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Abstract: Item-based Collaborative Filtering (CF) models offer good recommendations with low latency. Still, 
constructing such models is often slow, requiring the comparison of all item pairs, and then caching for each 
item the list of most similar items. In this paper we suggest methods for reducing the number of item pairs 
comparisons, through simple clustering, where similar items tend to be in the same cluster. We propose two 
methods, one that uses Locality Sensitive Hashing (LSH), and another that uses the item consumption 
cardinality. We evaluate the two methods demonstrating the cardinality based method reduce the 
computation time dramatically without damage the accuracy. 

1 INTRODUCTION 

There are two dominant approaches to the 
computation of CF recommendations; the memory -
based approach and the model-based approach 
(Breese et al., 1998). A memory-based approach 
computes recommendations directly over the raw 
data – typically a user-item ratings matrix. Memory-
based methods require no pre-computation and 
execute all computations online. Model-based 
approaches construct statistical models – some 
summarization of the raw data – that allows rapid 
responses to recommendation queries online, and are 
more commonly used in productive environments.  

The item-item or item-based CF method is a 
popular model-based approach (Sarwar et al., 2001). 
This approach computes and caches for each item a 
set of similar items, ordered by decreasing 
similarity. When a user selects a specific item for 
browsing or purchasing, the system can display a list 
of N recommendations such as “similar items to the 
item you just choose are…”, and so forth. Item-
based models have shown good performance and 
low latency (Sarwar et al., 2001; Linden and Smith 
2003). 

Constructing such item-based models typically 
requires that we compute the similarity between 
each item to every other item, using O(I2) 
computations, where I is the item set. When the 
similarity function is symmetric, i.e. when 
similarity(i,j)=similarity(j,i) the number of actual 
computations is reduced to 2/)1(  II . Linden and 

Smith (2003) further show that the complexity could 
be effectively reduced to O(A·I) where A is the 
average number of users that have selected each 
item in the item set I. This is because many item 
pairs were never consumed together, resulting in a 
zero CF similarity score, thus, computing 
similarities for such pairs can be avoided. 
Nevertheless, those nearest neighbours’ algorithms 
require computation that increases with both the 
number of items and the number of users. With 
current situation in many web sites, where the 
number of users and items reach millions, these 
neighbourhood algorithms suffer from scalability 
issues. 

In this paper we present two fast clustering 
methods for offline computation of item-based CF 
models for providing top-N recommendations. The 
first method uses Locality Sensitive Hashing (LSH), 
and the second using the cardinality of the item 
consumption set. The methods clusters the item 
space so similar items tend to be in the same cluster. 
The suggested clustering methods are very simple 
and cheap, but yet very efficient, decreasing the 
computational complexity of the model building 
phase to ܱሺሺܫଶ െ  ሻ/2ሻ where C is a constantܥܫ
representing the number of clusters and I is the items 
set. We experiment with public and private data sets 
showing significant reduction in computation time 
using the suggested methods, with very minor 
accuracy reduction.  

The main contribution of this paper is hence to 
suggest a very rapid approach for computing the 
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item-based CF model, which is a very common 
scenario for practitioners. Additionally, we argue in 
this paper that using a clustering algorithm as a pre-
process for neighbourhood models in RS 
(Recommender Systems) must satisfies two 
conditions - 1) that the clustering algorithm have to 
be very cheap in term of computations and 2) that 
there has to be some resemblance between the 
clustering metric and the similarity metric used for 
the neighbours computation in order to achieve 
reduction in the neighbours computation; reduction 
with minor damage to the accuracy if any. 

The rest of the paper is as follows: section 2 
provides a background and related work, section 3 
presents the suggested methods, section 4 describes 
the experiments and the results, and section 5 
concludes with a discussion. 

2 BACKGROUND AND RELATED 
WORK 

2.1 Top-N Recommendations for 
Implicit Datasets 

One of the most explored problems in 
recommendation system research is the task of 
predicting ratings for items. The RS is provided with 
a user u and an item i, and predicts the rating that 
user u will assign to the item i. Another common 
recommendation task in e-commerce applications is 
to display a list of items that the system considers to 
be relevant for the user; often called top-N 
recommendations. For example, Amazon presents to 
the users a list of products under the title 
“Recommendations for you in books”. In this case 
the input data does not contain explicit ratings of 
users to items, but rather events, such as purchases 
or selections of items, often considered to be implicit 
indications of the user preferences. Hence this task is 
often known as top-N recommendations for implicit 
datasets (Cremonesi et al., 2010). 

Top-N recommendations given implicit data is a 
very common scenario in productive environments 
for varies reasons. First, rating data is not always 
available. Many users do not provide explicit ratings 
for items. Also, in many cases people do not 
necessarily choose the top-rated items. For example, 
people often choose to watch 3-star rated movies 
rather than 5-star movies (Shani and Gunawardana 
2011). Secondly, the calculation of the prediction 
that every user will give to any item in a prediction-
based system, just for providing the top-N out of it, 
may be an exhaustive one as web-sites nowadays 

may have millions of users and items. Moreover, in 
case the task is to present interesting items to the 
user, the results of a prediction-based approach 
might be inferior to an approach that directly 
maximizes the likelihood that an item will be 
chosen. Thus, we choose to focus on top-N 
recommenders for implicit datasets. 

A popular approach to top-N recommendations 
uses a neighbourhood-based item-item model. That 
is, for each item we identify a list of nearest 
neighbours, assuming that these neighbours would 
make good suggestions for a user that has chosen the 
item. A neighbourhood is defined based on some 
similarity metric between items. These similarities 
are cached in a model, which is used online to 
provide recommendations for a given item, by 
looking at the cached nearest neighbours list for that 
item. In a CF approach for implicit data sets, two 
items may be considered to be similar, if users tend 
to consume them together. A simple and popular 
example of a similarity function for implicit datasets 
is the Jaccard metric (Jaccard 1901) as presented in 
equation (1). 

,ሺ݅ܬ ݆ሻ ൌ
| ௜ܷ ∩ ௝ܷ|
| ௜ܷ ∪ ௝ܷ

 (1)

here Ui and Uj are the sets of users that consumed 
items i, and j respectively. 

2.2 Clustering Approaches for 
Improving Neighbourhood CF 

There have been a numerous studies in the literature 
that indicates the benefits of applying clustering in 
the pre-processing step for the neighbourhood-based 
CF computation (Bridge and Kelleher 2002; Chee 
2000; Sarwar et al., 2002; Lin et al., 2014). The 
majority of these works are using k-means or some 
variation of k-means for clustering the item space or 
the user space, and by that decreasing the dimension 
of the problem so that similarities will be then 
computed only among objects within the same 
cluster. Although such a method is indeed 
decreasing the computations of the pairs, it is well 
known that k-means by itself is very expensive 
algorithm yielding complexity from the order of 

)log( 1 nNO dk  where d is the number of 

dimensions, k is the number of clusters and n is the 
number of entities. Thus, even in one dimension and 
two clusters this is a very exhaustive computation 
which makes it not applicable in large scale systems. 
In fact, most clustering and partitioning algorithms 
suggested in the literature for this task require a 
distance metric or similarity metric to guide the 
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learning process of the clusters. Since our goal is to 
decrease the computation of the item-pairs, which is 
also offline in systems aimed to deliver top-N 
recommendations, we cannot consider as pre-
processing step applying clustering algorithms that 
are from the order of 2( )O I . 

O’Connor and Herlocker (1999) apply sets of 
experiments to evaluate the efficiency of several 
partition techniques as a pre-processing step to the 
item-based CF computation. They end up with 
suggesting the k-Metis (Karypis and Kumar 1998) as 
a partitioning algorithm because of its shorter 
execution time, the ability to create distributed 
clusters and of course due to the final accuracy the 
model achieved. Metis represents the item space as a 
graph and partition it into k predefined partitions 
using multi-level graph partitioning methods. 
Although the complexity of this problem is NP 
complete, representing implicit feedback dataset as 
such a graph is already involved a lot of 
computations. The representation will include the 
items as vertexes and the edges will represent the CF 
relation among the items, i.e. the value on each edge 
may be a number which indicating how many users 
consume these two items together. This 
representation will consume tremendous amount of 
computation as potentially Metis will need to know 
whether two items consumed together or not. In the 
best case, just for building the graph, it will have to 
compute the upper part of equation (1) for every two 
items is the system which of course not feasible. 

Moreover, the majority of those studies consider 
the pre-processing clustering step as an offline step 
and the actual item-based CF as an online step; the 
pre-processing step aimed to reduce the computation 
of the item-based CF. As such, they are not 
concerned about the cost of the clustering algorithm. 
This stands in contradiction to our case, where the 
entire computation, clustering and neighbours 
computation are done offline and we wish to 
minimize it entirely. 

We hence argue that for the specific scenario we 
handling, top-N recommendations given implicit 
dataset, our following suggested methods are far 
simpler and require much less (logarithmic with the 
number of items or/and users) computation in the 
clusters computation. 

3 FAST ITEM-BASED MODEL 
BUILDING 

This section presents two methods for clustering the 

items as a pre-process step to the CF model 
computation. We use a straightforward item-based 
recommendation algorithm which computes the 
item-to-item Jaccard similarities, showing how 
linear clustering techniques can reduce the amount 
of computation.  

Our approaches divide the item space into hard 
clusters, such that similar items tend to belong to the 
same cluster. We then compute the item pairs 
similarity only for items within each cluster, 
ignoring inter-cluster similarities. As stated before, 
clustering requires additional computational 
overhead and it is crucial that the clusters will be 
computed very rapidly. For efficient access to items 
and users, we use a data-structure that allows us to 
rapidly access all the users who have used an item, 
and all the items that a given user has used. 

3.1 Locality Sensitive Hashing 

The first pre-processing clustering method for 
rapidly compute the item-based CF model relies on 
Locality sensitive hashing (LSH) (Gionis et al., 
1999). Given a set of high-dimensional item 
descriptors, LSH uses Min-Hashing to map each 
item to a reduced space using one or more hashing 
functions. This reduced space is called the signature 
matrix, where each item is represented by a 
signature - a low dimensional vector of features. A 
good hashing function maintains item-item 
similarities, such that similar items will have similar 
signatures with high probability.  

To generate the signature matrix, we follow 
Google news personalization (Das et al., 2007) 
where the hash value for an item in a given 
dimension in the signature of an item, is the first 
user id that consumed this item in a random 
permutation of the user ids list. We generate P 
permutations of the user ids and apply this hash 
function on each of the permutations, generating an 
item signatures matrix of size PxI . Hence P is the 
dimension of the signatures matrix. 

We now leverage the generated signature matrix 
to create a clustering of the items, using the 
following recursive procedure; we split the item set 
into two disjoint subsets, such that the items in each 
subset are expected to be more similar to one 
another, than to items in the other subset. We first 
compute the median of each dimension (row in PxI
) in the signature matrix independently. Then, for 
each item (column in PxI ) in the signature matrix, 
we compute the portion of its dimensions entries 
whose value is higher than the median of that 
dimension. If this portion is lower than 0.5, the item 

Fast�Item-Based�Collaborative�Filtering

459



is placed in the left child subset, otherwise it is 
placed in the right child subset. We then continue 
with the left and right subsets recursively, until the 
intended number of clusters has been reached. 

This splitting approach creates a balanced binary 
tree, where every two disjoint subsets created 
through the splitting process are always the full set 
of their related parent. Figure 1 illustrates the tree 
construction and the number of items in each node 
and leaf.  

The construction of the tree is the actual pre-
process clustering step to the item-item Jaccard 
similarities computation. The time complexity of 
this phase is )log( IPIO   where P is the number of 

dimensions in the signatures matrix, and I is the 
number of items. In practice, it is very fast in 
comparison with the item pairs computations 
required for the item-item similarities because the 
number of dimensions P is no more than dozens. 

 

 

Figure 1: The amount of items I, is divided evenly on each 
level according to the medians. Each level in the tree 
comprises all the items. 

After the tree construction, we compute the item-
item Jaccard similarities only among the items 
which are in the same leaf. Following the example in 
figure 1, where the number of clusters is 4, this will 
result in )8/( 2IO  item-item computations 

compared with the )2/( 2IO required for computing 

all item pairs similarities. Assuming the hashing 
function maintains the similarity among the items as 
in the original data, and that the median splits the 
items into two homogenous groups during the 
construction of the tree, we expect that items with 
high similarity will be located in the same 
cluster/leaf. 

3.2 The Cardinality of the Item Profile 

The second method relies on the hypothesis that the 
likelihood of obtaining a higher similarity score 
between two items increases, as the difference 
between the cardinality of the set of users who 

consumed those items decreases.  
That is, given two items i and j, J(i,j) is more 

likely to be high when the difference between their 
cardinality, ||Ui|-|Uj||, is low. 

Following this assumption, we sort and list the 
items by decreasing cardinality, and then divide the 
list into a set of sub-lists (clusters) such that each 
cluster comprising items with the same or similar 
cardinality. As our data structure allows us to 
compute this cardinality rapidly, these clusters are 
extremely fast to generate. As with the LSH method, 
we then compute the similarities only among items 
that are within the same cluster and cache the scores 
as an item-based model.  

Following is a pseudo code of the Cardinality 
similarity approach. 

NC = number of desired clusters 
L = items sorted by popularity 
clusterSize = L.size()/NC; 
Clusters clusters; 
For i=0 to NC ; i++ 

clusters.add(L.subList(i*clusterSi
ze,(i+1)*clusterSize))  
For each Cluster c in clusters 

For i = 0 to |c|-1 
For j = i+1 to |c| 

compute J(ci,cj) 

3.3 Initialization Complexity 

Let I be the number of items, A be the average 
number of users who have chosen each item, and P 
be the reduced dimension in the LSH reduction. The 
complexity for the Tree LSH clustering requires 

)( AIPO   for computing the signatures matrix. 

Then, constructing the tree requires )log( IPIO 
operations, for finding the medians in each level in 
the tree, and there are at most )(log IO   levels. 

Hence, assuming that A and P are much smaller than 
I, the computation time is dominated by )log( IIO  . 

The complexity of the clustering cardinality 
method is )log( IIO for sorting the items by the 

number of users who consumed them. In the results 
below the clustering time is included. For both 
methods it required no more than a few dozens of 
milliseconds and is therefore negligible. 

4 EMPIRICAL EVALUATION 

We now compare the performance of the two 
clustering methods. In both methods we compute the 
similarities only for pairs of items which were 
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located in the same cluster. When there is only a 
single cluster, our approach is equivalent to the 
efficient Amazon approach (Linden et al., 2003). 

We conduct experiments on three datasets, a 
games web shop1 buying events, and on Movie-
Lens2 100000 ratings and Movie-Lens 1,000,000 
ratings. The datasets described in table 1. For 
Movie-Lens, we attempt to recommend movies that 
the user may rate, given other movies she has rated. 
To model that, we ignore the actual ratings, and use 
a dataset where users either rate, or did not rate a 
movie. The games dataset contains real data from an 
online shop selling software games collected during 
the year of 2010. In the games dataset we compute a 
list of recommended items given other items that the 
user has bought. 

Table 1: The benchmark datasets used in the experiments. 

Name #events # items # users Sparsity 
Games 320,641 3304 72,347 0.9986 

Movie-Lens 100,000 1682 943 0.9369 
Movie-Lens 1,000,000 3706 6040 0.9553 

Each users’ consumption set is divided into a 
train and test set. For each user u we randomly pick 
a random number k between 0 and the number of 
items that u has rated or bought. We then pick k 
random items from u’s consumption set and use 
them as the training set; the remaining items are 
used for testing. We execute both methods on all the 
three datasets, each run with different predefine 
number of clusters. We build the model over the 
training set and measure the time it took to build the 
model. We then measure the precision over the test 
set. Due to the nature of the predictions we provide, 
we found precision@N (Herlocker et al., 2004) to be 
the most appropriate metric for evaluating the 
models’ performance. 

Below, we provide results for N=5, i.e., we ask 
the algorithm to supply us with 5 recommendations. 
We also experimented with N=10, but we found no 
sensitivity to N. We measure the performance of the 
methods with 128, 64, 32, 16, 8, 4, 2, and 1 cluster. 
On the Movie-Lens 1 million ratings dataset we also 
measured with 256, 512 and 1024 clusters. 

Both methods were executed 5 times with 
different train-test splits on each predefined number 
of clusters, and the results in the figures below are 
averaged over the 5 repetitions. The standard 
deviation was below 10-5 and is hence omitted from 
the graphs. Both algorithms use the same random 
train-test split. 

                                                           
1 Due to privacy issues we cannot publish the data 
2 http://www.grouplens.org/node/73 

4.1 Results 

Figures 2, 3 and 4 present precision as a function of 
computation time. Each point in a curve represents 
the precision of a model with a different predefined 
number of clusters. As the number of clusters drops, 
more items fall into each cluster, requiring more 
computation time. Both methods require the same 
amount of time for a given number of clusters, and 
split the item set evenly into clusters of identical 
sizes. 

 

Figure 2: Performance for the Movie-lens 100k dataset. 

 

Figure 3: Performance for the Movie-lens 1 million 
dataset. 

 

Figure 4: Performance for the games dataset. 

The clustering time for both methods is 
negligible, hence, the overall time is dominated by 
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the pairwise similarity computations for the larger 
clusters. The data points in the curves are average 
over 5 repetitions and labelled with the number of 
predefined clusters. 

5 CONCLUSIONS AND 
DISCUSSION 

This paper suggests two methods for speeding up the 
building of an item-based CF model for top-N 
recommendations over implicit datasets. By splitting 
items into clusters, and computing pairwise 
similarities only for items within the same cluster, 
we reduced the computation time dramatically. The 
first approach based on LSH and the second on the 
cardinality of the item consumption set. Our 
experiments show that the cardinality approach 
outperformed the LSH, resulting in no decrease in 
precision while reducing the computation time up to 
10% for the larger dataset.  

The cardinality method somehow claims that 
similar items also have similar popularity. Although 
it might be true and make sense, it is true in our case 
only because the similarity function we choose was 
Jaccard coefficient which utilized exactly this 
aspect. Means that item with low cardinality will 
have very small similarity score to item with high 
cardinality, if any, because the intersection between 
them, the upper part of equation (1), will be close to 
zero.  

We hence suggest that in order to obtain an 
efficient clustering method as pre-process step for 
item-base model computation, there has to be some 
resemblance between the clustering metric and the 
proximity metric used for the items similarity. 
Otherwise results may look a bit arbitrary, unless the 
clustering method is completely generic as like the 
above suggested LSH. For instance applying 
content-based clustering such that movies items will 
be grouped together according to their Genre may be 
a good idea as a clustering method, if the proximity 
metric which is used for the item-item similarity 
considers the Genres of a movie as part of the 
similarity computation. A successful clustering 
method will not only be cheap, but also will 
encapsulate a hint from the proximity metric which 
is later used to calculate the similarity scores. We 
therefore suggest that LSH clustering method, which 
is not related at all to the similarity metric, is more 
recommended if one cannot define a clustering 
method which is somehow correlated with the 
similarity metric. 

An additional benefit of our methods is that the 

item-pairs computation of each cluster can be done 
in parallel, to further reduce the actual time required 
for computing the item-based model. 
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