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Abstract: In the interest of the neonatal comfort, the need for noncontact respiration monitoring increases. Moreover, 

home respiration monitoring would be beneficial. Therefore, the goal is to extract the respiration rate from 

video data included in a polysomnography. The presented method first uses Eulerian video magnification to 

amplify the respiration movements. A respiration signal is obtained through the optical flow algorithm. 

Independent component analysis and principal component analysis are applied to improve the signal quality, 

with minor enhancement of the signal quality. The respiratory rate is extracted as the dominant frequency in 

the spectrograms obtained using the short-time Fourier transform. Respiratory rate detection is successful 

(94.12%) for most patients during quiet sleep stages. Real-time monitoring could possibly be achieved by 

lowering the spatial and temporal resolutions of the input video data. The outline for successful video-aided 

detection of the respiration pattern is shown, thereby paving the way for improvement of the overall 

assessment in the NICU and application in a home-friendly environment. 

1 INTRODUCTION 

In neonatal care, respiration monitoring is of viable 

importance. Monitoring the respiration rate 

facilitates the diagnosis of a number of disorders, 

like apnea. Neonates normally show respiratory rates 

around 50-60 breaths per minute. The respiration 

pattern of the infant changes based on the 

development of the respiratory system and possible 

disorders. Three general respiration patterns are 

observed in neonates: synchronous, simple retraction 

and see-saw (Miller and Behrle, 1953). They define 

the phase difference between the chest and the 

abdomen expansion during breathing. The incidence 

of these respiratory patterns varies with the age of 

the neonate. The respiratory system of preterm 

infants is not fully developed yet; they are therefore 

more susceptible to show apnea or periodic 

respiration. Apnea is defined by the cessation of the 

respiratory airflow, whereas periodic breathing is 

characterized by groups of respiratory movements 

interrupted by small intervals of apnea.  

Nowadays, most techniques used to monitor the 

respiration are complex and obtrusive, like 

polysomnography. Multiple methods to monitor the 

respiration rate without using a polysomnography 

have been developed (Al-Khalidi et al., 2011). Most 

recently, numerous techniques aiming for a 

contactless respiration monitoring have been 

investigated. A lot of these attempts involve sensors 

integrated under or into the mattress (Folke et al., 

2003). Methods based on acoustic and radar 

detection exist as well, using the Doppler principle 

to estimate motions induced by the respiration (Li et 

al., 2013). Similar techniques use time-of-flight 

cameras to estimate the frequency of the chest 

movements during respiration (Penne et al., 2008). 

Some attempts at visual detection make use of 

infrared camera to detect motions in the scene 

(Abbas and Heiman, 2009). The infrared cameras 
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estimate the skin temperature of the patient which 

can be related to inspiration and expiration of air 

during breathing.  

Other methods focus on processing images 

obtained from regular cameras. Differences between 

frames are used to estimate movements in the video 

data (Tan et al., 2010). Based on the same principle, 

the optical flow algorithm can be applied to an 

image sequence (Nakjima, 2001). These techniques 

are however developed for older subjects and do not 

mention successful respiration detection during sleep 

in a dark setting. The same problem is present with 

techniques based on the detection of colour changes 

(Kwon et al., 2012; Aarts et al., 2013). These can 

provide a very accurate detection of the respiration 

and the heart rate but they rely on a good 

illumination of the face of the patient which is 

unrealistic for sleep monitoring. 

Most of these techniques require the use of 

sophisticated devices, which can be expensive and 

difficult to set up in a home environment. This paper 

presents an algorithm to automatically extract the 

neonatal respiratory rate from video data during 

deep sleep stages. The required equipment consists 

of a simple camera and a computer. Breathing 

movements are magnified in the specific frequency 

band using Eulerian video magnification, and further 

processed with the optical flow algorithm to extract 

a respiration signal. In addition, with ICA and PCA 

we have aimed to optimize the respiration detection. 

Using Short-Time Fourier Transformation, a 

respiration rate is extracted and compared to the 

control signal by means of cross-correlation.  

2 METHODS 

2.1 Data Acquisition  

Two types of data are acquired for this study. Both 

video and the respiration signals are obtained during 

a polysomnography. The dataset included long-term 

video-EEG recordings of 7 preterm infants with a 

postmenstrual age of 33-40 weeks. Two patients 

were labelled with periodic breathing based on 

visually detection of at most 10 seconds non-

breathing intervals. The protocol was approved by 

the ethics committee of the University Hospitals of 

Leuven, Belgium. The respiratory effort is measured 

using two bands, one placed around the thorax of the 

patient, the other around the abdomen. Each band 

contains a piezoelectric transducer measuring its 

extension as the patient breathes in and out. The 

video data is acquired with a simple camera placed 

above or near the bed of the baby in different set-

ups. All videos are recorded in .wmv format and 

have the same size: 720x576 pixels. The video 

images are converted to the .avi format, which 

works with a constant frame rate. RGB values are 

changed into gray values. As the objective is to 

detect respiration from these videos, the region of 

interest is limited to the body of the baby. All video 

images are manually cropped to contain only the 

chest and abdomen region as indicated in Figure 1. 

This operation has two advantages: a lowering of the 

noise levels and a reduction of the computation time. 

 

Figure 1: Screenshot of the video image in a dark setting. 

Region of interest (ROI) is manually selected. 

2.2 Data Processing 

The recorded video data is processed in multiple 

steps. First, specific motions in the video are 

amplified using Eulerian video magnification. The 

movements are then extracted from the video data 

with an optical flow algorithm. The output from the 

optical flow is subsequently adapted in order to 

obtain a signal of which the quality can be assessed 

in comparison with the control signals. 

2.2.1 Eulerian Video Magnification 

Small, sometimes even imperceptible, variations in 

video images can be amplified to make them visible 

to the human eye (Wu et al., 2012). Eulerian video 

magnification amplifies colour changes and small 

motions in a specified frequency band. The 

magnification is performed in an Eulerian way. 

Namely, the algorithm tracks and amplifies changes 

in pixel intensity values over time. A constant 

illumination of the scene is therefore necessary. 

The framework of video magnification contains 

both spatial and temporal processing steps. The first 

one is the spatial decomposition of the video. This 

creates an image pyramid for each frame, each level 

of this so-called pyramid contains a specific band of 

spatial frequencies (Choi et al., 2008). Temporal 

processing is applied on each spatial band. A 

bandpass filter is used to extract the temporal 

ROI 
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frequency band of interest [0.5-2 Hz], which is 

multiplied by the magnification factor α[=15] and 

added back to the original signal. The value of α 

cannot be taken too high, since the noise level will 

be significantly increased in this way. We describe 

the principles of motion magnification using a one-

dimensional signal. The intensity variation is defined 

at a certain position x over time as I(x,t). A direct 

generalization to two dimensions is possible. Under 

condition of translational motion, a displacement 

function d(t) can be used to represent the change in 

intensity values (formula 1). Magnification to 

enlarge the respiration is represented in formula 2.  

Finally, the spatial pyramid is collapsed to create the 

output video data.  

 (   )   (   ( )) with   (   )   ( ) (1) 

 (   )   (  (   )   ( )) (2) 

2.2.2 Optical Flow 

Optical flow is the distribution of apparent velocities 

of movement patterns in the image, arising from the 

relative motion between the viewer and the objects 

(Horn and Schunck, 1981). Multiple approaches 

exist to relate motion in the images by calculating 

the optical flow (Fleet and Weiss, 2006; O’Donovan, 

2005). The optical flow is estimated using the partial 

derivatives Ix, Iy and It which represent the difference 

in brightness between two images. For this purpose, 

the sum of the Laplacians of the flow velocities   

and  , respectively in horizontal and vertical 

direction, are approximated. These estimates are 

used to set up the total error function due to 

assumptions of smoothness and constant brightness. 

This total error has to be minimized in order to find 

suitable values for the optical flow velocity (   ). 
The optimization gives two equations in u and v 

from which the flow velocity can be computed using 

the local average velocities  ̅ and  ̅ (formula 3 and 

4).    is the weighing factor between the two 

assumption errors. This optimization is often 

computed iteratively (Horn and Schunck, 1981). 

(     
    

 )    (     
 )   ̅         ̅         (3) 

(     
    

 )    (     
 )   ̅         ̅         (4) 

A one dimensional respiration signal is retrieved by 

summing all flow values frame by frame. Each 

sample represents the total amount of horizontal or 

vertical flow in the corresponding frame (Sun et al., 

2008). In addition, we have compared the obtained 

signal with the signal obtained by taking only a 

percentage of the horizontal and vertical optical flow 

values, e.g. summing only the smallest 50% of the 

absolute flow values. In case the thorax and the 

abdomen do not expand simultaneously, a selection 

of the smallest flow values removes the largest 

expansion and the largest noise components. Figure 

2 shows this signal and its control signal (abdomen 

strain) for patient 7. 

 

Figure 2: Sum of the 50% smallest vertical optical flow 

values and abdomen control signal for patient 7. 

2.3 Signal Analysis 

The frequency content of the signals, obtained by 

summing the optical flow values of each frame, is 

analysed with the short-time Fourier transform 

(STFT). These signals can have a low signal-to-

noise ratio, making respiration detection difficult. 

Independent component analysis (ICA) and principal 

component analysis (PCA) are performed to 

improve the signal quality. 

2.3.1 Short-Time Fourier Transform 

The STFT results in a two-dimensional array 

representing the frequency components in function 

of time. The respiratory rate can be extracted from 

the spectrogram taking the mean of the dominant 

frequencies in a sliding window of 5, 10 or 20 

seconds. A shorter window allows following the 

variations of the respiration rate more precisely. 

However, a longer window is preferable when 

dealing with a signal of lower quality where the 

respiration rate is not continuously dominant in the 

frequency spectrum. Furthermore, longer windows 

are less sensitive to artefacts. Figure 3 shows a 

spectrogram obtained by the STFT of a four minutes 

segment for patient 7. 

 

Figure 3: STFT of the sum of the 50% smallest vertical 

optical flow values for patient 7. 

2.3.2 Independent Component Analysis 

ICA is a widely used method to perform blind 

source separation. ICA can be used to separate the 
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respiration pattern from other movement sources or 

noise in the video images by searching for a set of 

statistically independent signals among the signal 

mixtures. The video images are separated into four 

equal parts and on each part the respiration 

extraction methods are applied. In this way, we 

obtain four signal mixtures which will serve as input 

for ICA.  

2.3.3 Principal Component Analysis 

PCA is used to extract the most important modes of 

variation from complex datasets. A signal with a 

higher signal-to-noise ratio should be reconstructed 

using only the most important modes of variation of 

the signal, leaving out the less significant ones. The 

components with the largest eigenvalues accounting 

for 98% of the variance are used to reconstruct the 

signal. 

2.3.4 Cross-correlation  

The cross-correlation computes the correlation for 

every time-lag between the extracted respiration 

signal and the control signal, sliding one signal 

along the other. The correlation value retained here 

is the maximal correlation in an interval of 1 second 

around the zero time-lag. This allows to compensate 

for a possibly small time-lag between the two 

signals, e.g. between the thorax control signal and 

the abdomen expansion picked up in the video 

image. The correlation value computed in this way is 

an indicator of the similarity between the control 

respiration signals and the extracted signal of the 

video image. The respiration estimate is however 

sensitive to noise and artefacts, leading to low 

correlation values given motion artefacts are present.  

3 RESULTS AND DISCUSSION 

Table 1 shows the correlation between each signal 

obtained from the optical flow algorithm, ICA or 

PCA and the corresponding control signal. For each 

patient, the vertical or horizontal optical flow values 

are used based on the position of the camera. A 

percentage of optical flow values is taken as well in 

the comparison. The effect of this selection is rather 

small, but generally leads to better results in spite of 

simultaneous expansions of thorax and abdomen. 

The 50% flow values in smallest absolute value are 

selected to serve as an input for both ICA and PCA. 

Only the ICA and PCA signals for patient 7 give 

really high correlation values for patients without 

periodic respiration. This can be explained by the 

very regular respiration rate and the lack of 

movement artefacts for this patient. Both patients 

with periodic respiration (patients 3 and 4) show 

larger correlation values than the other patients. This 

is due to the numerous periods of apnea where no 

motion is detected. As the extracted and control 

signal have very small values during the apnea 

periods, the correlation is high (figure 4). On the 

contrary, the correlation between bursting 

respiration periods is of a smaller order and 

comparable to other patients. 

 

Figure 4: Periodic breathing: comparison between the 

abdomen control signal and the sum of 50% smallest 

optical flow values. 

Reconstruction of the signal with principal 

component analysis provides the best result in five 

out of seven cases. For the two other patients, the 

best signal is obtained through independent 

component analysis. However, the difference in 

correlation  between  the  ICA  and  PCA  signals are  

Table 1: Correlation between the control signal and the signals obtained from the optical flow, independent component 

analysis and principal component analysis. Best results in bold. 

 100% vertical 50% vertical 100% horizontal 50% horizontal ICA PCA 

Patient 1 0.031  0.035 0.081 0.076 0.065 0.061 

Patient 2   0.069 0.074 0.119 0.129 0.144 0.167 

Patient 3  0.408 0.419 0.516 0.535 0.155 0.532 

Patient 4  0.502 0.493 0.114 0.122 0.463 0.495 

Patient 5  0.042 0.047 0.042 0.035 0.051 0.059 

Patient 6  0.152 0.143 0.087 0.072 0.122 0.161 

Patient 7 0.128  0.142 0.058 0.066 0.705 0.645 

50 55 60 65 70 75 80 85 90 95

Time (s)

Periodic breathing 

 

 Abdomen control signal
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Table 2: Correlation between respiratory rate extracted from the control signal and the signal obtained by the optical flow 

algorithm and after applying ICA and PCA. PR indicates periodic respiration. 

 Respiration rate from sum 

of optical flow values 

Respiration rate from ICA 

estimate 

Respiration rate from PCA 

reconstruction 

Patient 1  0.909 0.893 0.907 

Patient 2   0.949 0.929 0.955 

Patient 3  PR PR PR 

Patient 4  PR PR PR 

Patient 5   0.913 0.875 0.903 

Patient 6  0.942 0.943 0.933 

Patient 7  0.993 0.999 0.998 

 

small for both patients, assuming a preference to use 

PCA. 

Table 2 shows the correlation between the 

respiratory rates extracted by STFT from the control 

signal and the signals used for table 1. For each 

patient, the signal with the highest correlation to the 

control signal is used, as well as the best estimates 

obtained using ICA and PCA. The extracted 

respiration rate is quantized in intervals of 0.1 Hz, 

since an exact value of the respiratory rate is not 

needed. Conversely, abrupt changes in the 

respiration rate are more important to detect. The 

maximal error introduced by this step is 0.05 Hz, 

which is insignificant. Physical respiration changes 

will still be apparent in the quantized respiratory 

rate. The upside of the quantization is an easier 

comparison between the rate extracted from both 

signals and a higher similarity value assuming a 

small difference between the rates. Both patient 3 

and patient 4 have a periodic respiration pattern 

(PR). This makes an estimation of the breathing rate 

impossible because of the apnea periods interrupting 

the respiration.  

Correlation values for the respiration rate are in a 

higher order than for the mutual comparison of the 

signals themselves due to the selected frequency 

band in the STFT and the quantization of the 

respiratory rate. 

4 CONCLUSIONS 

Using Eulerian video magnification and an optical 

flow algorithm, we are capable to detect the 

respiratory rate of newborn infants from video data. 

Moreover, the breathing frequency can be found by 

computing the STFT on the extracted signal. The 

developed method is a first step to detect apnea 

intervals and periodic breathing during sleep, only 

based on a simple video registration. Provided the 

video is not suffering from too many non-respiration 

related movements, apnea can be detected by the 

absence of any movement with simple thresholding. 

The same principle can be used to identify periodic 

respiration.  

However, the computation time to extract a 

respiration signal is rather high, due to the optical 

flow algorithm. The computation time can already 

be significantly reduced by lowering the resolution 

of the image. The results of the respiration detection 

are not significantly affected by half the resolution. 

A reduction of the number of frames per seconds of 

the input video is another way to decrease the 

computation time. The respiration rate of newborns 

is almost never above 1 Hz. Therefore, it should be 

possible to extract the respiration from the video 

recordings while lowering the number of frames per 

second under the 12.5 used here. Combining these 

two modifications could lead to a significant 

reduction of the computation time. 

The position of the camera relative close to the 

infant and its bed has to be standardized. For 

example, a good suggestion would be to place it near 

the feet on the bed while looking down on the infant 

at an angle of approximately 45 degrees. In that way, 

only vertical optical flow values should be taken into 

account. There would be no or only a small 

projection on the horizontal axis. Consequently, 

optimization of the other steps would be possible 

taking the camera position into account. In addition, 

the chest and abdomen region of the infant should be 

visible for the camera. Respiration detection is 

possible when a thin blanket covers the baby, but not 

when its body is made completely invisible by a 

thick blanket. 

Nevertheless, the method for respiration 

detection introduced in this text has a number of 

advantages on the other techniques used for 

respiration monitoring of neonates. First, it does not 

require any piece of equipment to be in contact with 

the infant. This increases the comfort level of the 

baby in addition to avoidance of skin irritation and 

other reactions to the equipment in contact with the 

patient. The other advantage is the simplicity of the 
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required equipment. The video images used here are 

standard resolution images captured by a normal 

camera. The processing only requires a computer. 

This combination is less expensive than some of the 

other devices used to monitor the respiration rate 

from a distance. This simple equipment is also easy 

to use and could be used in a home environment as 

well. Home monitoring is more comfortable for the 

patient and its parents, but it is also less expensive 

and allows the hospital to take care of another 

patient instead of the one being monitored at home. 

In conclusion, this setup is a first step improving the 

neonatal assessment regarding the vital sign of 

respiration.  
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