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Abstract: Visual illusions emerge as an attractive field of research with the discovery over the last century of a variety 
of deep and mysterious mechanisms of visual information processing in the human visual system. Among 
many classes of visual illusion relating to shape, brightness, colour and motion, “geometrical illusions” are 
essentially based on the misperception of orientation, size, and position. The main focus of this paper is on 
illusions of orientation, sometimes referred to as “tilt illusions”, where parallel lines appear not to be 
parallel, a straight line is perceived as a curved line, or angles where lines intersect appear larger or smaller. 
Although some low level and high level explanations have been proposed for geometrical tilt illusions, a 
systematic explanation based on model predictions of both illusion magnitude and local tilt direction is still 
an open issue. Here a neurophysiological model is expounded based on Difference of Gaussians 
implementing a classical receptive field model of retinal processing that predicts tilt illusion effects.  

1 INTRODUCTION  

Our visual perception of the world is the result of the 
underlying processing of both parallel and 
progressive (multilevel) visual information, starting 
from the low level visual processing done in the 
retina and passing information through multiple 
levels of processing in the visual system. Visual 
illusions are some of the visual distortion 
experiences we encounter due to the limitations of 
our visual information processing. It is likely these 
effects emerge in specific processing stages either in 
low level processing done in the retina or higher 
level information processing in the cortex. Visual 
illusions are often evident near or beyond the 
thresholds of what our visual system can handle. So 
by studying the visual illusions, we can better 
understand the underlying mechanism and 
limitations, and more generally the processing done 
in our visual system. In the process we can also 
develop new understanding and techniques for 
computer and robot vision. 

There are many approaches to the study of 
illusion perception such as Gestalt psychology 
(Gregory & Heard, 1979; Gilchrist et al., 1999), 
computational models (Fermüller & Malm, 2004; 

Robinson et al., 2007), neuro-biological, and 
cognitive neuro-science approaches (Grossberg & 
Todorovic, 1988; Penacchio & Otazu, 2013). Our 
model is a bioplausible computational model 
inspired by the low level multiscale filtering 
performed in the retina itself. 

The patterns explored are tilt illusions involving 
enhancement of texture backgrounds such as 
Checkerboard, Café Wall and bulging checkerboard 
illusions. These types of illusions could be explained 
in three different ways including: The theory of 
‘contrast and assimilation’ (Smith et al, 2001), 
‘perceptual inferences and junctions analysis’ 
providing high level explanations (Gilchrist et al., 
1999; Grossberg & Todorovic, 1988; Anderson, 
1997, 2005), or ‘low level spatial filtering’ 
(Jameson, 1985; Blakeslee & McCourt, 2004).  

For high-level explanation models, the ‘Scission 
Theory’ proposed by Anderson (1997, 2005) triggers 
the parsing of targets into multiple layers of 
reflectance, transparency and illumination and 
predicts that erroneous decomposition leads to 
brightness illusions. Another high-level model is 
‘Anchoring Theory’ (Gilchrist et al., 1999) based on 
‘grouping factors’ that signal depth information. 

Low-level theories are based on the mechanisms 
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in early visual processing, e.g. simple image features 
such as contrast edges rather than global scene 
interpretation. For instance Jameson (1985) 
proposed ‘Contrast/Assimilation Model’ which 
qualitatively modelled both brightness contrast and 
assimilation based on parallel processing at multiple 
spatial scales by ‘Difference of Gaussians’ (DoG) 
filters. Another example is Oriented-DoG (ODoG) 
model proposed by Blakeslee and McCourt (1999, 
2004) applying multiple scale and oriented DoG 
filters to address many brightness/lightness illusions. 

There is evidence that visual processing in the 
retina is based on many resolutions simultaneously 
(ter Haar Romeny, 2003). The idea mentioned by 
Marr and Hildreth (1980) decades ago suggesting 
that retinal processing carries ‘signatures’ of the 
‘three-dimensional structure’ though did not 
received physiological evidence at that time. It 
seems that retinal low level multiscale processing 
provide band pass visual information of the scene 
which is an important factor in our real time quick 
visual processing.   

About how close these different explanations can 
be, Dixon et al., (2013) claimed for connections 
between ‘ODoG model’ (Blakeslee & McCourt, 
1999) with higher level models such as ‘Anchoring 
Theory’ of Gilchrist (1999). The key idea that is a 
common principle in multiscale, inference base 
brightness/lightness perception, mentioned to be 
high pass filtering tuned to the object size.  

In this paper we explore a multiscale model 
based on the circular centre and surround 
mechanism of classical receptive field (CRF) in the 
retina relying on difference of Gaussian (DoG) 
filters while assuming some limited number of 
scales for the filter. The model’s output is a 
multiscale pyramid of DoG filtered outputs in which 
each scale of the filter creates a new layer of visual 
information. The amount of information and its 
accuracy is based on the neighbourhood size around 
the edges that defined by the surround size of retinal 
receptive field (RF) and proper scales of the DoG 
filters.  

The outputs from different scales of the DoG 
filter can then be integrated. This multilayer 
representation has a significant power in revealing 
the underlying structure of the percept. It provides us 
with enough information to start processing and 
getting some preliminary 3D percept of the pattern, 
containing edges, shades, some textures and even 
may be some cues about the depth information. This 
multiscale DOG filtering representation might be the 
underlying mechanism to connect our model to some 
high level explanations (e.g. Gilchrist et al., 1999).  

This paper is organised as follows. Section Two 
explains multiscale representation and spectral 
analysis in computer vision (CV). Section Three 
seeks for biological connections of these 
mathematical transformations to our vision mainly 
relying on the mechanism of retinal RFs and 
classical receptive fields (CRFs) models. Section 
Four includes the details of our model, the 
experimental results on some tilt illusion patterns 
and a roadmap for our ongoing and future research. 

2 FILTERING AND VISION 

There is considerable physiological evidence for 
frequency and orientation tuning cells in our visual 
system like (Hubel & Wiesel, 1962) and image 
spectral analysis provides us important clues for the 
final percept as the result of our visual processing.  

2.1 Multiscale Representation 

Experimental research in psychophysics and 
physiological findings has suggested the multiscale 
transforms as models of the processing and 
projections in the visual cortex of mammals. Hubel 
and Wiesel (1962) discovered a class of cells they 
called simple cells, which have their response based 
on the frequency and orientation of the visual stimuli 
based on their examination on the cat’s visual 
cortex. The physiological experiments showed that 
their response could be modelled with linear filters, 
whose impulse response has been measured at 
different locations of the visual cortex. Daugmann 
(1980) showed an approximation of impulse 
response of these cortical cells by applying Gaussian 
windows modulated by a sinusoidal wave in which 
spatial orientation tuning of these cells modelled by 
dilation of modulated Gaussians (e.g. Gabor 
functions). 

In the 1970s and 1980s, the need to extract 
multiscale image information was established by 
many researchers (Rosenfeld, 1971; Marr, 1982; 
Burt & Adelson, 1983; Witkin, 1983) and some of 
their ideas have later been subsumed by the wavelet 
paradigm. The use of multiresolution sensor 
provides high-resolution information (fine scales) at 
selected locations and a large field of view with 
relatively little data (coarse scale) at the same time. 

Multiresolution algorithms can be implemented 
using the multiresolution pyramid introduced by 
Burt and Adelson (1983). Among many recent 
studies on wavelets, Mallat (1996) was one of the 
first to show the impact of wavelets for low-level 
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vision by concentrating on three major applications 
of wavelets, including multiresolution search, 
multiscale edge detection and texture discrimination.  

Pyramidal image representations  such as scale 
invariant transforms (Lowe, 1999) are better 
matched to human visual encoding than JPEG-DCT, 
and in particular don’t need to partition an image 
into blocks before processing. Scale-space analysis 
can be performed based on image decomposition by 
finding the differences between a pair of scaled 
filters with different parameterizations e.g. 
Laplacian or Difference of Gaussian filters create a 
pyramidal scale hierarchy (Lindeberg, 2011). A 
comprehensive comparison of diverse range of 
geometric representations for different multiscale 
spatial, directional and frequency selectivity 
techniques is gathered by Jacques et al., (2011).  

Although pyramidal representation with 
additional scales is arguably over-complete, it has 
the potential to provide a lower error model of the 
data, and is more likely to provide the information at 
the level of detail required for a particular image or 
application. We further connect this to Marr’s idea 
of 3D structure above the edge map (Marr & 
Hildreth, 1980). We will present illusion processing 
results that show evidence for this primitive causal 
effect in low level retinal visual. Currently the 
simulations of these high-level explanations for 
illusion magnitude and error predictions result in 
very complex CV models, which tend not to 
generalize!  

Note further that self-organization models of 
repeated patterns of edge detectors at particular 
angles are well established (von der Malsburg, 
1973). Higher level spatial aggregation of regularly 
spaced spots or edges in turn automatically gives 
rise to analogues of DCT and DWT type bases, the 
latter with localization determined by the higher 
level lateral interaction functions or the constraints 
of an underlying probabilistic connectivity model 
(Powers, 1983). 

2.2 Image Spectral Analysis in CV 

Image processing in spatial (pixel) domain and in 
spectral (frequency) domain have specific 
applications in CV, though frequency analysis of the 
visual scene seems more biologically plausible. The 
more popular discretised spectral transforms are 
includes DCT (Discrete Cosine Transform), DFT 
(Discrete Fourier Transform), STFT (Short Term 
Fourier Transform), and DWT (Discrete Wavelet 
Transform).  

Such families of functions include not only 

bioplausible interaction functions as discussed in the 
previous section, but are also fundamental to JPEG 
and JPEG2000 compression. Those that are based on 
true sinusoidals and/or Gaussians are perhaps not 
directly bioplausible, but usefully approximate those 
that are bioderived. 

One of the main advantages of Fourier 
transformation is facilitating image filtering and 
convolution (Smith, 2003). The high/low pass 
filtering function clearly can contribute to a 
multiresolution model, as well as image sharpening 
and noise removal, and we can also model edge 
detection and texture matching in these terms. 
DFT/DCT are intrinsically global and also suffer 
from a “Leakage” problem (Merry & Steinbuch, 
2005) due to periodically extending the signal. 
Whenever localization either in space or time of 
spectral components is needed, windowed or 
enveloped versions can be used. For example STFT 
is calculated by finding DFT after multiplication by 
a window function, which is sliding over the entire 
image. A main drawback of STFT arises from the 
Nyquist-Heisenberg uncertainty principle (Merry & 
Steinbuch, 2005), meaning that finding an 
appropriate window size is a trade-off between time 
and frequency resolution.  

Wavelets are a more general approach, and DWT 
has had a high impact on signal and image. By 
dilation and translation of a mother wavelet, 
extraction of very low frequency components at 
large scales and very high frequency component at 
small scales are possible. The conventional wavelet 
has some limitations like shift sensitivity, poor 
directionality and lack of phase information, with 
newer techniques introduced to address them (Führ 
et al., 2006).   

Gabor wavelets are product of elliptical Gaussian 
and complex plane wave that provide directionality. 
Based on dilations and rotations of this generating 
function, a set of self-similar Gabor filters generates 
for different orientation and scale. This is a reliable 
technique for direction and scale tuneable edge and 
line detection. Gabor wavelet has the ability to 
characterize the underlying texture and image 
characteristics due to its ability in finding local 
features in small windows, with additional 
directional information (Xie et al., 2008; Ali & 
Powers, 2014). In our biological model, a Gabor-like 
family of wavelets is implied, at different positions 
in the retinal map, and at different frequencies at 
different levels of processing. Figure 1 illustrates 
three different oriented filter banks on a sample 
scale.  

Although there is physiological evidence for 
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frequency and orientation tuning cells both in the 
retina and cortex and the ‘self-organization map’ of 
orientation sensitivity (von de Malsburg, 1973), 
there is still no specific evidence about the 
bioplausibility of particular mathematical 
transformations in our visual system, or 
demonstration that specific models are more likely 
than others.  

 

Figure 1: One sample scale of 6 oriented filter banks (top) 
DoG, (middle) LoG, and (bottom) Gabor wavelet.  

3 BIOLOGY OF THE RETINA 

3.1 Receptive Fields from Retina to 
Cortex 

The retina is a nerve tissue layer arranged in three 
main layers including photoreceptors (rods and 
cones), bipolar cells and ganglion cells (GCs). These 
layers are then connected through two intermediate 
layers of horizontal cells and amacrine cells (Fig 2).  

The photoreceptors are the only retinal cells 
which directly convert light into nerve impulses and 
then transmit the impulses to layer two and three of 
the retina the bipolar neurons, and ganglion neurons 
respectively. Ganglion cells axons exit the eye and 
carry the visual signals to the visual cortex. The 
neurons in the intermediate layers also contribute in 
the visual processing. Horizontal cells transmit the 
photoreceptors outputs to a few surrounding bipolar 
neurons, and the amacrine cells; activate the GCs 
that are in their vicinity.  

 

Figure 2: Retina layers including three main layers of 
photoreceptors, bipolar cells and ganglion cells, and two 
intermediate layers of horizontal cells and amacrine cells. 
The figure reproduced using (McGill, 2014).  

ON-centre and OFF-centre bipolar cells respond 
differentially to the light stimuli on their receptive 
field centres by either depolarization or 
hyperpolarization. Like bipolar cells, the GCs have a 
centre surround antagonism of concentric receptive 
fields, and in response to stimuli, increase and 
decrease the rate of action potential discharges 
(McGill, 2014). Excitation and inhibition effect 
happening based on light stimuli on the centre of an 
ON-centre or OFF-centre GCs that can be easily 
implemented by DoG filters.  

Recent physiological findings have identified 
further features of retinal ganglion cells (RGCs) 
dramatically expanding our understanding of retinal 
processing. Field and Chichilnisky (2007) published 
a detailed study about circuitry and coding of the 
information processing inside the retina, mentioning 
that there are at least 17 distinct retinal ganglion cell 
types and explained how they contribute in the 
visual information encoding. Biological findings in 
size variation of RGCs due to eccentricity and 
dendritic field size (Shapley & Hugh Perry, 1986) 
have been implemented in neuro-computational eye 
models (e.g. Lourens, 1995; ter Haar Romeny, 
2003). 

A few types of RGCs found having orientation 
selectivity similar to the cortical cells (Barlow & 
Hill, 1963; Weng et al., 2005), even for horizontal 
and amacrine cells neurobiological evidence showed 
their elongated surround well beyond the CRF size 
believed to be responsible for orientation detection 
in the retina which modelled as retinal non-CRFs 
(nCRFs) models (Carandini, 2004; Cavanaugh et al., 
2002; Wei et al., 2011). 

All of these evidences indicate that based on the 
diversity of intra-retinal circuits, different types of 
RGCs (Field & Chichilnisky, 2007), and the 
variations of the size of each individual RGCs due to 
the retinal eccentricity (Lourens, 1995), the retinal 
cells have the underlying mechanics of multiscale 
processing from fine to coarse scales supporting 
Marr’s indication of full primal sketch in early 
stages of vision.  

3.2 Retinal Low Level Visual 
Processing  

Linear filtering has many applications in CV such as 
techniques for image improvement by sharpening 
the edges and reducing noise. These procedures take 
place by convolving the original image with an 
appropriate kernel. In convolution, a rectangular grid 
of coefficients (weights) known as the kernel is 
multiplied by the activations of the neighbourhood 
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elements of a particular pixel, and summed (or 
averaged or integrated). We now explain the 
relationship between the convolution operator and 
the point spread function inside retina. 

3.3 Lateral Inhibition and Point 
Spread  

Images can be viewed as a summation of impulses, 
for instance variations of scale and shifted delta 
function can generate an image. The characteristics 
of a linear systems evaluated based on their impulse 
responses, therefore the output image would be 
equal to the input image convolved with the system's 
impulse response. The impulse response is often 
called the point spread function (PSF) (Smith, 2003). 

The human visual system is an excellent example 
of this concept. The first layer of the retina 
transforms an input of a pattern’s light image into 
another pattern consisting of nerve impulses. The 
middle layer of the eye passes the bright spike, and 
produces a circular region of increased darkness. 
This process known as ‘lateral inhibition’, means 
that if a nerve cell in the middle layer is activated, it 
decreases the ability of its nearby neighbours to 
become active. This biological convolution with its 
specific PSF improves the ability of the eye to 
understand the world.  

The object recognition task and identifying 
nearby objects in visual system is based on 
distinguishing regions from their brightness and 
colours. The mechanism in layer 2 of the retina by 
sharpening the edges, facilitate this task. In the 
processing of poor and blurry defined edge with 
gradual change from dark to light such as ramp 
Mach bands illusion, the brightness profile 
appearing on the optic nerve as the output from  
layer 2, has overshoot and undershoot presence, 
reinforces the two regions between the light and 
dark areas to appear more abrupt  (Smith, 2003).  

The lateral inhibition mechanism in layer 2 of the 
retina seems to be the underlying mechanism of low 
level models for addressing brightness lightness 
illusions.  The middle layer of the retina is an edge 
enhancement or high-pass filter, but the first layer of 
the retina with nonlinear mechanism, approximately 
taking the logarithm of the incoming image for 
retinal gain control. This nonlinearity results in 
flattening the illumination component and makes it 
possible for the eye to see under poor light condition 
(Smith, 2003). Both the nonlinearity and filtering in 
layer 2 of the retina seem to be important clues for 
addressing brightness lightness illusions (Kingdom, 
2011), as well as the tilt illusions, which have been 

less well studied but are our present focus. 

3.4 Classical Receptive Field Models 

Classical receptive field (CRFs) models mainly 
emphasize the contrast sensitivity of the retinal 
ganglion cells and are modelled based on the 
circular centre and surround antagonism using 
differences and second differences of Gaussians 
(DoG) or Laplacian of Gaussian (LoG) (Ghosh et 
al., 2007) to reveal the edge information.  

The retinal CRF models date back to the 1960s 
when Rodieck & Stone (1965) and Enroth-Cuggel 
(1966) used the DoG model for implementing RFs 
of the RGCs based on their contrast sensitivity with 
centre having smaller Gaussian variance compared 
to the surround. Marr and Hildreth (1980) proposed 
replacing DoG with LoG and claimed the 
equivalence of DoG and LoG based on a certain 
ratio of		σ (sigma) of the centre and surround 
Gaussians. Powers (1983) showed that DoG models 
can themselves results from a simple biophysical 
model of ontogenesis and can usefully approximate 
the interaction functions proposed in a variety of 
neural models.  

Jameson (1985) developed an early model of 
brightness assimilation and contrast based on DoG 
filters with multiple spatial scales. In a later study 
(Jameson & Hurvich, 1989) they pointed out that 
this processing occurs in parallel and accounts for 
the simultaneous appearance of sharp edges and 
blended colour that define delimited regions. They 
claimed about the source of contrast and assimilation 
by saying that contrast effect happening when the 
stimulus components are relatively large compared 
to the centre of the filter, and assimilation effect 
arise when stimulus components are small compared 
to the filter centre. Similar explanations have been 
proposed for the checkerboard illusion by modelling 
multichannel analysis of human contrast sensitivity 
based on pattern’s spatial frequency (Devalois & 
Devalois, 1988).  

Our visual perception of a scene starts by 
extracting the edge map of the scene and DoG is a 
bioplausible implementation to model this process. 
The extracted edge map is an essential and primitive 
task in most image processing applications, but edge 
map alone cannot provide any information about the 
shades, lights, and also three dimensional structure 
of the image (Ghosh et al., 2007). Therefore 
according to Marr’s ‘raw primal sketch’, there is a 
need for further processing to get the ‘full primal 
sketch’ for a 3D view of the world (Marr & Hildreth, 
1980). 
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Applying LoG (Marr & Hildreth, 1980) instead of 
DoG shows the possibility of involvement of higher 
order Gaussian derivatives in the filtering functions 
in retinal visual processing. Young (1985, 1987) 
introduced modelling of the retinal and cortical RFs 
of many neurons based on linear combination of 
Gaussians and higher derivatives of Gaussian. In a 
recent study, Ghosh et al., (2007) used the 4th and 6th 
order derivatives of Gaussians to extract the shade 
information next to the edges.  Still there is no 
biological evidence on the structure of these 
functions. 

The existence of new features in retinal cells 
showed more delicate retinal information processing 
which introduced the concept of non-classical 
receptive fields (nCRFs) of RGCs. The experimental 
findings done by Passaglia et al. (2001) indicated 
that the surround has an extension well beyond the 
CRFs. Based on the nCRFs implementation (Chao-
Yi & Wu, 1994; Wei et al, 2012) Blakeslee and 
McCourt (2004) proposed a directional multiscale 
DoG filter model for explaining the magnitude of 
various White’s effect patterns. There are also 
approaches for nCRFs implementation of the 
cortical cells (Rao & Ballard, 1999; Grigorescu et 
al., 2003; Tanaka & Ohzawa, 2009).  

4 OUR MODEL 

It has shown that the GCs excitation can be best 
described by centre surround organization (Mangel, 
1991), which can be modelled by differences of two 
Gaussians (Linsenmeier et al., 1982). A ‘neuro-
physiological model’ has been proposed here based 
on multiscale DoG filtering for retinal RF’s 
implementation. Our goal here is exploring more 
about the mechanism and the outputs coming from 
layer 2 of the retina, and analyse whether this low 
level visual representation could provide us with 
enough information for revelling the tilt illusion 
effect or not? 

4.1 Multiscale Implementations of 
Difference of Gaussians (DoG) 

Difference of Gaussians is a filtering technique for 
identifying the edges and multiscale representation 
of DoG filters can produce the multiscale edge map. 
DoG edge detection process starts by first 
performing a Gaussian blurring with a specified 
sigma (ߪ) on the original image, results in a blurred 
version of the image.  Then another blurring with the 
second Gaussian with sharper sigma (finer scales) 

produces the second output with less blurring effect. 
The final result calculated by finding the difference 
between the two blurred results of the original 
image. The zero crossings of the final result define 
the edges, as the pixel values having some variation 
in their surrounding neighbourhood.  

For a 2D signal such as pattern I, the DoG output 
of our retinal GCs model with centre surround 
organization is given by: 

Γ஢,୏஢ሺx, yሻ ൌ I ∗
1

2πσଶ
eିሺ୶

మା୷మሻ/ሺଶ஢మሻ 

െI ∗
1

2πKଶσଶ
eିሺ୶

మା୷మሻ/ሺଶ୏మ஢మሻ 
(1)

where the distance from the origin in the horizontal 
and vertical axes are x and y respectively, σ is the 
sigma of centre Gaussian, and ܭσ indicates the 
sigma of the surround Gaussian. Therefore based on 
the K factor, the ratio of the surrond Gaussian to the 
centre Gaussian is defined. This is the retinal PSF 
introduced in section 3.3 modelling lateral inhibition 
in layer 2 of the retina.  

 

Figure 3: Difference of Gaussian filter with sigma of 7 for 
the centre and 14 for the surround. Window size is 
112×112 pixels. 

A 3D graph of a sample DOG filter is shown in 
Figure 3. The value of K in our model set to 2 as 
used in the ODoG model (Blakeslee & McCourt, 
2004), but our model have a circular centre surround 
organization instead of the oriented elongated 
surround used in the ODoG model. By increasing 
the K factor in Eq. (1), the surround suppression 
affects more on the final predicted output. Rather 
than the K factor, the DoG window size is another 
parameter in the model. Very large windows result 
in long computation, and very small windows are 
just approximating a box blur filter not weighted 
Gaussian one. We set a parameter to define the 
window size based on the sigma of the centre 
Gaussian and tested different ratios from 3 to 20. For 
the experimental results in section 4.4 the window 
size set to 6 times larger than the centre Gaussian to 
both capture the excitation and inhibition effect.   
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What we found is that the model is not sensitive to 
exact parameter setting. Ideally the models’ 
parameters are set so that at the finest scale, it can 
capture high frequency texture details and at coarse 
scales, the kernel has appropriate size relative to the 
objects within the scene.   

The suggestion of involvement of higher order 
Gaussian derivatives first mentioned by Marr’s LoG 
approximation in retinal image processing (Marr & 
Hildreth, 1982), and the idea used on many research 
such as Young (1985, 1987) who applied linear 
combination of Gaussian and LoG instead of DoG 
(Figure 1), but there is still no biological evidence 
for the structure of these functions. 

Powers (1983) also proposed an ontogenetic 
Bernoulli-like model showing that an appropriate 
lateral interaction function can self-organize, and 
can approximate many existing mathematical 
models, including DoG models and LoG models 
(emergent as two levels of DoG processing) noting 
that processing is not particularly sensitive to the 
parameterization or shape of the filter function. 
Indeed cluster-level aggregates of Powers’ Bernoulli 
model approximate to Poisson and Gaussian models. 

The idea of scale-space analysis is based on 
image decomposition, then finding the differences 
between a pair of scaled filters (e.g. DoG or LoG) 
with different parameterizations, which then used to 
create a pyramidal scale hierarchy (Lindeberg, 
2011). Our model has a multiscale stack of filtered 
outputs to reveal the final percept. 

Building a pyramid with additional scales or 
multiple models is over-complete but has the 
potential to provide a lower error model of the data, 
and in particular is more likely to provide the 
information at the level of detail required for a 
particular image or application. This would in turn 
support the connections of Marr’s raw primal to full 
primal sketch and his speculation of 3D structure 
above the edge map (Marr & Hildreth, 1980).  Our 
results show evidence for this primitive causal effect 
in low level retinal visual processing in terms of 
perceptual illusion models. These effects can in turn 
be expected to contribute to higher level models of 
depth and motion processing.  

4.2 Investigated Patterns 

The patterns we have investigated here are given in 
Figure 4. All of the patterns in this class have a 
background effect (such as checkerboards) as well as 
other cues such as mortar lines in the Café Wall 
illusion or superimposed dots on complex bulge 
patterns, which all affect the final percept. From 

now on, we refer to this type of tilt illusions as ‘2nd 
order’ tilt effects. The complex bulge pattern 
designed by Kitaoka (“A Bulge”, Figure 4), and 
similar patterns generated in the present project with 
different shapes of inducing dots (Figure 5), belong 
to 2nd order tilt effect illusions, and the 
superimposed dots on their backgrounds give some 
impression of foreground background percept. 
Different position of dots on the textured 
background, result in some tilt, bow or wave 
perception along the edges as well as expansion and 
contractions on checkers corners.  

 

Figure 4: Investigated patterns (top): Café Wall, simple 
bulge Checkerboard, and (bottom) Complex bulge pattern 
(Kitaoka: “A Bulge”) - http://www.ritsumei.ac.jp/ 
~akitaoka/index-e.html. 

4.3 Alternate Explanations 

Results from psychophysical and computational 
research have shown that the low level visual 
processing models are able to explain some low 
level visual illusions. As an example, the ODoG 
model presented by Blakeslee and McCourt (2004) 
claimed to be a parsimonious model for brightness 
induction illusions (Kingdom, 2011) with the ability 
to predict both the illusion magnitude as well as its 
orientation. For improvement of global 
normalization step in the ODoG model, two 
extensions of the model proposed by Robinson et al., 
(2007) to implement local normalization of 
multiscale oriented outputs. There are other similar 
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models based on higher order derivatives of 
Gaussians (e.g. Ghosh et al., 2007). 

 

Figure 5: Similar complex bulge patterns with circular and 
rectangular superimposed dots on a checkerboard result in 
‘2nd order’ tilt effects.  

There have been attempt to explain geometrical 
illusion patterns as well as brightness illusion 
patterns by using high level visual models, such as 
the perceptual inferences and fill in models proposed 
by Grossberg and Todorovic (1988), as well as 
Gestalt grouping and junction analysis (Gilchrist et a 
l., 1999). But we are exploring the explanatory 
power of retinal level filtering, showing that this low 
level processing mechanism can provide enough 
information to explain a significant family 
geometrical illusion effects without requiring the 
high computational and training cost of high level 
visual models.  

There has also been experimental research (e.g. 
Jameson 1985; Westheimer, 2007) that specifically 
connects ‘brightness induction’ illusions and 
‘geometric illusions’. For instance, some 
explanations for ‘SBC’ (Simultaneous Brightness 
Contrast illusion: Figure 6-left), where a gray test 
patch looks darker on a white background compared 
to an identical patch on a black background, 
suggested the involvement of some neurons with 
small excitatory center and elongated surround 
(nCRFs) that could be modeled with either ‘wavelet 
based modeling’ (Otazu et al., 2008) or ‘DoG based 
models’ (Blakeslee & McCourt, 1999, 2004).  

Figure 6: (left) SBC (Simultaneous Brightness Contrast) 
illusion, where identical gray test patches appear with 
misperception of brightness, and (right) Irradiation pattern 
where equal sized black and white test patches appear with 
the misperception of size. 

Another similar illusion is ‘irradiation pattern’ 
(Figure 6-right) in which two equal size test patches 
of white and black, when positioned on the opposite 
colour backgrounds, result in size misperception and 
white patch on the black background appears larger. 
Westheimer (2007) explained the irradiation effect 
and Café Wall illusion by addressing the border shift 
in those patterns due to the ‘retinal light spread’, 
‘compressive nonlinearity’ and the ‘centre-surround 
organization’ of retinal cells. He then mentioned 
other factors involved for the final percept such as 
cortical stages of straight and sharp borders, pointed 
corners, slope of lines, and angle shifts.  

Therefore the illusion perception in these 2nd 
order tilt patterns seems to get effect from 
‘brightness assimilation and contrast’ as well as 
some ‘border shifts’ similar to our investigated 
patterns. So for these categories of illusions, the 
final percept is not only affected by the brightness 
induction, but is also certainly influenced by the 
bulging effect happening in the corners of the test 
patch, which is basically of geometrical measures 
not the exact intensity ones. We are looking to find 
whether our multiscale retinal model is able to 
address both ‘brightness induction’ and ‘geometrical 
clues’ at the same time or not. The model analysis 
could potentially be extended to even patterns 
related to some other brightness induction illusions 
with some minor changes to the model such as 
additional multi orientation information. 

Some researchers suggest a connection between 
brightness induction and geometrical illusions by 
other names, such as ‘brightness contrast and 
assimilation’ by Jamson (1985), ‘encroachment of 
bright regions into dark ones’ and ‘corner effect’ in 
Westheimer (2007), ‘diagonal grouping’ along 
checkerboard tiles connecting brightness 
assimilation to the contrast by Gilchrist (1999), 
‘diagonal components’ by Ninio (2006) which claim 
to be the missing clue for the tilt illusion 
explanations. There thus may be interacting or 
related mechanism affecting these two supposedly 
distinct illusion categories, and multiscale oriented 
spatial filtering could explain the basic underlying 
mechanism for the appearance of these effects. In a 
complete review of lightness, brightness, and 
transparency (LBT), Kingdom (2011) presented a 
quarter century of new ideas, mentioned one of the 
most promising developments in LBT are models of 
brightness coding based on ‘multiscale filtering’ in 
conjunction with ‘contrast normalization’.  

The contribution of our work to the current 
studies is to highlight the multiscale edge map 
information derived from a bioplausible modelling 
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of CRFs by multiscale DoG filters, and use this 
multiscale edge representation as a basic neural 
model that explains low level illusion precepts. 

 

Figure 7: Café Wall results with centre/surround/window 
in the ratio 1:2:6. (a) Multiscale output result for scale 
varying from fine to coarse scale starting from the centre 
Gaussian ߪof 1 (top-left), increasing 1 pixel at a time to 12 
pixels (bottom-right). Original image for the Café Wall 
illusion (b) with enlarged output (c) for.ߪ ൌ 6. 

4.4 Model’s Predictions and Results 

A common assumption is that information in the 
visual systems is processed at multiple levels of 
resolution, perhaps simultaneously, perhaps 
sequentially in some sense.  The information in each 
scale of our pyramidal bioplausible representation 
result creates a new layer of visual information and 
investigation of this pyramidal output result from 
different scales provides us the multiscale edge map 
containing edges, shades around edges, some 
textures and even may be some clues about the depth 
information as mentioned in full primal sketch of the 
3D scene by Marr and Hildret (1980). 

 
Figure 8: (a) Multiscale output result from 1 =ߪ to 7 scale 
processing for a simple bulge pattern (b) and enlarged 
output (c) for.ߪ ൌ 4.  

The result of our current experiments shows that 
the low level visual processing in layer 2 of the 
retina, is able to reveal and explain many unsolved 
visual illusion perceptions. We have shown the 
simulation result of our simple multiscale CRF 

model based on circular centre and surround 
organization using multiscale DoG based filtering 
representation. We are currently exploring adding 
orientation resolution to our model and extending it 
to nCRFs model based on more recent physiological 
findings related to orientation based multiscale 
filtering in the retina (Carandini, 2004; Cavanaugh 
et al., 2002; Passaglia et al., 2001; Tanaka & 
Ohzawa, 2009). 

The output results of the 2nd order tilt patterns 
investigated here are organised in the Figures 7, 8 
and 9 from low to high scale of the DoG filters 
starting from top-left corner by moving to the right 
in each row and downwards to go to the next row. 
We tried to represent the multiscale representation of 
our bioplausible retinal model, in a way that the 
output result can be seen easily as a sequence of 
increasing scales. Also the result shows an enlarged 
output for a specific scale of the DoG filter, which 
highlight the illusion effect well. The output results 
on the 2nd order tilt patterns of Café Wall, simple 
3×3 Bulge patterns, and complex bulge pattern, 
showed that utilizing simply a multiscale DoG 
filtering analysis based on classical model for RFs 
on those patterns, not only revealed the sharp edges 
when small scale filters are used, but also by 
increasing the filter scale, other hidden information 
such as local texture information was revealed as 
well. These results not only add weights to the 
findings behind the Jameson’s (1985) ‘contrast and 
assimilation theory’, but also indicated that there are 
lots of geometrical clues which can be revealed from 
this bioplausible multiscale representation.  

Of those geometrical cues, our model highlights 
the perception of divergence and convergence of 
mortar lines in the “Café Wall” illusion shown in 
Figure 7. Similar explanation for Café Wall illusion 
is given by other researchers in the field based on 
low level filtering models (Tani et al., 2006; 
McCourt, 1983), although there are some 
psychological explanations for it as well (Gregory & 
Heard, 1979).  

The experimental results show that on the 
“Bulge patterns” in Figures 8 and 9, a bulge effect 
occurs both in the simple pattern as well as the 
complex one, which based on our assumption, is 
happening due to a few visual clues for instance the 
brightness perception of the checkerboard 
background causing a simple border shifts outwards 
for white tiles, the expansions happening in the 
intersection angles, and some further clues related to 
local position of dots, which may have frequency 
discharge or emission  results in local border tilts or 
bow. This might be addressed by high level effects 

(a)   

(b)  (c) 

(c) (b) 

(a)   
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or psychological explanations for bulge effect 
patterns such as uncertainties in both formation and 
processing of image features such as points and lines 
(Fermüller & Malm, 2004) and also categorization 
of edges based on different intensity values around 
them (Gregory & Heard, 1979; Kitaoka, 2007), but it 
has a biological neural explanation for that which we 
are interested in.  

The pyramidal outputs from our model seem to 
easily connect to ‘Gestalt grouping’ principles for a 
psychological point of view that assumes the 
grouping rules as basic blocks for perception of the 
world. Our model suggests grouping principals as 
we find different perceptual groupings occur at 
different scales of the DoG filter applied to the 
pattern. 

 
Figure 9: (a) Multiscale output result for 1,2,3 =ߪ (first 
row), and 4,6,8 (second row) for complex bulge pattern (b) 
with enlarged scale output (c) for.ߪ ൌ 3.  

For example in “Complex Bulge” pattern for 
lower scale filters (Fig 9) we first see the central 
bulge which gradually expands to a level in which 
another grouping principle dominates in as an X 
rather than a bulge. In the “Café Wall” illusion (Fig 
7) the appearance of diverging and converging 
mortar lines when the DoG filter has a mid-range 
scale appear, and by increasing the scale the effect 
of mortar lines disappear and another perceptual 
grouping of tiles along vertical direction opposite to 
the direction of near horizontal mortar effect start to 
appear. It is quite likely that this multiscale 
representation is the underlying mechanism of not 

only perceptual grouping but also some of the higher 
level illusion explanatory models. 

5 CONCLUSIONS 

We have presented our preliminary investigation of 
a variant of the classical retinal receptive field 
(CRFs) model that implementing a circular centre 
and surround mechanism and uses DoG to explain 
some of the tilt illusion patterns such as Café Wall 
and both Simple And Complex Bulge patterns which 
we refer to them all as ‘2nd order’ tilt patterns. We 
focus on low level processing based on what takes 
place in the retinal ganglia. We further expect that 
these retinal filter models will prove to play a 
significant role in higher level models of depth and 
motion processing. Currently the simulations of 
these high-level explanations for illusion magnitude 
and error predictions result in very complex CV 
models, which tend not to generalize. In our future 
work we are extending the model to a non-classical 
receptive field (nCRF) model with circular centre 
and elongated surrounds inspired by our visual 
system, and moving to identify angles of orientation 
and motion quantitatively.  

The experimental results showed that the output 
of the model could provide us not only the 
multiscale edge map as the indications for some 
shades around the edges, but also we get other 
information such as local texture information hidden 
in the pattern as well. In this multiscale 
representation, the information from each scale of 
DoG filtering creates a new layer of visual 
information.  

The outputs from different scales of the DoG 
filter can then be integrated to generate a multiscale 
pyramid of the outputs generated by the DoG model. 
This multiscale pyramidal representation provides us 
with enough information to start processing and 
getting some introductory 3D percept of the pattern, 
including information of edges, shades, some 
textures and even may be some preliminary clues 
about the depth information, as mentioned by Marr’s 
speculation of full primal sketch to complete our 3D 
view of the world.  

This multiscale filtering representation can be 
used for illusion perception prediction and our future 
study is on efficient data representation as well as 
systematic analysis for predicting both illusion 
magnitude and local shift direction by additional 
orientation tuning to the model. Also we are keen to 
make a connection between our bioplausible model 

(c) 

(a) 

(b) 
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with the psychological aspects of ‘Gestalt grouping 
principles’. 
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