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Abstract: We propose a robust method for automated detection of epileptic seizures using intracranial 
electroencephalogram (iEEG) recordings with two electrodes. The state-of-the-art seizure detection methods 
suffer from high number of false detections, even when designed to be patient-specific. The solution 
reported here aims to achieve very low false detection rate, while providing a high sensitivity. Two adjacent 
iEEG recordings are subtracted from each other to make the bipolar iEEG signal. The values achieved from 
singular value decomposition (SVD) of the bipolar iEEG signal are used as measure. A threshold is 
subsequently applied on the measure. Results indicate robustness of the proposed measure for seizure 
detection. The method is applied on 5 invasive recordings containing 54 seizures in 780 hours of 
multichannel iEEG recordings. On average, the results revealed 85.2% sensitivity and a very low false 
detection rate of 0.02 per hour in long-term continuous iEEG recordings. 

1 INTRODUCTION 

Epilepsy, the second common brain disorder is 
mainly characterized by recurrent and abrupt 
seizures. The highly coherent neural activities play 
the central role in the development of epileptic 
seizures, which usually last from seconds to minutes. 
Electroencephalogram (EEG) recordings are 
commonly used in the study of brain, its functions 
and related disease (Rho et al., 2010). Long-term 
continuous multichannel recordings produce huge 
amounts of data, sometimes up to several hundred 
megabytes for a single recording channel. Real-time 
monitoring of the long-term continuous EEG 
recordings by EEG experts (visual inspection) can 
be impossible, whereas offline analysis can also be 
very costly, tedious and tiresome. By automatically 
labeling the seizure onsets, long term monitoring, 
diagnosis and treatment can be highly facilitated. 
Researchers and neurologists will just be required to 
refer to the labeled EEG recordings. On the other 
hand early seizure detection could improve the 
living conditions of epileptic patients. Automatic 
drug injection or brain stimulation method can be 
triggered by adequately fast onset detection 
algorithm to suppress oncoming seizure 
(Bandarabadi et al., 2014c). 

There are many existing seizure detection 
algorithms. They usually seek to optimize one of 
two competing goals; (1) fast seizure onset 
detection; the real-time detection of epileptic 
seizures without or with a negligible delay from 
onset initiation (Shoeb et al., 2004; Meier et al., 
2008; Kharbouch et al., 2011; Bandarabadi et al., 
2014b), and (2) accurate seizure event detection: the 
accurate labeling of the occurrence of seizures with 
high sensitivity and specificity (Varghese et al., 
2009; Sharma et al., 2014; Adeli et al., 2007; 
Acharya et al., 2011; Hassanpour et al., 2004). The 
first approach is best suitable for closed-loop 
therapeutic as well as for patient care systems, where 
only onset detection delay times of few seconds can 
be tolerated. The second approach is much 
appropriate for offline labeling of recorded EEGs for 
future studies, and can tolerate longer detection lags. 
High number of false detections is the main 
drawback of most current approaches, which makes 
them unacceptable for clinical applications. 
Furthermore they have been applied mainly on short 
recordings, and have not been validated 
satisfactorily for long-term continuous recordings 
with several weeks length, including extensive 
interictal periods.  

In the framework of the EPILEPSIAE project

178 Bandarabadi M., Rasekhi J., A. Teixeira C. and Dourado A..
Epileptic Seizure Detection using Bipolar Singular Value Decomposition.
DOI: 10.5220/0005193401780183
In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-2015), pages 178-183
ISBN: 978-989-758-069-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



(Klatt et al., 2012), the consortium has collected 
long-term continuous intracranial/scalp EEG 
(iEEG/sEEG) recordings of more than 275 patients. 
The current database includes detailed information 
about the epileptic seizures of all patients, such as 
type, onset/offset time, propagation, and seizure 
onset age. The recorded data of the patients was 
visually inspected by epileptologist experts, a both 
tedious and faulty process, requiring double checks. 
Such a demand for robust automated method with 
high sensitivity and very low false detection rate, 
which would require the neurologist just to refer to 
the detected epileptic seizures to extract extra 
information, motivated our team to study and 
develop new detection algorithms. We have recently 
developed a new seizure detection method using 
sub-band mean phase coherence (sub-band MPC) 
(Bandarabadi et al., 2014a). The raw iEEG data of 
two adjacent electrodes was first band-pass filtered 
using forward-backward method to obtain desired 
frequency bands. Subsequently, the mean phase 
coherence (MPC) measure of each sub-band was 
calculated. The proposed method could provide a 
sensitivity of 79% with a low false detection rate of 
0.05 h-1.  

This paper makes two contributions. First, it 
proposes a robust seizure detection method using 
singular values extracted from space-differential 
(bipolar) recordings to improve the parameters of 
sensitivity and specificity. Second, it evaluates the 
efficiency of proposed measure on long-term 
continuous iEEG recordings that are longer than one 
month.  

2 METHODOLOGY 

The methodology is based on singular values (SVs) 
extracted from windowed bipolar iEEG signal, and 
the phenomena of unique bipolar signal 
manifestations during a seizure event. Figure 1 
presents the block diagram of the proposed method 
for automated seizure detection, including a manual 
channel selection, a segmentation stage, building 
bipolar iEEG, a singular value decomposition 
(SVD), and a threshold box for decision-making. 
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Figure 1: The block diagram of the detection algorithm. 

2.1 Dataset Description 

In order to evaluate the proposed method, we use 
real iEEG data recorded using two adjacent 
electrodes placed over the focal area, from European 
database on epilepsy (Klatt et al., 2012). The five 
candidate patients with refractory focal epilepsy 
were monitored continuously for several days, 
during their pre-surgical studies. Focal seizures are 
localized to specific brain regions, while generalized 
epileptic events may initiate and spread across the 
whole brain tissue. The two electrodes are nearly 
satisfactory when working with partial seizures, 
however more electrodes should be considered for 
the study of other seizure types.  

Recordings were obtained with sampling rate of 
1024 Hz at the epilepsy unit of the University 
Hospital of Freiburg, Germany. Onset times, and 
their initialization and spatial propagation on the 
electrodes were marked by epileptologists by visual 
inspection of iEEG recordings and using video 
recordings of patients during their stay in hospital. 
Information of both electrographic and clinical 
onset/offset times is available in the database, and 
electrographic onsets were considered here. Patient 
characteristics are summarized in Table 1. 

Table 1: Information for the 5 studied patients. 
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A F 29 10 RMT,RLT 183 9 82.3 

B F 32 1 LMT 162.6 9 121.9 

C F 11 3 RMT 155 14 122.7 

D F 32 8 RBF,LMT,RMT 151.6 9 122.5 

E F 18 6 L-T,L-F 127.8 13 86.5 

Mean  24.4 5.6  780 54 107.1 

a. RMT/LMT (right/left mesial temporal lobe), RLT (right lateral temporal 
lobe), RBF (right basal frontal lobe), L-T (left temporal lobe), L-F (left 
frontal lobe). 

2.1 Bipolar iEEG Signal 

The iEEG recordings are technically bipolar by 
nature, since they are recorded with reference to a 
fixed electrode. Positioning of electrodes and 
reference channels can both affect the nature of the 
recorded signal (Nunez et al., 1997). By tradition 
however, these channels are called monopolar, and 
the difference of two monopolar channels, selected 
physically in close proximity (in the range of few 
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millimeters), is known as bipolar. For sufficiently 
close-by configurations, the bipolar signal may be 
considered as an approximation of the tangential 
component of brain’s electric field. In contrast to the 
monopolar EEG, the bipolar approach is less 
susceptible to artifacts (Aarabi et al., 2007). Bipolar 
processing can remove common mode interferences 
mounted evenly on two adjacent electrodes. These 
common mode interferences may include power line 
noise (50 or 60Hz and their harmonics) and 
movement artifacts (EMG). Furthermore it provides 
better spatial resolution in contrast to the monopolar 
iEEG recordings (Srinivasan et al., 1996; Nunez et 
al., 1997; Tang et al., 2007). Bipolar recordings 
better reduce the volume conduction effects 
compared to the monopolar recordings, by acting as 
a high-pass spatial filter (Nunez et al., 1997). 
Moreover, topographical variations invisible to 
monopolar recordings can be identified using bipolar 
schemes (Baranov-Krylov and Shuvaev, 2005). 
Bipolar channels were derived by differencing two 
immediately adjacent electrodes, selected from 
candidate probe array on focal area. Arrays can be in 
the form of grid, strip, or depth probes.  

2.2 Singular Value Decomposition 

SVD as a common computational tool employed in 
signal processing and pattern recognition, acts as a 
mathematical factorization of data matrices obtained 
from the patients, to highlight the dominant 
properties of their underlying patterns. The core idea 
of SVD is to take a collection of data, find the 
patterns having the highest correlation with that 
data, and then sort these patterns in a descending 
order based on their importance. In fact, SVD 
decomposes data to its correlated parts, with the 
larger singular values (SVs) corresponding to those 
parts with more energy (Bandarabadi et al., 2010). 
The process decomposes the original matrix M into 
the product of three sparse matrices (1), 

*
. . . .m n m m m n n nM U V   (1) 

where is singular value matrix, U and V are left 
and right singular vector matrices respectively. U 
and V are orthogonal matrices, and   is a 
rectangular diagonal matrix with its nonnegative real 
elements sorted in a descending way (2). 
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The singular values ( i ) indicate the significance of 

the corresponding left/right singular vectors. The 
pair of singular vectors related to the highest SV, 
contain more information about the dominant 
patterns than other singular vector pairs (Hassanpour 
et al., 2004). By highlighting the dominant epileptic 
activities within a bipolar iEEG data, SVD can be 
used as a tool for detecting epileptic events. In order 
to apply SVD, the raw EEG data should be first 
expressed in the form of a square matrix. Hankel 
operator is a square matrix with constant skew 
diagonals, and is employed here to build such a 
matrix. Suppose 1 2[ , , ..., ]nx x xX   as a segment of 

EEG signal, and n being a positive even integer. 
Then the Hankel matrix of X can be written as (3). 

1

2

2 / 2

3 /2 1

/2 / 2 1 1

...

...

...

n

n
X

n n n

H

x x x

x x x

x x x



 



 
 
 
 
 
 

   
 (3) 

Since the computational cost of SVD is high, the 
iEEG signal is downsampled from 1024 to 512 Hz to 
boost the computation time. The iEEG signal is 
segmented into 2-sec windows with 50% overlap, to 
provide feature samples every second. The length of 
window is selected by a tradeoff between two 
extremes: it should be long enough to cover the 
trends related to brain’s current state, and short 
enough to be considered as quasi-stationary. The 
Hankel matrix of the bipolar iEEG is first built, after 
which SVD is calculated to obtain the SVs. 
Considering 2-sec windows having 1024 samples, 
the Hankel matrix would have the size of 512*512 
elements. The SVD operator will thus produce 512 
SVs ( i , i=1,…, 512), ordered in a descending way. 

The main characteristic of an epileptic seizure is 
the highly coherent activity of the neurons, 
generating nearly the same electrical voltages by two 
very close bunches of neurons. This highly coherent 
and synchronous state during seizure events, 
specifically prior to seizure termination (Schindler et 
al., 2007a; Schindler et al., 2007b), leads to a 
significant increase in the level of common mode 
signal of the adjacent channels, taking more similar 
waveforms. SVs represent the level and importance 
of the energies contained within the correlated parts 
of signal. As a result of excessive coherency during 
seizure, the energy of the resulting bipolar signals 
and their correlated parts will decrease. Figure 2 
shows the extracted SVs of sample seizure. 
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2.3 Preprocessing of Features 

The average of each singular value for the first 60 
minutes of recordings and for each patient was 
calculated, and the SVs were normalized by dividing 
to that average. The range of SVs ( i , i=1,…, 512) 

were equalized by this normalization (Figure 3). 
Afterward, the 32 best performing SVs were 
selected and average of their normalized values was 
used as a single measure. Specifically the SVs from 
9 to 40 performed better in our study for seizure 
detection, and were considered to make a unique 
measure. 

Furthermore the coherent epileptic neuronal 
activities last for several seconds, thus smoothing 
the feature vector by a rectangular moving average 
window of 4 consecutive samples, decreases the 
likelihood of short coherent events that are not ictal 
from reaching threshold. The smoothing would 
greatly reduce the number of false alarms.  

 

Figure 2: SVs (65-128) extracted from 10 minutes of 
bipolar iEEG signal contains one seizure. Vertical red 
lines indicate onset and offset times. The SVs first start to 
increase by seizure development, and then suddenly 
decrease approaching the seizure termination. 

 

Figure 3: Normalized SVs of a sample seizure from 
patient B. The range of SVs is equalized after 
normalization. Vertical red lines indicate onset and offset 
times. 

The singular values mostly start to increase with 
seizure initiation, while suddenly decrease once 
seizures are well developed and approach their 

termination. Although looking for increase in 
singular values provide less detection delays, they 
generate higher numbers of false alarms and lower 
sensitivity values than looking for decrease in 
singular values, when used for detecting seizure 
events. Therefore the inverse of the measure, 
obtained from average of normalized SVs from 9 to 
40, was considered as a candidate measure to 
highlight this decrease. 

2.4 Alarm Generation 

A threshold based classifier is used for the detection 
of epileptic seizures. Threshold value is selected for 
each patient separately, ranging from 1.5 to 2.5, and 
are applied on the candidate feature. Upon the 
measure passing of the threshold, an alarm will be 
raised, after which further alarm generation will be 
blocked for 4 minutes. This limitation guarantees the 
raising of just a single true alarm per seizure. 

3 RESULTS 

Sensitivity (SS) and false detection rate (FDR) of the 
raised alarms were used to evaluate the methods. 
Sensitivity is the fraction of correctly detected 
seizures within the total seizures, and the FDR value 
is the number of false detections per time unit 
(hour). Table 2 presents the results of seizure event 
detection using two methods, first from bipolar SVs, 
and the other using sub-band MPC method 
(Bandarabadi et al., 2014a), obtained from same 
patients and same channels.  

Table 2: Results obtained for 5 studied patients. 

ID 
 Bipolar SVD  Sub-band MPC 
 SS a FDR b  SS a FDR b 

A  100 0.02  78 0.06 

B  100 0.01  78 0.05 

C  71.4 0.08  71 0.09 

D  66.7 0.01  66 0.02 

E  100 0  100 0.04 

Mean  85.2 0.02  79 0.05 
a. SS: Sensitivity of raised alarms in percent. 
b. FDR: False detection rate of raised alarms per hour 

The results of bipolar singular values provide on 
average, a sensitivity of 85.2% and a FDR of 0.02 
per hour (16 false alarms in 780 h of recordings), 
while the previously proposed method (sub-band 
MPC) could averagely provide a sensitivity of 79% 
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Figure 4: Proposed measure for entire recording of patient E. Black line is the measure, and the vertical dotted red lines are 
seizure onsets. The optimum threshold value is 2 for this patient, which is indicated by horizontal dotted blue line. 

and a FDR of 0.05 h-1.  The results were achieved by 
a tradeoff between SS and FDR. However, slightly 
higher sensitivity could be reached by setting lower 
threshold values, which lead to higher FDRs. Figure 
4 illustrates the proposed measure extracted from 
whole recording of patient E. 

4 CONCLUSIONS 

When two adjacent iEEG signals become 
increasingly correlated, difference of those signals 
(bipolar iEEG) will contain less energy, causing the 
SVs of bipolar signal to decrease. Therefore the 
observation of sudden decreases in the SVs would 
coincide with seizure termination. Moreover, 
according to the results, the SVs extracted from 
bipolar iEEG signals were apparently robust to the 
changes in the state of the iEEG data throughout the 
patient’s daily life, producing just 18 false alarms in 
780 hours of iEEG recordings. Furthermore, we 
observed that patterns of coherency are recurring 
evenly for all of the seizures for each particular 
patient. This indicates that the build-up, propagation, 
and termination of the seizures for a specific patient 
follow a common neuronal mechanism.  

Furthermore, channel selection affects 
significantly the sensitivity parameter of proposed 
algorithm. If the recording channels are not placed 
close enough to the focus, the seizure spread may 
not reach that channel, thus decreasing average 
sensitivity. Overall, both placement and number of 
selected iEEG channels can substantially affect 
detection sensitivity and delays and had be taken 
into consideration. In this work, the seizure focuses 
were known. Additionally all patients were suffering 
from partial epilepsy. Therefore the selection of two 

channels on the focus was suggested to satisfactorily 
detect seizure events. 
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