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Abstract: In a wide range of image processing and computer vision problems, line segment detection is one of the most
critical challenges. For more than three decades researchers have contributed to build more robust and accurate
algorithms with faster performance. In this paper we review the main approaches and in particular the Hough
transform and its extensions, which are among the most well-known techniques for the detection of straight
lines in a digital image. This paper is based on extensive practical research and is organised into two main
parts. In the first part, the HT and its major research directions and limitations are discussed. In the second part
of the paper, state-of-the-art line segmentation techniques are reviewed and categorized into three main groups
with fundamentally distinctive characteristics. Their relative advantages and disadvantages are compared and
summarised in a table.

1 INTRODUCTION

Straight-line detection and segmentation are the tech-
niques that allow a machine to extract linear features
from a digital image or sequence of images. Extracted
features, can later be used either by human or machine
to make decisions. Extensive applications of line de-
tection can be found in object recognition (Olson,
2001), shape detection (Ayala-Ramirez et al., 2006),
power line detection (Zhang et al., 2012), and road or
lane detection (Borkar et al., 2012; S.Rahmdel et al.,
2013a). However, despite the significant progress,
there is still a rising demand for methods that are
swift in computation and precise in segment detec-
tion in real-world applications. In fact, there is always
a trade-off between these two parameters, i.e. speed
and accuracy, as they are two sides of the same coin.

The Hough transform (HT) (Hough, 1962; Duda
and Hart, 1972) is indeed one of the most popular
methods for the detection of linear and curvilinear
structures. It has demonstrated a robust behaviour to
variant noise and degraded environment. This paper
consists of two main parts. In the first part, the HT
and its major research directions and limitations have
been discussed in Section 2 and 3 respectively. In the
second part, state-of-the-art line segmentation tech-
niques have been reviewed and categorized in three
main groups in Section 4. This provides an unique
insight to the advantages and disadvantages of each
approach. Section 5 concludes the paper.

2 HT RESEARCH DIRECTIONS

In general, the HT maps every pixel in a binary image
from its 2D Cartesian coordinates (x;y) to a new 2D
coordinate space (r;q) using the mapping function

r = xcosq+ ysinq (1)
The new coordinate space is called Hough space,

also known as parameter space, and the process is
called mapping from image or feature space to data
or parameter space. We classify major research di-
rections of the HT into four group as discussed in the
following.

2.1 Determine Optimal r�q Resolution

It is important for both the accuracy and computa-
tional efficiency to determine a sufficient resolution
for discretising the Hough space. The higher the
resolution the slower the process. Numerous works
have tackled the problem such as using gradient direc-
tion (van Veen and Groen, 1981), interpolation in the
Hough space (Niblack and Petkovic, 1988), dynami-
cally quantised spaces (O’Rourke, 1981), trial and er-
ror (Niblack and Petkovic, 1988), sensitivity function
(Svalbe, 1989), using information from the discreti-
sation of image space (Zhang, 1996), error propaga-
tion (Ji and Haralick, 2001), weight of accumulation
(Nguyen et al., 2008), and non-uniform discretisation
(Duan et al., 2007).
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2.2 Enhance Computational and
Memory Efficiency

A large number of distinct variations of the HT were
introduced to advance its performance, mainly focus-
ing on computational complexity and memory effi-
ciency of the standard Hough transform (Kiryati and
Bruckstein, 1991; Walsh and Raftery, 2002; Shapiro,
2006; Fernandes and Oliveira, 2008). Representa-
tive works that appear in most of the related liter-
ature include Stephens’s probabilistic Hough trans-
form (PHT) (Stephens, 1991), progressive probabilis-
tic Hough transform (PPHT) (Matas et al., 2000), ran-
domized Hough transform (RHT) (Xu et al., 1990;
Xu and Oja, 1993), hierarchical Hough transform
(HHT) (Princen et al., 1990), elliptical Gaussian
kernel-based Hough transform (KHT) (Fernandes and
Oliveira, 2008), and regularized Hough transform
(Aggarwal and Karl, 2006).

2.3 HT Peak Detection

A peak isolation algorithm can simply detect the lo-
cal maxima in an N�N neighbourhood in the Hough
space (Thrift and Dunn, 1983), given an odd number
for N. But determining the optimal value of N can be
problematic. The larger the value of N the higher the
probability of missing adjacent lines, and the smaller
the value of N the higher the probability of repeti-
tious detection. (Princen et al., 1990) used an iterative
global peak detection approach where the globally
highest peak is detected first and its corresponding
feature points get eliminated. A HT is then applied
and the process repeats iteratively until all the peaks
are found. Peak detection using self-organising maps
were suggested to reduce the memory requirement of
the HT (Choy et al., 1995). More recent works fo-
cused on generating solid and distinguishable peaks
and the ways to search and identify the true peaks with
minimal false detection (Aggarwal and Karl, 2006;
Shapiro, 2006; Fernandes and Oliveira, 2008; Chao
et al., 2009). These have major problems, in particu-
lar memory inefficiency and computational complex-
ity. Detection accuracy is directly proportional to the
memory capacity.

2.4 HT Butterfly Analysis

HT butterfly analysis considers the peak and the area
surrounding the peak. The term butterfly refers to
the shape of the peak and its associated sinusoidal
curves. The combination of sinusoids that repre-
sent the line segment form a butterfly shape around
the peak. In fact, such butterflies contain valuable

information about a segment’s length, endpoint and
thickness. Because every single pixel of a line con-
tributes to create its HT butterfly in a one to one map-
ping process, the resulting butterfly is capable of pro-
viding highly accurate line-segment parameters. Ef-
forts have been made to parameterise the HT but-
terfly. Representative works include line segment
descriptors (Atiquzzaman and Akhtar, 1995), multi-
segmentation (Kamat-Sadekar and Ganesan, 1998),
peak enhancement using butterfly features (Ji et al.,
2011; Furukawa and Shinagawa, 2003), HT neigh-
bourhood (Du et al., 2010; Du et al., 2011), butterfly
self-similarity (Tu et al., 2011), and butterfly symme-
try (Du et al., 2012).

3 HOUGH TRANSFORM
LIMITATIONS

In general, there are three main problems associated
with the existing HT-based line detection methods:
1. Computational Complexity. Despite the efforts

to improve the efficiency of the HT, its heavy
computational cost is still a major concern in real-
time applications.

2. Edge Detection. The HT is applicable only to
binary images, hence accurate edge detection is
an important prerequisite. In addition to imposing
extra computational burden, edge detection may
increase the false detection error; when the noise-
level is high, some of the true feature points in
an image can be ignored as noisy pixels and also
some false points may be recognised as true fea-
ture points.

3. Segment Detection. The HT is incapable of spec-
ifying the endpoints of a line segment. It can
identify only line that pass through the entire im-
age. Therefore segmentation procedures have to
be adapted in order for the HT to identify the end-
points of a segment.
A number of works addressed the edge detec-

tion problem of the HT using Fourier-based HT tech-
niques (Ho et al., 2000; Shi et al., 2010; Zheng
and Shi, 2011). One of the recent advances of
this approach is line detection through the high-
resolution parameter space of multi-layer fractional
Fourier transform (MLFRFT) that results in higher
accuracy of the HT in comparison with the repre-
sentative techniques (Shi et al., 2010). Multiple in-
stances of fractional Fourier transform of the same
image provide more frequency samples that lead to
higher accuracy and better performance. Higher ac-
curacy can be achieved by extending the method to a
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more customizable Fourier spectrum for each x and y
axes using the generalised interpolated Fourier trans-
form (GIFT) (Zheng and Shi, 2011). Although the
GIFT suggests a more flexible frequency grid than
the MLFRFT, it does not increase the number of fre-
quency samples. Furthermore, without an adaptable
parameter tuning method, the GIFT suffers from te-
dious trial and error tuning for parameter adjustment.

As mentioned earlier, the HT and its extension are
powerful tools to detect straight lines but not line seg-
ments. These techniques are incapable of detecting
line segments and their endpoints. They can identify
only the location and orientation of the straight lines
passing through the segments. Therefore, an addi-
tional segmentation procedure needs to be performed
to extract the segments from the detected lines. In
the following section, which forms the second part of
this paper, we classify the existing line segmentation
methods, including non-HT-based methods, through
an extensive survey of various approaches.

4 LINE SEGMENTATION
APPROACHES

Popular line segmentation methods used in practical
applications can be classified into three major groups,
namely, bottom-up, top-down, and domain-crossing
approaches. The bottom-up approach starts with sin-
gle pixels, which grow to segments; whereas the top-
down approach extracts straight lines followed by
segmentation. Domain-crossing methods take into
account both local features, from a bottom-up, and
global features, from a top-down approach. In the fol-
lowing, different characteristics of these approaches
will be surveyed.

4.1 Bottom-up Approach

A bottom-up approach, also known as local approach,
typically begins from the pixel level and the line
grows pixel by pixel to reach the requirement of a
true line segment defined by the algorithm. These ap-
proaches mainly use gradient information to draw the
line. State-of-the-art methods include line segment
detector (LSD) (von Gioi et al., 2010), Edge Draw-
ing (EDLines) (Akinlar and Topal, 2011), and two-
orthogonal direction image scanning (TODIS) (Yang
et al., 2011). Other works use a small matrix of eigen-
values (Guru et al., 2004; Koeck and Zhang, 2002).

One of the first bottom-up frameworks was intro-
duced in (Nevatia and Babu, 1980). The algorithm
starts with a convolution-based edge detection fol-
lowed by a line thinning and threshold. Afterwards,

a linear approximation is used to link the edge points
based on their gradient orientations. Khan et al. ex-
tended the concept using a connected component al-
gorithm (CCA) (Kahn et al., 1990). A CCA groups
together adjacent feature points with similar gradi-
ent orientation into line support regions. The algo-
rithm was simple and fast, and hence later became the
core of some of the well-known bottom-up algorithms
such as (Burns et al., 1986) and (von Gioi et al., 2010).

The LSD utilises iterative region-growing process
(Burns et al., 1986). Using image gradient magni-
tude and angle, each region starts from a pixel by set-
ting the region’s angle to the pixel’s gradient direc-
tion. In the next iteration the algorithm compares the
gradient direction of adjacent pixels (in an eight-pixel
neighbourhood) with the region angle. If any neigh-
bouring pixel shares a similar angle within a certain
tolerance it will be added to the growing region. Pix-
els belonging to a particular region will be labelled
to avoid revisiting. In the second phase of the LSD,
Desolneux et al.’s (Desolneux et al., 2000) approach
was used to validate the result. LSD has proven to be
a breakthrough in line segmentation. However, there
are two major problems involved with the LSD’s per-
formance: 1) it is highly sensitive to noise that mis-
leads the region-growing process in connecting the
true segments; 2) it loses accuracy when facing dense
intersecting straight lines.

The TODIS partially addressed the LSD’s short-
comings but pays the price of computational time.
Unlike the LSD, TODIS works with binary images,
thus edge detection has to be applied in the first place.
An image is examined in both horizontal and verti-
cal directions. A multi-scale scanning approach was
taken to label each candidate line segment. There are
some issues due to the multi-scale nature of TODIS.
In smaller scales a long segment will mistakenly ap-
pear as a number of short segments. Similarly, in
larger scales a number of collinear short segments
may appear as one continuous long segment. In ad-
dition, unlike the LSD, in TODIS each pixel may be
visited more than once and that has a negative effect
on the computational time.

The EDLines suggests a faster algorithm for line
segment detection. In terms of segmentation accu-
racy, the results of EDLines are similar to the LSD’s;
however, the EDLines processes the same image ten
times faster than the LSD. That makes the EDLines
a perfect candidate for real-time applications. In their
algorithm Akinlar and Topal used the concept of Edge
Drawing (ED) (Topal and Akinlar, 2012) to produce
an accurate edge map. The underlying idea is to use
image gradient information to connect the edge pix-
els that belong to the same segment. Unlike the other
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(a) (b) (c)

(d) (e) (f)
Figure 1: Performance of the bottom-up versus top-down
method. (a) Original image of arrow (512�512). (b) Re-
sult of the EHT where long segments are correctly detected.
(c) Result of the LSD shows disconnections in the seg-
ments due to background noise. (d) Original image of truck
(911�850). (e) Result of the EHT when it fails to detect
many of the short segments. (f) The LSD successfully de-
tects segments as small as a few pixels length.

edge detection approaches such as the Canny edge de-
tector that generates a binary edge map consisting of
arbitrary pixels, ED results in a number of related and
joint edge pixels in a shape of edge segments. This
pre-processing step plays a key role in EDLines’ suc-
cess by reducing the error caused by broken segments.
However, for the next step, i.e. line segment extrac-
tion they applied a Least Square Line Fitting approach
that causes inaccuracy in noisy situations and breaks
down the long segments.

In general, bottom-up approaches are computa-
tionally simple and easy to implement. Plus, their
local nature is well-suited for taking short line seg-
ments into account. However, their local characteris-
tic fails to maintain the robustness in challenging sit-
uations such as when line segments intersect or when
there are rather long segments in an image. Due to the
effect of noise and image resolution such long seg-
ments appear as a series of disconnected short seg-
ments. This sensitive behaviour in response to noise
appears to be the main drawback of the bottom-up ap-
proaches. Using global information can help solve
such problems. The top-down approach looks at the
problem from a rather different perspective.

4.2 Top-down Approach

In the top-down approach, also known as the global
approach, the true straight-lines are firstly extracted
before they are broken down into segments. Most
of the proposed HT-based line segmentation methods
use the parameter space information during and after

the HT voting process. For instance, the connective
HT (CHT) utilises a probabilistic approach to investi-
gate the connectively of the feature points (Yuen et al.,
1993). After applying the HT, a fixation point is se-
lected using the information obtained during the accu-
mulation to vote for two 1D accumulators. The CHT
suggest a faster computation than the SHT. To capture
segment coordinates using the fast Hough transform
(FHT), Guil et al. (Guil et al., 1995) kept aside those
feature points that collaborate during the voting pro-
cess. By arranging the image points belonging to the
same straight-line in a respective order, coordinates of
the segment endpoint can be captured by selecting the
points that are further away from each other. Never-
theless, the method is not perfectly designed for line
segments with a negative slope smaller than one or
line segments that are collinear.

The PPHT outperforms the SHT in terms of speed
but results in lower accuracy and a large number of
missing lines (i.e. false negative). Moreover, it re-
quires a large set of parameter adjustments such as
threshold that have to be delicately tuned. The prob-
lem with the accuracy of the PPHT was addressed
later in (Nguyen et al., 2008) at the expense of a high
computation and memory requirement.

The extended Hough transform (EHT) optimized
the traditional 2D HT with a third parameter (Cha
et al., 2006). In this 3D representation of the HT,
each individual column or row of the image space
is plotted to a unique dual 2D HT. Later in (Chung
et al., 2009), an optimized algorithm was proposed
to reduce the execution time during the voting pro-
cess. However, similar to all other HT-based methods,
it requires prior edge detection to enhance the linear
features that brings additional computational time. In
addition, edge detection may cause inaccuracy in seg-
mentation performance by neglecting true segments
due to inappropriate threshold selection.

Global searching algorithms embedded in the HT-
based approaches showed a better robustness to vari-
ant noise. Furthermore, in the case of long segments,
a global view helps to detect long lines as a single
continuous segment, unlike the local approaches that
break them down. As a more tangible example, this
is similar to looking through a window with scratched
glass from a distance without noticing the blurriness
caused by the scratches. However if you get closer to
the glass, the scratches will become more noticeable.
Let us compare the performance of the bottom-up and
top-down approaches using natural images to better
understand their differences. As a significant limi-
tation, due to its global nature, the HT usually fails
to detect short segments. Because short lines gen-
erate smaller clusters in the accumulator array and,
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therefore, it is more difficult to distinguish these small
peaks from the surrounding peaks.

Bottom-up Vs. Top-down

Performance of the above two approaches can be bet-
ter explained in Figure 1. The first row shows an
example where the global approach outperforms the
local method. The image of an arrow degraded with
Gaussian noise has been tested with the EHT, as a rep-
resentative of the top-down approach, and the LSD,
as a representative of the bottom-up approach in Fig-
ure 1(b) and (c), respectively. Although not flaw-
less, the EHT detects the segments, especially the
long lines, with an acceptable accuracy. In contrast,
due to the background noise the LSD fails to detect
the true long segments despite the simplicity of the
image. Instead, it produces a number of collinear
and disjointed segments. The additive noise stops
the growing region from expansion before reaching
the true endpoint. However, in an image with rather
complex texture, without additive noise, in the second
row, i.e. Figure 1(d), the LSD performs better by de-
tecting most of the segments with a greater detail, see
Figure 1(f). In contrast, the global nature of the HT-
based approach is incapable of detecting many of the
short segments as shown in Figure 1(e). This is when
the LSD outperforms the HT-based approach.

From the machine learning viewpoint, the top-
down method is a model selection technique from pa-
rameter space to data or feature space, whereas the
bottom-up method is a regularisation technique from
data or feature space to parameter space. The optimal
solution can be obtained using a two pathway learning
process, in which both top-down model selection and
bottom-up regularisation are considered. This leads
us to the third category of the methods which is the
domain-crossing approach.

4.3 Domain-crossing Approach

The domain-crossing approach utilises the informa-
tion from both the image and parameter space. It
starts by mapping the feature points from the image
to the parameter domain and again using the image-
domain data combined with the parameter domain
data to capture the line segments.

Song and Lyu speed up the HT voting process us-
ing image gradient prediction (Song and Lyu, 2005).
After peak detection in Hough space, a unique line
verification method is used by crossing from Hough
space over to the image space. In this way, line thick-
ness can also be distinguished as well as achieving a
reduction in false detection. Despite its accuracy the

method is computationally expensive.
Bandera et al. suggest a more efficient algorithm

in (Bandera et al., 2006). A random window ran-
domised Hough transform is used in the global phase
to construct the Hough space and capture the line pa-
rameters, i.e. the peaks. A unique mean shift clus-
tering technique is utilised afterwards to highlight the
peaks and find the potential straight-lines. Crossing
over to the image space, edge pixels that are aligned
with the detected lines are projected onto the lines to
approximate the true line segments in a local merg-
ing procedure. The idea was further improved in
slice sampling weighted mean shift (SSWMS) anal-
ysis (Nieto et al., 2011). Sequential sampling of the
Hough space was suggested to enhance the random
sampling approach as well as a new likelihood func-
tion for the local clustering. The SSWMS shows a
better accuracy than the PPHT with faster execution
time.

In (Berlemont and Olivo-Marin, 2010), the beam-
let transform has been viewed as a special case of the
Radon transform (RT). The underlying idea is to ap-
ply a feature-adapted RT in a quadtree decomposition
manner to obtain a feature-adapted beamlet transform
(FABT). The term feature-adapted comes from the
convolution of basis filters (i.e. second- or third-order
edge and ridge detectors) with the corresponding im-
age scale prior to RT computation. This filtering high-
lights linear structures of the image and enhances the
accuracy and performance of the task. However, the
FABT is also computationally expensive because all
of the convolutions must be applied in the time do-
main due to the indefinability of the convolution the-
orem for the pseudo-polar Fourier transform.

Unite-and-divide (UND) approach to the Radon
transform also uses the unique property of Fourier
slice theorem, however, in a more efficient way (Shi
et al., 2013). Unlike the FABT, which uses pseudo-
polar Fourier transform, the UND uses multi-layer
fractional Fourier transform to compute a higher res-
olution Radon sinogram. The peaks of the sinogram
will later be divided into a number of sub-spaces for
segment detection. A unique windowing approach
was suggested in (S.Rahmdel et al., 2013b) to isolate
the target segment and decompose the Radon butterfly
of each segment separately. The proposed segmen-
tation approach outperformed the LSD and EHT in
terms of the robustness to noise.

A new definition of the HT neighbourhood was
introduced in (Du et al., 2010; Du et al., 2011). The
neighbourhood of a line segment in the parameter do-
main is defined in a lozenge-like quadrangle to ap-
proximate the neighbourhood of the segment in the
image domain. Instead of two endpoints, authors used
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Table 1: An overview of the different approaches to line segment detection.

Methods Description Advantages Disadvantages
Bottom-up Region growth from pixel to segment. Representative

works include (Nevatia and Babu, 1980), (Kahn et al.,
1990), (Burns et al., 1986), (von Gioi et al., 2010), (Akin-
lar and Topal, 2011), (Yang et al., 2011)

Fast and simple, appro-
priate for real-time appli-
cations

Sensitive to noise, breaks
down lengthy segments

Top-Down Straight-line detection, followed by segment extraction.
Representative works include Hough transform family,
(Yuen et al., 1993), (Guil et al., 1995), (Matas et al., 2000),
(Nguyen et al., 2008), (Cha et al., 2006), (Chung et al.,
2009)

Robust to noise, suitable
for detecting large ob-
jects

Slow, inaccuracy in ex-
tracting short lines

Domain-Crossing Decomposition of lines through transformed space. Rep-
resentative works include (Song and Lyu, 2005), (Ban-
dera et al., 2006), (Nieto et al., 2011), (Berlemont and
Olivo-Marin, 2010),(Du et al., 2010; Du et al., 2011),
(S.Rahmdel et al., 2014; S.Rahmdel et al., 2013b), (Shi
et al., 2013)

Robust to noise, more ac-
curate for short segments

slow

the centre point of a segment. However, this method
suffers from the traditional problem of the HT-based
techniques, i.e. detecting short line segments, where
we face a trade-off in the neighbourhood radius selec-
tion. That means segments with shorter length have
bigger approximation errors in comparison to those
with longer length. In addition, the neighbourhood
approach can result in wrong segment endpoint when
the number of intersecting lines increase in the im-
age. A noise elimination algorithm was proposed in
(S.Rahmdel et al., 2014) as a vital extension to the
neighbourhood approach to remove the negative ef-
fect of non-collinear segments. First, the algorithm
identifies those segments that have a common inter-
section point within the image space. Second, it
filters out the pixels that are not collinear with the
target segment to significantly increase the detection
accuracy in comparison with the neighbourhood ap-
proach. Nevertheless, due to its computational cost,
this method cannot be seen as an appropriate candi-
date for real-time video processing.

5 CONCLUSION

Table 1 gives an overview of the different approaches
to line segment detection discussed in this paper.

The traditional point-to-segment extraction meth-
ods are computationally efficient and simple to imple-
ment. That makes such methods suitable for real-time
object detection and tracking applications. Neverthe-
less, their focus is on local information such as gra-
dient magnitude and angle at pixel level. That makes
noise an effective parameter in degrading their per-
formance. In addition, failing to consider global in-
formation results in discontinuity in the case of elon-
gated segments.

The traditional line-to-segment extraction meth-

ods work the other way around. Their global nature
reduces the effect of noise and increases their robust-
ness. That is also the reason that global approaches
can detect large objects more accurately. However,
neglecting the local gradient information in an image
causes inaccuracy in extracting short line segments.
In addition to that, the computational burden of the
global methods is considerable and such methods are
more appropriate for off-line image processing.

The domain-crossing approaches benefit from dif-
ferent properties in both image space and transformed
space to identify the line segments. They are more
robust to noise and occlusion due to their global na-
ture as well as having higher accuracy for short line
segmentation because of their image-domain line seg-
mentation algorithms. However, they require a deli-
cate design of algorithm to speed up the line extrac-
tion process, and it is not well-suited for real-time ap-
plications.

In conclusion, It is important that the user thor-
oughly understands the problem in order to make the
best use of the available algorithms. Authors hope
that this research could highlight some of the key fea-
tures of existing detection algorithms and encourage
the continuation of the work in this open research
question.
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