is zero (Sauter, 1996). 
To compare solutions obtained by CGO and Fourier 
transform for Gaussian pulse propagating in linear 
(anomalous) dispersion medium, let us point that the 
zero initial chirp expressed by the initial condition 

)0(/)0( 2
ii wiB =  mentioned above is equivalent to the 

condition 00 =b  in the book by (Sauter, 1996). 

However, solutions in Eq.  (9.25) (Sauter, 1996) for 
tΔ (FWHM) and tσ  should be modified a little to be 

compared with CGO solutions in Eq. (31), taking into 
account the slightly different definitions of 0a  in Eq. 

(9.1) in the form ( )2
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taEtzE −==  as compared 

with CGO definitions of the width in Eqs. (2,3), 
where ( ) ( )222

3
2
3 2exp2exp στη −=−= AwAu . Thus, to 

compare results using the two methods mentioned 
above, the Eq. (25) presented by (Sauter, 1996) 
should be converted using  substitution: 2

0
2
0 /14 σ=a . 

Summarizing this comparable analysis, it can be 
stated that the CGO method gives us the same 
solutions as Fourier transform and Fresnel diffraction 
integral when we describe a 3D wave packet 
propagating in a linear dispersive (anomalous) 
medium. However, it can be observed that 
replacement of Fourier transform and Fresnel 
diffraction integral by CGO method means that 
integrating transform procedures in space and time 
are substituted by first order complex differential 
equation shown in Eq. (26), which embraces both 
spatial and temporal effects. This way, we have 

proven that the CGO method essentially simplifies 
the description of wave motion of beams, pulses and 
wave packets as compared with generalized eikonal 
approximation method and as compared with 
classical integral spectral methods, yielding identical 
solutions. 

4 INTERACTION AND 
EVOLUTION OF ARBITRARY 
NUMBER OF 3D GAUSSIAN 
WAVE PACKETS IN 
NONLINEAR MEDIUM 

Let us now generalize CGO method to describe an 
arbitrary number N of 3D wave packets propagating 
in a nonlinear medium of Kerr type. Thus, the single 
Eq. (1) takes a form on N coupled eikonal equations  
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with N permittivities depending on each of carrier 
frequencies of N 3D wave packets in the form 
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The single transport equation in Eq. (8) takes a form 
of N equations  
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leading to spatiotemporal energy flux conservation 
principles for each of the wave packets in the form 
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Applying the CGO procedure in Sect. 1, we obtain 
next generalized complex Riccati equations in the 
form 
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Subsequently, from Eqs. (36,37) we obtain a set of 
first order ordinary differential equations: 
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We would like to emphasize that the above set of Eqs. 
(38,39) takes a very simple form to be implemented 
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effectively in Matlab or Octave environments. It can 
be observed that when we limit our consideration to 
describe a single 3D wave packet propagating in a 
nonlinear medium of Kerr type, we can also use a 
variational procedure in the form 
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Figure 1: Evolution of 3D wave packets widths and chirps. 
Parameters: linear permittivities 20 =nε , diagonal 

nonlinear permittivities 5103 −⋅=nnε , off-diagonal 

nonlinear permittivities 6109 −⋅=nmε , initial amplitudes: 

1)0( =nA . Initial widths =π)0(nlw  [31, 53, 42; 42, 44, 

43; 53, 35, 44; 34, 36, 35; 45, 47, 46; 56, 58, 57] are 
presented in Matlab notation (i.e. semicolons separate rows, 
colons separate elements in rows). Initial spatial chirps 

-5
21 10)0()0( −== nn κκ  and temporal one 0)0(3 =nκ , 

where mn ≠ for 6,,2,1,, =lmn . 

 

Figure 2: Evolution of 3D wave packets widths and chirps. 
Parameters: diagonal nonlinear permittivities 

4105.5 −⋅=nnε , initial spatial and temporal widths

π30)0( =nkw , initial spatial and temporal chirps

=)0(nlκ [2, 2, 2; 0, 0, 2; 0, 2, 0; 0, 2, 2; 2, 0, 2; 2, 2, 0]
410−⋅ , where mn ≠ for 6,,2,1,, =lmn . The 

remaining parameters as in Figure 1. 

 

Figure 3: Evolution of 3D wave packets widths and chirps. 
Parameters: diagonal nonlinear permittivities 

4100.41339 −⋅=nnε , off-diagonal nonlinear 

permittivities 6109 −⋅=nmε , initial spatial and temporal 

chirps =)0(nlκ [-2, -2, -2; 0, 0, -2; 0, -2, 0; 0, -2, -2; -2, 0, 

-2; -2, -2, 0] 410−⋅ , where mn ≠ for 6,,2,1,, =lmn . 
The remaining parameters as in Figure 1. 

 

Figure 4: Evolution of 3D wave packets widths and chirps. 
Parameters: diagonal and off-diagonal nonlinear 

permittivities are equal 6109 −⋅== nmnn εε  for 

6,,2,1, =mn . The remaining parameters as in Figure 1. 

to obtain a set of equations for the actual parameters 
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identical with the ones derived using CGO method. 
However, we emphasize that authors of the paper 
(Jirauschek, Morgner, Kartner, 2002) made a lot of 
effort as compared with the simple and effective CGO 
procedure presented above. Moreover, generalization 
of variational procedure in Eq. (40) for N 3D wave 
packets in the form 
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is very complicated. Numerical solutions of the set of 
Eqs. (38,39) are shown in Figs. (1-4) where we 
present the most interesting aspects of spatiotemporal 
evolution of a 3D wave packet propagating in a 
nonlinear medium. In these figures first of all we can 
notice some effects which cannot be obtained for 
single or pair of interacting wave packets. This way, 
in Fig. 1 we notice a specific multi-wave collapse 
effect. In Fig. 2, some of widths and chirps approach 
stationary case. The remaining ones still collapse. In 
Fig. 3 we notice oscillatory type of evolution, which 
cannot be achieved for one or two interacting wave 
packets. In the case of a number of interacting wave 
packets, we notice the tendency for the packets to 
imitate one another and approach one single state 
shown in Fig. 4 in the form of crossing plots of chirps. 

5 CONCLUSIONS 

The CGO was applied for spatiotemporal evolution of 
an arbitrary number of 3D mutually incoherent (with 
different carrier frequencies) Gaussian wave packets 
(GWPs) interacting and propagating in a nonlinear 
medium of Kerr type. The wavelength is short as 
compared to the overall size of the computational 
domain and direct numerical schemes, such as split-
step fast Fourier method or finite differences beam 
propagation method, to solve a wave equation 
(Helmholtz and parabolic one) are very 
computationally expensive. The proposed 
approximation of geometrical optics with the 
complex generalization on complex eikonal and 
complex amplitude easily reduces the description of 
the propagation of beam, pulse and wave packet to 
solving complex ODEs. Numerical solving of ODE 
(the dependence on z) is much easier than solving 
partial differential equations (PDE, the dependence 
on x, y, z) for the same problem. CGO leads to the 
calculation of N times M points arranged along the z-
axis. Other methods require the calculation of N times 

at 2KM ⋅  points, i.e. on a 3D mesh. With K 
equalling 100, the calculations can be up to 10,000-
fold faster. This means that we obtain the results after 
10 seconds in CGO instead of about 27 hours by other 

means. In this way, CGO method enables to perform 
very fast and efficient numerical simulations using 
commonly available computer numerical software 
like Matlab, Mathcad or Mathematica. CGO method 
is especially useful for engineers demanding a 
simpler method than those already used in nonlinear 
optics (variational approach (VA) and the method of 
moments (MM), which require the knowledge of 
Hamilton optics formalism). The numerical 
simulations performed in this paper show the 
efficiency of the CGO method on the example of a 
new sophisticated problem of nonlinear optics: 
interaction of an arbitrary number of 3D Gaussian 
wave packets propagating in a nonlinear (anomalous) 
dispersive medium of Kerr type. We demonstrate that 
the CGO method can describe also problems of 
fundamental optics more illustratively than the 
methods of Fourier transform and Fresnel diffraction 
integral. Complementary to the presented results, an 
on-line CGO solver is freely available at the authors’ 
website: http://slawek.ps.pl/odelia.html. We can state 
that spatiotemporal CGO can be recognized to be the 
simplest and the most practical approach among 
commonly accepted methods of beam and fibre optics 
such as: spectral analysis, variational method, method 
of moments and method of generalized eikonal 
approximation.  
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